
11/4/2016 1Parallel Systems: Multi-threading

Shared-Memory Paradigm
Multithreading

Parallel Systems Course: Chapter II

Jan Lemeire

Dept. ETRO

October 2016

Pag.11/4/2016 2
Parallel Systems: Multi-threadingParallel Systems: Introduction

Overview

1. ⁄⁄ processors and ⁄⁄ instructions sequences

2. Architecture

3. Usage

4. Java Threads

5. POSIX Threads

6. Thread Safety

7. Synchronization Constructs

8. OpenMP and related

9. End Notes

Pag.11/4/2016 3
Parallel Systems: Multi-threadingParallel Systems: Introduction

Overview

1. ⁄⁄ processors and ⁄⁄ instructions sequences

2. Architecture

3. Usage

4. Java Threads

5. POSIX Threads

6. Thread Safety

7. Synchronization Constructs

8. OpenMP and related

9. End Notes

Pag.11/4/2016 4
Parallel Systems: Multi-threading

I. Message-Passing Architectures

Each process got his
own local memory

Communication
through messages

Process is in control

Pag.11/4/2016 5
Parallel Systems: Multi-threading

II. Shared Address-space Architectures

Example: multiprocessors

PRAM: Paralleled Random
Access Memory

Idealization: No
communication costs

But, unavoidability: the
possibility of race
conditions

Pag.

Intel Core Duo

Doubled memory bandwidth

MESI cache coherence protocol,
see later

Introduces overhead

One processor can utilize the
whole L2 cache

PPP 45-58

Parallel Systems: Multi-threading

Pag.

AMD Dual Core Opteron

System Request Interface
handles memory coherence

MOESI protocol

HyperTransport: for RAM
requests

Can be combined with that
of other processors =>
SMPs

Parallel Systems: Multi-threading

Pag.

Quadcores

Intel Core 2 Quad

AMD Phenom

More useful than a dual
core?

Office applications: NO

Special applications such as
photoshop: YES

Games: IF MULTI-THREADED

Scientific applications: IF MULTI-
THREADED

Parallel Systems: Multi-threading

Pag.11/4/2016 9
Parallel Systems: Multi-threading

Example: A file server on a

LAN

It needs to handle several file
requests over a short period

Hence, it is more efficient to
create (and destroy) a single
thread for each request

Multiple threads can possibly
be executed simultaneously
on different processors
(mapped by Operating
System)

P P P

P P P

Scheduled by the OS
on the available

processors

Processes versus Threads

Pag.

Running threads on same core

Executed one by one

Context switch
Thread’s state in core:
instruction fetch buffer, return
address stack, register file,
control logic/state, …

Supported by hardware

Takes time!

11/4/2016 10
Parallel Systems: Multi-threading

thread

creation

T1

saving

T1's state

Processor

core

Thread 1

restoring

T2's state

Thread 2

Thread 3

Process/Thread pool

Operating

system’s

scheduler

T2

Context switch

(overhead)

Coarse-grain multithreading

Pag.

Running threads on multiple cores

Active threads in thread pool

Scheduled by operating system

Threads (or processes) can be migrated from 1 core to
another

11/4/2016 11
Parallel Systems: Multi-threading

Pag.

Hardware threads

Software threads: scheduling and context switching is
performed by Operating System

Has a cost (overhead).

Hardware thread:

Scheduling and context switching done by hardware.

Separate registers & logic for each thread.

Context switching is cheap.

Each hardware thread appears as a logical processor core to the
OS!

In INTEL processors: Hyperthreading

In GPUs: 1000s of threads are possible without overhead!

11/4/2016 12
Parallel Systems: Multi-threading

LINK 11

Pag.

Multi-Threading (MT) possibilities

1311/4/2016 1311/4/2016 13
Parallel Systems: Multi-threading

Context switch

Pag.11/4/2016 14
Parallel Systems: Multi-threadingParallel Systems: Introduction

Overview

1. ⁄⁄ processors and ⁄⁄ instructions sequences

2. Architecture

3. Usage

4. Java Threads

5. POSIX Threads

6. Thread Safety

7. Synchronization Constructs

8. OpenMP and related

9. End Notes

Pag.

Multicores:
The following should be provided

by hardware and/or system

1. Connect PROCs to MEMs (the interconnect)

2. Address concurrent read/writes

3. Cache coherence

11/4/2016 15
Parallel Systems: Multi-threading

Pag.11/4/2016 16
Parallel Systems: Multi-threading

Typical architectures
KUMAR Chapter 2

Pag.11/4/2016 17
Parallel Systems: Multi-threading

Bus-based Interconnects

With local memory/cache

Pag.

Crossbar switches

11/4/2016 18
Parallel Systems: Multi-threading

Pag.

Symmetric Multiprocessor
Architectures (SMPs)

Cf AMD architecture

Bus is potential bottleneck

Number of SMPs is limited

Parallel Systems: Multi-threading

Pag.

Sun Fire E25K (SMP)

Crossbar switch

Up to 72 processors
Each can handle 2 hardware threads

Total: 1.15TB

3 crossbars
~ n2

Parallel Systems: Multi-threading

Pag.

Intel’s Xeon Phi coprocessor

Intel’s response to
GPUs…

60 cores

11/4/2016 21
Parallel Systems: Multi-threading

RAM

ring network

Pag.

Intel’s Xeon Phi’s core

11/4/2016 22
Parallel Systems: Multi-threading

4 hardware

threads

512-bit

Vector unit

(SIMD)

Thread scheduler

Pag.11/4/2016 23
Parallel Systems: Multi-threading

2. PRAM Architectures

Handling of simultaneous memory accesses:
Read operation

– Exclusive-read, concurrent-read

Write operation
– Exclusive-write, concurrent-write

4 implementations:
EREW: access to a memory location is exclusive

CREW: multiple write accesses are serialized

ERCW

CRCW: most powerful PRAM model

Pag.11/4/2016 24
Parallel Systems: Multi-threading

Concurrent Write Access Requires
Arbitration

Common: write is allowed if the new values are identical

Arbitrary: an arbitrary processor is allowed to write, the

rest fails.

Priority: processor with the highest priority succeeds

Sum: the sum of the values is written. Any other

operator can be used.

Pag.

3. Caching & memory coherence

Caching: copies are brought closer to processor
By cache lines of 64/128 Bytes

Cache coherence mechanism: to update copies

11/4/2016 25
Parallel Systems: Multi-threading

Several copies of
same data reside in

memory

Pag.11/4/2016 26
Parallel Systems: Multi-threading

Cache Coherence Mechanisms

To keep copies of data in different memory levels
consistent!

