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Sorting: Overview 

One of the most commonly used and well-studied kernels. 

Sorting can be comparison-based or non-comparison-
based. 

Non-comparison: determine rank (index) in list of element

– E.g. Radix sort: put elements in buckets

We focus here on comparison-based sorting algorithms. 

The fundamental operation of comparison-based sorting is 
compare-exchange. 

The lower bound on any comparison-based sort of n numbers 
is Θ(nlog n), the quicksort performance. 

Parallel Sorting
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Mission

Sort array asap by exploiting parallel system 
with distributed memory

Idea: based on quicksort
leads to most-optimal parallel algorithm?

Parallel Sorting
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Quicksort 

Quicksort is one of the most common sorting 
algorithms for sequential computers because of its 
simplicity, low overhead, and optimal average 
complexity. 

Quicksort selects one of the entries in the sequence 
to be the pivot and divides the sequence into two -
one with all elements less than the pivot and other 
greater. 

The process is recursively applied to each of the 
sublists. 

Shellsort is eruit gehaald

Parallel Sorting
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The sequential quicksort algorithm. 

Parallel Sorting
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Quicksort 

Example of the quicksort algorithm sorting a sequence of 
size  n = 8. 

Parallel Sorting
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Quicksort 

The performance of quicksort depends critically on 
the quality of the pivot. 

In the best case, the pivot divides the list in such a 
way that the larger of the two lists does not have 
more than   αn elements (for some constant α). 

In this case, the complexity of quicksort is O(nlog n). 

Parallel Sorting
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v1. Parallel Quicksort 

Lets start with recursive decomposition - the list is 
partitioned serially and each of the subproblems is 
handled by a different processor. 

The time for this algorithm is lower-bounded by Ω(n)! 

Since the partitioning is done on single processor

Can we parallelize the partitioning step - in 
particular, if we can use n processors to partition a 
list of length n around a pivot in O(1) time, we have a 
winner. 

Then we obtain a runtime of O(log n)!!

This is difficult to do on real machines, though. 

Parallel Sorting
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Parallel Quicksort

Parallel Sorting
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Execution Profile

Parallel Sorting
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Can we resolve the load imbalances?

Make sure that each processor has the same 
number of elements locally.

Merge results

Merge sort!
Actually better than quicksort

Disadvantage: not in place (need copy of matrix)

Use quicksort for local sort

Parallel Sorting
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v2. based on merge sort

Similar communication overhead, but without load 

imbalances!
Parallel Sorting  
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A simple message passing formulation is based on the 
recursive halving of the machine. 

Assume that each processor in the lower half of a p
processor ensemble is paired with a corresponding 
processor in the upper half. 

A designated processor selects and broadcasts the pivot. 

Each processor splits its local list into two lists, one less 
(Li), and other greater (Ui) than the pivot. 

A processor in the low half of the machine sends its list Ui

to the paired processor in the other half. The paired 
processor sends its  list Li. 

Parallel Sorting

v3. Can we overcome the limited 
parallelism in the beginning?
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Halving process in parallel

Parallel Sorting
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Sorting: Parallel Compare Exchange Operation

A parallel compare-exchange operation. Processes Pi 

and Pj send their elements to each other. Process Pi 

keeps min{ai,aj}, and  Pj keeps max{ai, aj}. 

Parallel Sorting
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Extending to n/p elements
What is the parallel counterpart to a sequential comparator? 

• If each processor has one element, the compare 
exchange operation can be done in ts + tw time (startup 

latency and per-word time). 

• If we have more than one element per processor, we call 
this operation a compare split. Assume each of two 
processors have n/p elements. 

• After the compare-split operation, the smaller n/p
elements are at processor Pi and the larger n/p
elements at Pj, where i < j. 

• The time for a compare-split operation is (ts+ twn/p), 
assuming that the two partial lists were initially sorted. 

Parallel Sorting
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A compare-split operation. Each process sends its block of 
size   n/p to the other process. Each process merges the 

received block with its own block and retains only the 
appropriate half of the merged block. In this example, 
process Pi retains the smaller elements and process Pi

retains the larger elements. 