Is not always performed. Best effort.

Or by explicit synchronization triggered by software (see later).

Update protocol

Pag.11/4/2016 27
Parallel Systems: Multi-threading

Cache Coherence Mechanisms

Update protocol

Excess in updates if variable is only read once in P1

False sharing: processes update different parts of same cache line

Used nowadays: Invalidate protocols

Invalidate protocol

Pag.

False sharing

2 processors do not share data but share a cache line

each processor has some data in the same cache line

cache line is kept coherent, unnecessarily…

11/4/2016 28
Parallel Systems: Multi-threading

RAM

Level 2

cache

core core core core

Level 1

cache

Cache line = 6x8 bytes

Cache line = 3x8 bytes

Pag.

MESI-protocol

11/4/2016 29
Parallel Systems: Multi-threading

State Cacheline
Valid?

Valid in
memory?

Copy in
other cache?

Write access

Modified Yes No No Cache

Exclusive Yes Yes No Cache

Shared Yes Yes Possible Cache/Memor
y

Invalid No Unknown Possible Memory

Complex, but effective protocol

Used by Intel

AMD adds an ‘owned’ state => MOESI-protocol

Possible states of a cache line:

Pag.11/4/2016 30
Parallel Systems: Multi-threadingParallel Systems: Introduction

Overview

1. ⁄⁄ processors and ⁄⁄ instructions sequences

2. Architecture

3. Usage

4. Java Threads

5. POSIX Threads

6. Thread Safety

7. Synchronization Constructs

8. OpenMP and related

9. End Notes

Pag.11/4/2016 31
Parallel Systems: Multi-threading

Thread creation

A thread is basically a lightweight
process

A process : unit of resource ownership

a virtual address space to hold the
process image

control of some resources (files, I/O
devices...)

A thread is an execution path

Has access to the memory address
space and resources of its process.
Shares it with other threads.

Has its own function call stack.

main(){

thread.start();

...

...

...

...

...

}

run(){

...

...

...

}

Setup

Tear down

Process Thread

main

thread

Pag.11/4/2016 32
Parallel Systems: Multi-threading

Example: Matrix Multiplication

One thread per C-element

Concurrent read must be possible

No synchronization necessary

Too many threads=a lot of overhead

A11 A12 A13 A1n

A21 A22 A2n

...

Ai1 Ai2 Ai3 Ain

...

...

...

An1 An2 An3 Ann

B11 B12 .. B1j B1n

B21 B22 .. B2j .. B2n

...

...

...

...

...

Bn1 Bn2 .. Bnj .. Bnn

Cij

A

B

C

for (r = 0; r < n; r++)
for (c = 0;c < n; c++)

c[r][c] = create_thread(dot_product(
get_row(a, r),get_col(b, c)));

In this case, one may think of the thread as an instance of a

function that returns before the function has finished executing.

Pag.11/4/2016 33
Parallel Systems: Multi-threading

Why Threads?

Software Portability
run on serial and parallel machines

Latency Hiding
While one thread has to wait, others can utilize CPU

For example: file reading, message reading, reading data from
higher-level memory

Scheduling and Load Balancing
Large number of concurrent tasks

System-level dynamic mapping to processors

Ease of Programming
Easier to write than message-passing programs (at first sight)

Pag.

Latency Hiding

11/4/2016 34
Parallel Systems: Multi-threading

LINK 11

Faster CPU
More

threads

4 cores: x4
Latency hiding: x3

Pag.11/4/2016 35
Parallel Systems: Multi-threading

Example why synchronization is
necessary.

x is initially set to 1

One thread executes: x = 10; print(x);

Second thread executes: x = 5; print(x);

Both threads are started at the same time

What is the output?

Pag.11/4/2016 36
Parallel Systems: Multi-threading

Indeterminism

When 2 threads run
simultaneously, we cannot
determine which one is
first or which one is
faster…

Race condition
“a flaw in an electronic system or
process whereby the output and/or
result of the process is unexpectedly and
critically dependent on the sequence or
timing of other events.”

The term originates with the idea of two
signals racing each other to influence
the output first.

Synchronization necessary

Pag.11/4/2016 37
Parallel Systems: Multi-threading

Synchronization of Critical Sections

When multiple threads attempt to manipulate the same
data item, the results can often be incoherent if proper
care is not taken to synchronize them.

Example:
/* each thread tries to update variable best_cost */

if (my_cost < best_cost)

best_cost = my_cost;

Assume that there are two threads, the initial value of best_cost is 100,
and the values of my_cost are 50 and 75 at threads t1 and t2.

Depending on the schedule of the threads, the value of best_cost could
be 50 or 75!

The value 75 does not correspond to any serialization of the threads.

critical section

Pag.11/4/2016 38
Parallel Systems: Multi-threading

A naïve critical section solution

Problems:
What if access_x is

accessed at the same
time?

Thread consumes CPU
time while waiting

Operating system &
hardware support
needed!

boolean access_x=true;

while (!access_x)

;

access_x=false;

if (my_cost < best_cost)

best_cost = my_cost;

access_x=true;

Ps. There is a software solution for this: Peterson Algorithm (but not efficient)

Pag.

Critical sections trigger cache
coherence

System will not perform cache coherence all the time

Too costly

Critical sections indicate shared data

11/4/2016 39
Parallel Systems: Multi-threading

Pag.11/4/2016 40
Parallel Systems: Multi-threading

Producers-Consumers Scenario

Producer

Threads

...

Produce thing

Put in buffer

...

Consumer

Threads

...

Get from buffer

Consume thing

...

...

Produce thing

If buffer=full

 wait

Put in buffer

Signal non-

emptiness

...

…

If buffer=empty

 wait

Get from buffer

Consume thing

Signal non-

fullness

...
2. Also needed: proper locking of

critical sections, see later…

1. Thread synchronization

LINK 1

Question: can synchronization be
implemented with only locks?

Pag.11/4/2016 41

Multi-threading primitives

Should minimally allow the following:

1. Thread creation

2. Locking of critical sections

3. Thread synchronization

With primitives we mean the minimal set of functions you need to write
any multi-threaded program.

Pag.

Pthreads (C, C++, …) & Java

PThreads Java

How? library Built-in language
Encapsulation:
object manages
thread-safety

Thread creation pthread_create

function

Thread class
Runnable interface

Critical sections Locks Synchronized
methods

Thread
synchronization

Condition variables Wait & notify

04/11/2016 42
Accelerator technology

Pag.11/4/2016 43
Parallel Systems: Multi-threadingParallel Systems: Introduction

Overview

1. ⁄⁄ processors and ⁄⁄ instructions sequences

2. Architecture

3. Usage

4. Java Threads

5. POSIX Threads

6. Thread Safety

7. Synchronization Constructs

8. OpenMP and related

9. End Notes

Pag.11/4/2016 44
Parallel Systems: Multi-threading

The Java Thread Class PPP 202

Pag.11/4/2016 45
Parallel Systems: Multi-threading

Thread creation

class PrimeThread extends Thread {
long minPrime;

PrimeThread(long minPrime) {
this.minPrime = minPrime;

}
public void run() {
// compute primes larger
// than minPrime

. . .
}
}

PrimeThread p = new PrimeThread(143);
p.start();

class PrimeRun implements Runnable {
long minPrime;
PrimeRun(long minPrime) {
this.minPrime = minPrime;
}
public void run() {
// compute primes larger
// than minPrime
. . .
}
}

PrimeRun p = new PrimeRun(143);
new Thread(p).start();

LINK 2

Pag.11/4/2016 46
Parallel Systems: Multi-threading

Synchronized methods & blocks

synchronized void updateCost(int my_cost){
if (my_cost < best_cost)

best_cost = my_cost;
}

Synchronized(object) {
if (my_cost < best_cost)

best_cost = my_cost;
}

LINK 3

void updateCost(int my_cost){
Synchronized(this) {

if (my_cost < best_cost)
best_cost = my_cost;

}
}

is identical to

synchronized static void method(){
…

}

Static methods

synchronized on the associated 'Class'
object:
<theClass>.class is used for locking

1

2

Pag.11/4/2016 47
Parallel Systems: Multi-threading

Java objects act as Monitors

When one thread is executing a synchronized method for
an object, all other threads that invoke synchronized
methods for the same object block (suspend execution)
until the first thread is done with the object.

When a synchronized

method exits, the new state

of the object are visible to

all threads.

Thread synchronization

happens through objects.

Pag.

Example: Counting 3s

Parallelism? Yes.

Multithreaded solution: divide counting

count=0;

for (int i=0;i<array.length;i++)

if (array[i] == 3)

count++;

n data values x0, …,

xn in array array

PPP 29

Parallel Systems: Multi-threading

Pag.

Parallel Counting 3s (wrong version)

count=0;

Thread[] threads = new Thread[nbrThreads];

for(int t=0;t<nbrThreads;t++){

final int T = t;

threads[t] = new Thread(){

public void run(){

int length_per_thread=array.length/ nbrThreads;

int start=T*length_per_thread;

for(int i=start;i<start+length_per_thread; i++)

if (array[i] == 3)

count++;

}

};

threads[t].start();

}

// wait until all threads have finished

for(int t=0;t<nbrThreads;t++)

try {

threads[t].join();

} catch (InterruptedException e) {}

Parallel Systems: Multi-threading

Pag.

Parallel Counting 3s: experiments

Counting 3s in an array of 1000 elements and 4 threads:

* Seq : counted 100 3s in 234us

* Par 1: counted 100 3s in 3ms 615us

* Par 2: counted 100 3s in 13ms 83us

* Par 3: counted 100 3s in 5ms 23us

* Par 4: counted 100 3s in 3ms 845us

Counting 3s in an array of 40000000 elements and 4 threads:

* Seq : counted 4000894 3s in 147ms

* Par 1: counted 3371515 3s in 109ms

* Par 2: counted 4000894 3s in 762ms

* Par 3: counted 4000894 3s in 93ms 748us

* Par 4: counted 4000894 3s in 77ms 14us

On a dual core processor

Parallel Systems: Multi-threading

Pag.

Parallel Counting 3s II

Problem in
previous: access
to the same data

Solution:
synchronized
method

synchronized void addOne(){ count++; }

count=0;

final int NBR_THREADS = nbrThreads;

Thread[] threads = new Thread[nbrThreads];

for(int t=0;t<nbrThreads;t++){

final int T = t;

threads[t] = new Thread(){

public void run(){

int length_per_thread=array.length/NBR_THREADS;

int start=T*length_per_thread;

for(int i=start;i<start+length_per_thread; i++)

if (array[i] == 3)

addOne(); }

};

threads[t].start();

}

// wait until all threads have finished

for(int t=0;t<nbrThreads;t++)

try {

threads[t].join();

} catch (InterruptedException e) {}

PPP 32

Pag.

Parallel Counting 3s III

Problem in
previous:

- locking overhead

- lock contention

- cache coherence
overhead

Solution: Use
local subtotals

synchronized void addCount(int n){ count+=n; }

count=0;

final int NBR_THREADS = nbrThreads;

Thread[] threads = new Thread[nbrThreads];

for(int t=0;t<nbrThreads;t++){

final int T = t;

threads[t] = new Thread(){

int private_count=0;

public void run(){

int length_per_thread=array.length/NBR_THREADS;

int start=T*length_per_thread;

for(int i=start;i<start+length_per_thread; i++)

if (array[i] == 3)

private_count++;

addCount(private_count);

}

};

threads[t].start();

}

// wait until all threads have finished

for(int t=0;t<nbrThreads;t++)

threads[t].join();

PPP 33

Parallel Systems: Multi-threading

Pag.

Parallel Counting 3s IV

Problem in
previous: false
sharing

(see earlier slide)

Solution:
padding

synchronized void addCount(int n){ count+=n; }

count=0;

final int NBR_THREADS = nbrThreads;

Thread[] threads = new Thread[nbrThreads];

for(int t=0;t<nbrThreads;t++){

final int T = t;

threads[t] = new Thread(){

int private_count=0;

int p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15;

public void run(){

int length_per_thread=array.length/NBR_THREADS;

int start=T*length_per_thread;

for(int i=start;i<start+length_per_thread; i++)

if (array[i] == 3)

private_count++;

addCount(private_count);

}

};

threads[t].start();

}

// wait until all threads have finished

for(int t=0;t<nbrThreads;t++)

threads[t].join();

PPP 34

Pag.11/4/2016 55
Parallel Systems: Multi-threading

Volatile Variables

The Java language allows threads to keep private
working copies of these variables (= caching). This
enables a more efficient execution of the two threads.
For example, when each thread reads and writes these
variables, they can do so on the private working copies
instead of accessing the variables from main memory.
The private working copies are reconciled with main
memory only at specific synchronization points.