There are alternatives! With more communication, however…

Parallel Sorting
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After this step:
– all elements < pivot in the low half of the machine 
– all elements > pivot in the high half. 

The above process is recursed until each processor 
has its own local list, which is sorted locally. 

The time for a single reorganization is Θ(log p) for 
broadcasting the pivot element, Θ(n/p) for splitting 
the locally assigned portion of the array, Θ(n/p) for 

exchange and local reorganization. 

Note that this time is identical to that of the 
corresponding shared address space formulation. 

However, it is important to remember that the 
reorganization of elements is a bandwidth sensitive 
operation. 

Parallel Sorting
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Parallelizing Quicksort: Shared Address 
Space Formulation 

A list of size n equally divided across p processors. 

A pivot is selected by one of the processors and made 
known to all processors. 

Each processor partitions its list into two, say Li and Ui, 
based on the selected pivot. 

All of the Li lists are merged and all of the Ui lists are 
merged separately. 

The set of processors is partitioned into two (in 
proportion of the size of lists L and U). The process is 
recursively applied to each of the lists. 

Parallel Sorting
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Remaining problem: global reorganization (merging) of 
local lists to form L and U. 

The problem is one of determining the right location for 
each element in the merged list. 

Each processor computes the number of elements 
locally less than and greater than pivot. 

It computes two sum-scans (also called prefix sum) to 
determine the starting location for its elements in the 
merged L and U lists. 

Once it knows the starting locations, it can write its 
elements safely. 

Parallelizing Quicksort: Shared Address 
Space Formulation 

Parallel Sorting
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Scan operation

Parallel prefix sum: every node got sum of previous 
nodes + itself

PPP 27

Parallel Sorting
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Efficient global rearrangement of the array. 

Parallel Sorting
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The parallel time depends on the split and merge time, and the 
quality of the pivot. 

The latter is an issue independent of parallelism, so we focus 
on the first aspect, assuming ideal pivot selection. 

One iteration has four steps: (i) determine and broadcast the 
pivot; (ii) locally rearrange the array assigned to each process; 
(iii) determine the locations in the globally rearranged array 
that the local elements will go to; and (iv) perform the global 
rearrangement. 

The first step takes time Θ(log p), the second, Θ(n/p) , the third, Θ(log 
p) , and the fourth, Θ(n/p). 

The overall complexity of splitting an n-element array is Θ(n/p) + 
Θ(log p).

Parallelizing Quicksort: Shared Address 
Space Formulation 

Parallel Sorting
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The process recurses until there are p lists, at 

which point, the lists are sorted locally. 

Therefore, the total parallel time is: 

Parallelizing Quicksort: Shared Address 
Space Formulation 

Parallel Sorting

Useful work

(the same as sequential algorithm)

Overhead (neglectable for large n)
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Alternative: PRAM Formulation 

We assume a CRCW (concurrent read, concurrent write) 
PRAM with concurrent writes resulting in an arbitrary write
succeeding (!!). 

The formulation works by creating pools of processors. Every 
processor is assigned to the same pool initially and has one 
element. 

Each processor attempts to write its element to a common 
location (for the pool). 

Each processor tries to read back the location. If the value 
read back is greater than the processor's value, it assigns 
itself to the `left' pool, else, it assigns itself to the `right' 
pool. 

Each pool performs this operation recursively, in lockstep. 

Note that the algorithm generates a tree of pivots. The depth 
of the tree is the expected parallel runtime. The average 
value is O(log n). 

Parallel Sorting
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while(true){

write value to pool

read pivot from pool

if (pivot == value)

break

else if (pivot < value)

pool = pool->left

else

pool = pool->right

}

Parallel Sorting

Parallel Quicksort: PRAM Formulation 

Performed by all

threads in lock-step

 GPU: 

Within warps OK, 

otherwise barrier

barrier

Each thread has 1 value, which will be arranged in a sorted tree 
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Parallel Quicksort: PRAM Formulation 

A binary tree generated by the execution of the quicksort 
algorithm. Each level of the tree represents a different array-
partitioning iteration. 

If pivot selection is optimal, then the height of the tree is Θ(log n), 
which is also the number of iterations. Which is almost the 
ideal speedup! Overhead = pivot selection.