Volatile variables: Private working memory is
reconciled with main memory on each variable access.

= Light-weight synchronization

LINK 4

Pag.11/4/2016 56
Parallel Systems: Multi-threading

Only for atomic operations

volatile int best_cost;
…
if (my_cost < best_cost)

best_cost = my_cost;
…

volatile int x;
…
X++;
…

volatile int x;
…
X=5;
…

Which code is thread-safe?

Conditions:

1. Writes to the variable do not depend on

its current value.

2. The variable does not participate in
invariants with other variables

volatile int lower, upper;

public void setLower(int value) {
if (value > upper)
throw new IllegalArgumentException(...);

lower = value;
}
public void setUpper(int value) {

if (value < lower)
throw new IllegalArgumentException(...);

upper = value;
}

LINK 4&5

Pag.

Incorrectly synchronized programs
exhibit surprising behaviors

Initially, A = B = 0

Then:

End result r2 == 2, r1 == 1 is possible!!

Compilers are allowed to reorder the instructions in either thread,
when this does not affect the execution of that thread in isolation
(being independent)

Reordering instructions might improve performance

11/4/2016 57
Parallel Systems: Multi-threading

Thread 1 Thread 2

1: r2 = A; 3: r1 = B;

2: B = 1; 4: A = 2;

Pag.

The Java Memory Model

Describes how threads interact through memory.

Specifies the legal behaviors for a multithreaded
program.

The compiler/virtual machine is allowed to make
optimizations.

Tries to provide safety, but also flexibility (allowing
optimizations to improve performance).

Trade-off!

11/4/2016 58
Parallel Systems: Multi-threading

LINK 4

Pag.11/4/2016 59
Parallel Systems: Multi-threading

Thread Synchronization

Via Object class

public final void wait() throws InterruptedException

Causes the current thread to wait until another thread invokes the
notify() method or the notifyAll()

The current thread must own this object's monitor. The thread releases
ownership of this monitor

public final void wait(long timeout, int nanos) throws

InterruptedException

public final void notify()

Wakes up a single thread that is waiting on this object's monitor.

The awakened thread will not be able to proceed until the current thread
relinquishes the lock on this object.

public final void notifyAll()

LINK 2

http://java.sun.com/javase/6/docs/api/java/lang/InterruptedException.html
http://java.sun.com/javase/6/docs/api/java/lang/Object.html
http://java.sun.com/javase/6/docs/api/java/lang/Object.html
http://java.sun.com/javase/6/docs/api/java/lang/InterruptedException.html

Pag.11/4/2016 60
Parallel Systems: Multi-threading

Put synchronization in critical
section

OK?
...

Produce thing

while buffer=full

 wait()

Put in buffer

notify()

...

…

while buffer=empty

 wait()

Get from buffer

notify()

Consume thing

...

synchronized void put()

{

 while buffer=full

 wait()

 Put in buffer

 notify()

}

synchronized void get()

{

 while buffer=empty

 wait()

 Get from buffer

 notify()

}

Lock is released
on wait()

LINK 6

Race condition
possible!

Producer

Threads

Consumer

Threads

Pag.11/4/2016 61
Parallel Systems: Multi-threading

Vector versus ArrayList

Vector is synchronized, Arraylist is not

Only one thread:
Reported: Vector is slower <> my tests: no difference

Recent java versions automatically choose best version

Multiple threads:
Vector OK

Use Collections.synchronizedList(new ArrayList(...)) ;

LINK 7

Pag.11/4/2016 62
Parallel Systems: Multi-threading

Atomic Objects

http://java.sun.com/docs/books/tutorial/essential/concurren
cy/atomicvars.html

Liveness problem:
Waiting threads due to (unnecessary) synchronization

LINK 3

http://java.sun.com/docs/books/tutorial/essential/concurrency/atomicvars.html

Pag.11/4/2016 63
Parallel Systems: Multi-threading

More Advanced …

Explicit lock objects
tryLock(): provides means to back out of lock

Executors: more advanced threads
Thread pools: reuse of finished threads

Concurrent Collections: concurrent data
structures that can be accessed by multiple
threads simultaneously

BlockingQueues

ConcurrentMa

PPP 207

Pag.11/4/2016 64
Parallel Systems: Multi-threadingParallel Systems: Introduction

Overview

1. ⁄⁄ processors and ⁄⁄ instructions sequences

2. Architecture

3. Usage

4. Java Threads

5. POSIX Threads

6. Thread Safety

7. Synchronization Constructs

8. OpenMP and related

9. End Notes

Pag.11/4/2016 65
Parallel Systems: Multi-threading

The POSIX Thread API

Commonly referred to as Pthreads, POSIX has emerged
as the standard threads API (1995), supported by most
vendors.

The concepts discussed here are largely independent of
the API and can be used for programming with other
thread APIs (NT threads, Solaris threads, Java threads,
etc.) as well.

KUMAR Chapter 7

PPP Chapter 6

Pag.11/4/2016 66
Parallel Systems: Multi-threading

PThreads: Creation and Termination

#include <pthread.h>

int pthread_create (pthread_t *thread_handle, const pthread_attr_t
*attribute, void * (*thread_function)(void *), void *arg);

int pthread_join (pthread_t thread, void **ptr);

The function pthread_create invokes function
thread_function as a thread.

The function pthread_join waits for the thread to be
finished and the value passed to pthread_exit (by the
terminating thread) is returned in the location pointer
**ptr.

Pag.11/4/2016 67
Parallel Systems: Multi-threading

Example
#include <pthread.h>

#include <stdlib.h>

#define MAX_THREADS 512

void *compute_pi (void *);

main() {

pthread_t p_threads[MAX_THREADS];

pthread_attr_t attr;

pthread_attr_init (&attr);

for (i=0; i< num_threads; i++) {

hits[i] = i;

pthread_create(&p_threads[i], &attr, compute_pi, (void *) &hits[i]);

}

for (i=0; i< num_threads; i++) {

pthread_join(p_threads[i], NULL);

total_hits += hits[i];

}

}

Executed on a 4-processor SGI

Origin: speedup of 3.91 with 32

threads.

This corresponds to a parallel

efficiency of 0.98!

KUMAR

Pag.11/4/2016 68
Parallel Systems: Multi-threading

Mutual Exclusion

The code in the previous example corresponds to a
critical segment or critical section; i.e., a segment
that must be executed by only one thread at any time.