Parallel Sorting
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The execution of 
the PRAM algorithm 
on the array shown 
in (a). 

Parallel Sorting
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Mission

Digital circuit that transforms an unsorted list 
(input) into a sorted list (output)

Idea: parallel processing! By putting 
components in parallel (width)!!

So: runtime is determined by depth

Goal: minimal depth

Parallel Sorting
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Sorting Networks 

A typical sorting network. Every sorting network is made 
up of a series of columns, and each column contains a 

number of comparators connected in parallel. 

Parallel Sorting
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Sorting Networks 

Networks of comparators designed specifically for 
sorting (time < Θ(nlog n) ). 

Specific-designed parallel system.

A comparator is a device with two inputs x and y and 
two outputs x' and y'. For an increasing comparator,  x'
= min{x,y} and y' = max{x,y}; and vice-versa for a 

decreasing comparator. 

We denote an increasing comparator by  and a 
decreasing comparator by Ө.

The speed of the network is proportional to its depth. 

Parallel Sorting
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Basic component: Comparators 

A schematic representation of comparators: (a) an 
increasing comparator, and (b) a decreasing comparator.

Parallel Sorting
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Best algorithm to hardwire?

Can we sort n elements in time O(log n)?
= quicksort performance

Quicksort not possible: communication paths 
are not fixed 

Best: using O(n.log n) comparators, but with 
a quite large constant (many thousands)

Not practical

Bitonic sort and odd-even sort: sort n 
elements in time O(log2 n)

Parallel Sorting

KUMAR p. 416
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Bubble Sort and its Variants 

The sequential bubble sort algorithm compares and 
exchanges adjacent elements in the sequence to be 

sorted: 

Sequential bubble sort algorithm.

Parallel Sorting
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Bubble Sort and its Variants 

The complexity of bubble sort is Θ(n2). 

Bubble sort is difficult to parallelize since the 
algorithm has no concurrency. 

A simple variant, though, uncovers the concurrency.

Complexity is lower than quicksort, but parallelization is 
more efficient

Parallel Sorting
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Odd-Even Transposition 

Sequential odd-even transposition sort algorithm. 

Parallel Sorting
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Sorting n = 8 elements, 
using the odd-even 
transposition sort 
algorithm. During each 
phase, n = 8 elements 
are compared. 

Parallel Sorting
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Odd-Even Transposition 

After n phases of odd-even exchanges, the sequence is 

sorted. 

Each phase of the algorithm (either odd or even) requires 
Θ(n) comparisons. 

Serial complexity is Θ(n2). 

Parallel version can be implemented by 1 network which 
is used iteratively!

Conclusion: very simple, but not the fastest

Parallel Sorting
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Implementation with 1 network

Parallel Sorting

Use wraparound links 

to iterate over both stages
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Consider the one item per processor case. 

There are n iterations, in each iteration, each processor 

does one compare-exchange. 

The parallel run time of this formulation is Θ(n). 

This is cost optimal with respect to the base serial 
algorithm but not to the optimal one (Θ(n log n) ). 

Parallel Odd-Even Transposition 

Parallel Sorting
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Parallel formulation of odd-even transposition. 

Parallel Sorting
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Consider a block of n/p elements per processor. 

The first step is a local sort. 

In each subsequent step of p steps, the compare 
exchange operation is replaced by the compare split 
operation (n/p comparisons).

The parallel run time of the formulation is

Parallel Odd-Even Transposition 

Parallel Sorting
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Sorting Networks: Bitonic Sort 

A bitonic sorting network sorts n elements in Θ(log2n) time. 

A bitonic sequence has two tones - increasing and 
decreasing, or vice versa.. 

1,2,4,7,6,0 is a bitonic sequence, because it first increases 

and then decreases. 

Not important here: Any cyclic rotation of a two-tone 
sequence is also considered bitonic. 8,9,2,1,0,4 is another 
bitonic sequence, because it is a cyclic shift of 0,4,8,9,2,1. 

The kernel of the network is the rearrangement of a 
bitonic sequence into a sorted sequence. 