Critical segments in Pthreads are implemented using
mutex locks.

Mutex-locks have two states: locked and unlocked. At
any point of time, only one thread can lock a mutex lock.
A lock is an atomic operation.

A thread entering a critical segment first tries to get a
lock. It goes ahead when the lock is granted. Otherwise
it is blocked until the lock relinquished.

Pag.11/4/2016 69
Parallel Systems: Multi-threading

Mutual Exclusion

The Pthreads API provides the following functions
for handling mutex-locks:

int pthread_mutex_init (pthread_mutex_t *mutex_lock,
const pthread_mutexattr_t *lock_attr);

int pthread_mutex_lock (pthread_mutex_t *mutex_lock);

int pthread_mutex_unlock (pthread_mutex_t *mutex_lock);

Pag.11/4/2016 70
Parallel Systems: Multi-threading

Lock critical sections

We can now write our previously incorrect code segment as:
pthread_mutex_t minimum_value_lock;

...

main() {
....

pthread_mutex_init(&minimum_value_lock, NULL);
....

}

void *find_min(void *list_ptr) {
....

pthread_mutex_lock(&minimum_value_lock);

if (my_min < minimum_value)

minimum_value = my_min;

/* and unlock the mutex */

pthread_mutex_unlock(&minimum_value_lock);

}

Pag.11/4/2016 71
Parallel Systems: Multi-threading

Disadvantages lock

Deadlock possible, see later

Performance degradation
Due to locking overhead

Due to idling of locked threads (if no other thread is there to
consume available processing time)

Alleviate locking overheads

Minimize size of critical sections
Encapsulating large segments of the program within locks can
lead to significant performance degradation.

create_task() and process_task() are left outside critical

section!

Pag.11/4/2016 72
Parallel Systems: Multi-threading

Alleviate locking overheads

Test a lock:
int pthread_mutex_trylock (pthread_mutex_t
*mutex_lock);

Returns 0 if locking was successful, EBUSY when already locked
by another thread.

pthread_mutex_trylock is typically much faster than
pthread_mutex_lock since it does not have to deal with
queues associated with locks for multiple threads waiting
on the lock.

Example: write result to global data if lock can be
acquired, otherwise temporarily store locally

KUMAR: ‘Finding matches in a list’

Pag.11/4/2016 73
Parallel Systems: Multi-threading

Condition Variables for Synchronization

A condition variable allows a thread to block itself until specified data
reaches a predefined state.

A condition variable is associated with this predicate. When the
predicate becomes true, the condition variable is used to signal one
or more threads waiting on the condition.

A single condition variable may be associated with more than one
predicate.

A condition variable always has a mutex associated with it. A thread
locks this mutex and tests the predicate defined on the shared
variable.

If the predicate is not true, the thread waits on the condition variable
associated with the predicate using the function
pthread_cond_wait.

Pag.11/4/2016 74
Parallel Systems: Multi-threading

Synchronization in Pthreads

Pthreads provides the following functions for

condition variables:
int pthread_cond_wait(pthread_cond_t *cond,

pthread_mutex_t *mutex);

int pthread_cond_signal(pthread_cond_t *cond);

int pthread_cond_broadcast(pthread_cond_t *cond);

int pthread_cond_init(pthread_cond_t *cond,

const pthread_condattr_t *attr);

int pthread_cond_destroy(pthread_cond_t *cond);

Pag.11/4/2016 75
Parallel Systems: Multi-threading

Producer-consumer work queues

The producer threads create tasks and inserts
them into a work queue.

The consumer threads pick up tasks from the
queue and executes them.

Synchronization!

Pag.11/4/2016 76
Parallel Systems: Multi-threading

Producer-Consumer Using Locks

The producer-consumer scenario imposes the following
constraints:

The producer thread must not overwrite the shared
buffer when the previous task has not been picked up by
a consumer thread.

The consumer threads must not pick up tasks until there
is something present in the shared data structure.

Individual consumer threads should pick up tasks one at
a time.

Pag.11/4/2016 77
Parallel Systems: Multi-threading

PPP 170

(get-put)==1

Small mistake in PPP on page 170

Thanks to Xuyang Feng, 2014

Pag.11/4/2016 78
Parallel Systems: Multi-threading

Controlling Thread and
Synchronization Attributes

The Pthreads API allows a programmer to change the
default properties of entities (thread, mutex, condition
variable) using attributes objects.

An attributes object is a data-structure that describes
entity properties.

Once these properties are set, the attributes object can
be passed to the method initializing the entity.

Enhances modularity, readability, and ease of
modification.

Pag.11/4/2016 79
Parallel Systems: Multi-threading

Attributes Objects for Threads

Use pthread_attr_init to create an attributes object.

Individual properties associated with the attributes object
can be changed using the following functions:

pthread_attr_setdetachstate,

pthread_attr_setguardsize_np,

pthread_attr_setstacksize,

pthread_attr_setinheritsched,

pthread_attr_setschedpolicy,

pthread_attr_setschedparam

Pag.11/4/2016 80
Parallel Systems: Multi-threading

Threads locks multiple times

pthread_mutex_lock(&lock1);

...

pthread_mutex_lock(&lock1);

...

pthread_mutex_unlock(&lock1);

...

pthread_mutex_unlock(&lock1);

E.g. happens when
in one critical
section we call
code with also a
critical section
protected by the
same lock

What will happen?
 depends on type of lock

Pag.11/4/2016 81
Parallel Systems: Multi-threading

Types of Mutexes

Pthreads supports three types of mutexes - normal, recursive, and
error-check.

A normal mutex deadlocks if a thread that already has a lock
tries a second lock on it. This is the default.

A recursive mutex allows a single thread to lock a mutex as
many times as it wants. It simply increments a count on the
number of locks. A lock is relinquished by a thread when the
count becomes zero.

An error check mutex reports an error when a thread with a
lock tries to lock it again (as opposed to deadlocking in the first
case, or granting the lock, as in the second case).

The type of the mutex can be set in the attributes object before it is
passed at time of initialization.

Pag.11/4/2016 82
Parallel Systems: Multi-threading

Attributes Objects for Mutexes

Initialize the attrributes object using function:
pthread_mutexattr_init.
The function pthread_mutexattr_settype_np can be
used for setting the type of mutex specified by the mutex
attributes object.
pthread_mutexattr_settype_np (

pthread_mutexattr_t *attr,
int type);

Here, type specifies the type of the mutex and can take
one of:

PTHREAD_MUTEX_NORMAL_NP

PTHREAD_MUTEX_RECURSIVE_NP

PTHREAD_MUTEX_ERRORCHECK_NP

Pag.11/4/2016 83
Parallel Systems: Multi-threading

Thread Cancellation

int pthread_cancel(pthread_t *thread);

Terminates another thread

Can be dangerous
In java: deprecated suspend() method. Use of it is discouraged.

But sometimes useful, e.g. as long as the user is staying at a certain
view in your application, you calculate extra information, as soon as he
leaves the view, you stop the calculation.

A thread can protect itself against cancellation

pthread_exit: exit thread (yourself) without exiting the

process

Pthread_cond_timedwait

Pag.11/4/2016 84
Parallel Systems: Multi-threadingParallel Systems: Introduction

Overview

1. ⁄⁄ processors and ⁄⁄ instructions sequences

2. Architecture

3. Usage

4. Java Threads

5. POSIX Threads

6. Thread Safety

7. Synchronization Constructs

8. OpenMP and related

9. End Notes

Pag.11/4/2016 85
Parallel Systems: Multi-threading

Condition variables & locking

Condition variables should be protected by a lock
Signal of non-emptiness can happen just between check and
when consumer thread goes into waiting

Should the signal also be protected by the lock?
No

PPP 171-173

Pag.11/4/2016 86
Parallel Systems: Multi-threading

Thread-safe?

pthread_mutex_lock(&lock);
while (apples==0)

pthread_cond_wait(&more_apples, &lock);
while (oranges==0)

pthread_cond_wait(&more_oranges, &lock);
// eat apple & orange
pthread_mutex_unlock(&lock);

pthread_mutex_lock(&lock);
while (apples==0 || oranges==0){

pthread_cond_wait(&more_apples, &lock);
pthread_cond_wait(&more_oranges, &lock);

}
// eat apple & orange
pthread_mutex_unlock(&lock);

NOK!!

Still NOK!

PPP 173-174

Mistake in PPP on page 173!!

Pag.11/4/2016 87
Parallel Systems: Multi-threading

Thread-safe!

pthread_mutex_lock(&lock);
while (apples==0 || oranges==0){

pthread_cond_wait(&more_apples_or_more
oranges, &lock);
}
// eat apple & orange
pthread_mutex_unlock(&lock);

OK

PPP 173-174

OK

pthread_mutex_lock(&lock);
boolean allConditionsPassed;
do {

allConditionsPassed = true;
if (apples == 0){

pthread_cond_wait(&more_apples, &lock);
allConditionsPassed = false; }

if (oranges == 0){
pthread_cond_wait(&more_oranges, &lock);
allConditionsPassed = false; }

} while (!allConditionsPassed);
// eat apple & orange
pthread_mutex_unlock(&lock);

Mistake in PPP on page 173!!

By the boolean, you can easily add

more conditions. Also OK, no boolean:

} while(apples == 0 || oranges == 0)

Only 1 cond variable

Pag.11/4/2016 88
Parallel Systems: Multi-threading

The Dining Philosophers
LINK 8

Thinking

Hungry Eating

The philosophers are not
allowed to speak and
there is no arbiter
organizing the resources

strategy (protocol)?
might deadlock or

livelock…

LES 3 TOT HIER

Pag.11/4/2016 89
Parallel Systems: Multi-threading

Deadlocks

Four conditions
1. Mutual exclusion

2. Hold and wait: threads hold some resources and request other

3. No preemption: resource can only be released by the thread that
holds it

4. Circular wait: cycle in waiting of a thread for a resource of
another

PPP 177

Pag.

Livelocks

Similar to a deadlock, except that the states of the
processes involved in the livelock constantly change with
regard to one another, none progressing.

Real-world example: two people meet in a narrow
corridor, each moves aside to let the other pass, but they
end up swaying from side to side

A risk with algorithms that detect and recover from
deadlock.

11/4/2016 90
Parallel Systems: Multi-threading

Pag.11/4/2016 91
Parallel Systems: Multi-threadingParallel Systems: Introduction

Overview

1. ⁄⁄ processors and ⁄⁄ instructions sequences

2. Architecture

3. Usage

4. Java Threads

5. POSIX Threads

6. Thread Safety

7. Synchronization Constructs

8. OpenMP and related

9. End Notes

Pag.11/4/2016 92
Parallel Systems: Multi-threading

Composite Synchronization
Constructs

By design, Pthreads provide support for a basic

set of operations.

Higher level constructs can be built using basic
synchronization constructs.

We discuss two such constructs - barriers and
read-write locks.

KUMAR Chapter 7

Pag.11/4/2016 93
Parallel Systems: Multi-threading

Barriers

Holds a thread until all threads participating in the
barrier have reached it.

Can be implemented using a counter, a mutex and a
condition variable.

A single integer is used to keep track of the number of threads that have
reached the barrier.

If the count is less than the total number of threads, the threads execute
a condition wait.

The last thread entering (and setting the count to the number of
threads) wakes up all the threads using a condition broadcast.

Release of lock and reactivation of threads must happen
atomically

Otherwise problematic when barrier is reused…

KUMAR Chapter 7

Pag.11/4/2016 94
Parallel Systems: Multi-threading

Barriers

typedef struct {

pthread_mutex_t count_lock;

pthread_cond_t ok_to_proceed;

int count;

} mylib_barrier_t;

void mylib_init_barrier(mylib_barrier_t *b) {

b -> count = 0;

pthread_mutex_init(&(b -> count_lock), NULL);

pthread_cond_init(&(b -> ok_to_proceed), NULL);

}

Pag.11/4/2016 95
Parallel Systems: Multi-threading

Barriers

void mylib_barrier (mylib_barrier_t *b, int num_threads) {

pthread_mutex_lock(&(b -> count_lock));

b -> count ++;

if (b -> count == num_threads) {

b -> count = 0;

pthread_cond_broadcast(&(b -> ok_to_proceed));

}

else

while (pthread_cond_wait(&(b -> ok_to_proceed),

&(b -> count_lock)) != 0)

;

pthread_mutex_unlock(&(b -> count_lock));

}

Pag.11/4/2016 96
Parallel Systems: Multi-threading

Barriers

The barrier described above is called a linear
barrier.

The trivial lower bound on execution time of this
function is therefore O(n) for n threads.

Threads are released one by one, since mutex count_lock is
passed among them one after the other!

Can be speeded up using multiple barrier
variables organized in a tree.

Pag.11/4/2016 97
Parallel Systems: Multi-threading

Log Barrier

We use n/2 condition variable-mutex pairs for
implementing a barrier for n threads.

At the lowest level, threads are paired up and each pair
of threads shares a single condition variable-mutex pair.

Once both threads arrive, one of the two moves on, the
other one waits.

This process repeats up the tree.

This is also called a log barrier and its runtime grows as
O(log n).

Pag.11/4/2016 98
Parallel Systems: Multi-threading

Readers-writers problem
“Many threads must access the same shared memory at one time,
some reading and some writing, with the natural constraint that no
process may access the share for reading or writing while another
process is in the act of writing to it.”

Data structure is read frequently but written infrequently

use read-write locks instead of traditional locking.

A read lock is granted when there are other threads that may
already have read locks.

If there is a write lock on the data (or if there are queued write
locks), the thread performs a condition wait.

Pending writers get priority over pending readers.

If there are multiple threads requesting a write lock, they must
perform a condition wait.

With this description, we can design functions for read locks
mylib_rwlock_readlock, write locks mylib_rwlock_writelock, and
unlocking mylib_rwlock_unlock.

KUMAR Chapter 7

Pag.11/4/2016 99
Parallel Systems: Multi-threading

Read-Write Locks

The lock data type mylib_rwlock_t holds the
following:

a count of the number of readers,
a count of pending writers
A boolean specifying whether a writer is present,
a mutex read_write_lock associated with the shared
data structure,
a condition variable readers_proceed that is signaled
when readers can proceed,
a condition variable writer_proceed that is signaled
when one of the writers can proceed

Pag.11/4/2016 100
Parallel Systems: Multi-threading

typedef struct {

int readers;

bool writer;

pthread_cond_t readers_proceed;

pthread_cond_t writer_proceed;

int pending_writers;

pthread_mutex_t read_write_lock;

} mylib_rwlock_t;

void mylib_rwlock_init (mylib_rwlock_t *l) {

l->readers = l->pending_writers = 0;

l->writer = false;

pthread_mutex_init(&(l->read_write_lock), NULL);

pthread_cond_init(&(l->readers_proceed), NULL);

pthread_cond_init(&(l->writer_proceed), NULL);

}

Read-Write Locks

Pag.11/4/2016 101
Parallel Systems: Multi-threading

Read-Write Locks

void mylib_rwlock_readlock(mylib_rwlock_t *l) {

/* if there is a write lock or pending writers, perform
condition wait.. else increment count of readers and grant
read lock */

pthread_mutex_lock(&(l->read_write_lock));

while ((l->pending_writers > 0) || l->writer)

pthread_cond_wait(&(l->readers_proceed),

&(l->read_write_lock));

l->readers ++;

pthread_mutex_unlock(&(l->read_write_lock));

}

Lock – by reader

Pag.11/4/2016 102
Parallel Systems: Multi-threading

Read-Write Locks

void mylib_rwlock_writelock(mylib_rwlock_t *l) {
/* if there are readers or a writer, increment pending
writers count and wait. On being woken, decrement pending
writers count and set writer */

pthread_mutex_lock(&(l->read_write_lock));
while (l->writer || (l->readers > 0)) {

l->pending_writers ++;
pthread_cond_wait(&(l->writer_proceed),

&(l->read_write_lock));
l->pending_writers --;

}
l->writer = true;
pthread_mutex_unlock(&(l->read_write_lock));

}

Error in Kumar:

should be inside

loop

Lock – by writer

Pag.11/4/2016 103
Parallel Systems: Multi-threading

Read-Write Locks

void mylib_rwlock_readunlock(mylib_rwlock_t *l) {
/* if there is a write lock then unlock, else if there are read

locks, decrement count of read locks. If the count is 0 and
there is a pending writer, let it through, else if there are
pending readers, let them all go through */

pthread_mutex_lock(&(l->read_write_lock));
l->readers --;
pthread_mutex_unlock(&(l->read_write_lock));
if ((l->readers == 0) && (l->pending_writers > 0))

pthread_cond_signal(&(l->writer_proceed));

else if (l->pending_writers == 0)
pthread_cond_broadcast(&(l->readers_proceed));

}

Unlock – by reader

Pag.11/4/2016 104
Parallel Systems: Multi-threading

Read-Write Locks

void mylib_rwlock_writeunlock(mylib_rwlock_t *l) {
/* if there is a write lock then unlock, else if there are read

locks, decrement count of read locks. If the count is 0 and
there is a pending writer, let it through, else if there are
pending readers, let them all go through */

pthread_mutex_lock(&(l->read_write_lock));
l->writer = false;

if (l->pending_writers > 0)
pthread_cond_signal(&(l->writer_proceed));

else
pthread_cond_broadcast(&(l->readers_proceed));

pthread_mutex_unlock(&(l->read_write_lock));

}

Unlock – by writer

Error in Kumar:

should be after

the tests (Noah

Van Es - 2016)

Was originally placed here

Pag.11/4/2016 105
Parallel Systems: Multi-threading

Read-Write Locks

void mylib_rwlock_unlock(mylib_rwlock_t *l) {
/* if there is a write lock then unlock, else if there are read

locks, decrement count of read locks. If the count is 0 and
there is a pending writer, let it through, else if there are
pending readers, let them all go through */

pthread_mutex_lock(&(l->read_write_lock));
if (l->writer) // I’m a writer

l->writer = false;
else if (l->readers > 0) // I’m a reader

l->readers --;
if ((l->readers == 0) && (l->pending_writers > 0))

pthread_cond_signal(&(l->writer_proceed));

else if (l -> readers > 0)
pthread_cond_broadcast(&(l->readers_proceed));

pthread_mutex_unlock(&(l->read_write_lock));

}

WRONG: l->readers is

zero when writer leaves

Unlock – by reader/writer

Code Kumar

Error in Kumar:

should be after

the tests (Noah

Van Es - 2016)

Pag.

What if pending writers should
get access asap

What if readers unlock, but there are other
readers busy (readers > 0) and there are
pending writers and pending readers

Readers should not be released!

Should be: else if (l->pending_writers == 0)

11/4/2016 106
Parallel Systems: Multi-threading

Pag.

Conditional wait inside a loop

When waiting on condition variables, the wait should be
inside a loop, not in a simple if statement because of
spurious wakeups.

cf http://en.wikipedia.org/wiki/Spurious_wakeup

You are not guaranteed that if a thread wakes up, it is the result
of a signal or broadcast call.

Spurious wakeups may occur => the return does not
imply anything about the value of the predicate => the
predicate should be re-evaluated.

http://opengroup.org/onlinepubs/007908799/xsh/pthread_cond_wait.html

11/4/2016 107
Parallel Systems: Multi-threading

while (!predicate)

pthread_cond_wait(…)

Pag.11/4/2016 108
Parallel Systems: Multi-threadingParallel Systems: Introduction

Overview

1. ⁄⁄ processors and ⁄⁄ instructions sequences

2. Architecture

3. Usage

4. Java Threads

5. POSIX Threads

6. Thread Safety

7. Synchronization Constructs

8. OpenMP and related

9. End Notes

Pag.11/4/2016 109
Parallel Systems: Multi-threading

OpenMP Philosophy

The OpenMP Application Program Interface (API)
supports multi-platform shared-memory parallel
programming in C/C++ and Fortran.

Portable, scalable model with a simple and flexible
interface for developing parallel applications

Augment sequential programs in minor ways to identify
code that can be executed in parallel.

Simpler to use

More restrictive in terms of parallel interactions than Java/POSIX

Standardized (Sun, Intel, Fujitsu, IBM, …)

http://www.openmp.org

PPP 207

Pag.11/4/2016 110
Parallel Systems: Multi-threading

How?

Add pragmas to program
#pragma omp <specifications>

The #pragma directives offer a way for each compiler to offer
machine- and operating system-specific features. If the compiler
finds a pragma it does not recognize, it issues a warning, but
compilation continues.

An OpenMP-compliant compiler will generate
appropriate multithreaded code

Other compilers simply ignore the pragmas and generate
sequential code.

PPP 208

Pag.11/4/2016 111
Parallel Systems: Multi-threading

Count 3s example

Pag.11/4/2016 112
Parallel Systems: Multi-threading

parallel for (line 9)

The iterations can execute in any order

the iterations can execute in parallel.
count instead of count_p is wrong!

Reduction pragma for computations that combine
variables globally
count=0;

#pragma omp parallel for reduction(+,count)

for(i=0; i<length; i++)

count += array[i]==3 ? 1 : 0;

Pag.11/4/2016 113
Parallel Systems: Multi-threading

Handling data dependencies

#pragma omp critical

{

count += count_p;

}

#pragma omp atomic

score += 3

Memory update is
noninterruptible

Critical section that
will be protected by
locks

Pag.11/4/2016 114
Parallel Systems: Multi-threading

Sections to express task parallelism

#pragma omp sections
{
#pragma omp section
{
Task_A();

}
#pragma omp section
{
Task_B();

}
#pragma omp section
{
Task_C();

}
}

Pag.

OpenACC for GPU computing

A dialect of OpenACC especially for GPU computing

Easier than OpenCL/CUDA

The future??

Based on OpenHMPP from CAPS enterprise (Bretagne,
France)

11/4/2016 115
Parallel Systems: Multi-threading

Pag.

Matlab: parallel for

Parallel computing toolbox provides simple constructs to
allow parallel execution

Parallel for (when iterations are independent)

…

Automatic parallel execution

Create pool of computers that will work together

Many functions of libraries run in parallel and even
(automatically) on GPU!

11/4/2016 116
Parallel Systems: Multi-threading

Pag.11/4/2016 117
Parallel Systems: Multi-threadingParallel Systems: Introduction

Overview

1. ⁄⁄ processors and ⁄⁄ instructions sequences

2. Architecture

3. Usage

4. Java Threads

5. POSIX Threads

6. Thread Safety

7. Synchronization Constructs

8. OpenMP and related

9. End Notes

Pag.11/4/2016 118
Parallel Systems: Multi-threading

Keep in mind when Designing
Asynchronous Programs

Never rely on scheduling assumptions when exchanging
data.

Never rely on liveness of data resulting from assumptions
on scheduling.

Do not rely on scheduling as a means of synchronization.

Use synchronization mechanisms with mutexes.

Where possible, define and use group synchronizations
and data replication.

Pag.

Methods for multi-threading

1. POSIX: low-level

• Complete

2. Java Threads: integrated in the language

• Complete, although some things need ‘dirty’ solutions

• For example: allow multiple synchronized methods of an object to
be executed simultaneously.

3. OpenMP (and others): high-level

• Incomplete, you can’t program everything you want…

4. OpenCL

• For fine-grain parallelism

• For algorithms with massive inherent parallelism

• Thread synchronization is hidden for the user!

11/4/2016 120
Parallel Systems: Multi-threading

Which one should we prefer?

Pag.

A bit of history: Semaphores

One of the first concepts for critical sections & thread
synchronization.

Invented by Dutch computer scientist Edsger Dijkstra.

found widespread use in a variety of operating systems as basic
primitive for avoiding race conditions.

Based on a protected variable for controlling access by multiple
processes to a common resource

By atomic operations you can decrement or increment semaphores

binary (flag) or integer (counting)

When binary: similar to mutexes

When integer: The value of the semaphore S is the number of units of
the resource that have not been claimed.

11/4/2016 121
Parallel Systems: Multi-threading

1930 – 2002

http://en.wikipedia.org/wiki/Binary_numeral_system

Pag.

Why multithreading

Performance (speedup):
Exploit parallel hardware

Latency hiding
– More than 1 thread per core

Load balancing
– More than 1 thread per core

More high-level memory available

Convenience
E.g. one thread per client request

Background computations

11/4/2016 122
Parallel Systems: Multi-threading

Pag.11/4/2016 123
Parallel Systems: Multi-threading

Disadvantages of multi-threading

More difficult to understand

More difficult to debug

Indeterminism!
Finding unsafe constructions through testing is difficult!

Pag.11/4/2016 124
Parallel Systems: Multi-threading

Multi-threading without speedup

Webserver: a thread for each client
Multi-threading for convenience

= distributed computing, not parallel computing

But: one can loose performance!
4 requests, each request takes 10 seconds to finish.

A single thread: user #1 has to wait 10 seconds, user #2 will wait
20 seconds, user #3 will wait 30 seconds and user #4 will wait 40
seconds.

Average waiting time = 25 seconds

Four threads are activated: they must split the available
processor time. Each thread will take four times as long. So each
request will complete at about 40 seconds.

Waiting time = 40 seconds (+37.5%!)

LINK 9