Parallel Sorting

Also in PPP118
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Sorting Networks: Bitonic Sort 

Let s = a0,a1,…,an-1 be a bitonic sequence such that    
a0 ≤ a1 ≤ ··· ≤ an/2-1 and an/2 ≥ an/2+1 ≥ ··· ≥ an-1. 

Consider the following subsequences of s: 

s1 = min{a0,an/2},min{a1,an/2+1},…,min{an/2-1,an-1}

s2 = max{a0,an/2},max{a1,an/2+1},…,max{an/2-1,an-1}

(1)

s1 and s2 are both bitonic and each element of s1 is 
less than every element in s2. 

We can apply the procedure recursively on s1 and s2

to get the sorted sequence.

Parallel Sorting
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Bitonic sort’s basic merge component

Merging a   16-element bitonic sequence through a series of 
log 16 bitonic splits. 

Parallel Sorting

Basic operation: change a bitonic array into a sorted array.

For 16 elements this can be done in 4 steps.

The complete network will be based on this component.
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We can easily build a sorting network to 
implement this bitonic merge algorithm. 

Such a network is called a bitonic merging 
network. 

The network contains log n columns. Each column 
contains n/2 comparators and performs one step of 

the bitonic merge. 

We denote a bitonic merging network with n inputs 
by   BM[n]. 

Replacing the  comparators by Ө comparators 
results in a decreasing output sequence; such a 
network is denoted by ӨBM[n]. 

Parallel Sorting
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A bitonic merging network for n = 16. The input wires are numbered 
0,1,…, n - 1, and the binary representation of these numbers is 

shown. Each column of comparators is drawn separately; the 
entire figure represents a BM[16] bitonic merging network. The 

network takes a bitonic sequence and outputs it in sorted order. 

Parallel Sorting
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Sorting Networks: Bitonic Sort 

How do we sort an unsorted sequence using a bitonic
merge?

• We must first build a single bitonic sequence from 
the given sequence. 

• A sequence of length 2 is a bitonic sequence. 

• A bitonic sequence of length 4 can be built by sorting 
the first two elements using BM[2] and next two, 
using ӨBM[2]. 

This process can be repeated to generate larger 
bitonic sequences. 

Parallel Sorting
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A schematic representation of a network that converts an input 

sequence into a bitonic sequence. In this example, BM[k] and 
ӨBM[k] denote bitonic merging networks of input size k that 

use  and Ө comparators, respectively. The last merging 

network (BM[16]) sorts the input. In this example, n = 16. 

Parallel Sorting
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The comparator network that transforms an input sequence 
of 16 unordered numbers into a bitonic sequence. 

Parallel Sorting
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Sorting Networks: Bitonic Sort 

The depth of the network is Θ(log2 n). 

1+2+3+…+ log n = (1+ log n). log n /2

Each stage of the network contains n/2
comparators. A serial implementation of the 
network would have complexity Θ(nlog2 n).

Parallel Sorting
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Mapping Bitonic Sort to 
Hypercubes 

Map on a general-purpose parallel computer.

Consider the case of one item per processor. The question 
becomes one of how the wires in the bitonic network 
should be mapped to the hypercube interconnect. 

Note from our earlier examples that the compare-
exchange operation is performed between two wires only if 
their labels differ in exactly one bit! 

a direct mapping of wires to processors; all communication 
is nearest neighbor! 

Parallel Sorting
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Communication during the last stage of bitonic sort. Each 
wire is mapped to a hypercube process; each connection 

represents a compare-exchange between processes. 

Parallel Sorting
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Mapping Bitonic Sort to 
Hypercubes 

Communication characteristics of bitonic sort on a hypercube. 
During each stage of the algorithm, processes communicate 

along the dimensions shown.

Parallel Sorting
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Parallel formulation of bitonic sort on a hypercube with n = 2d

processes. 

Mapping Bitonic Sort to 
Hypercubes 

Parallel Sorting
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During each step of the algorithm, every process 
performs a compare-exchange operation (single 
nearest neighbor communication of one word). 

Since each step takes Θ(1) time, the parallel time is 

Tp = Θ(log2n) (2)

This algorithm is cost optimal w.r.t. its serial 
counterpart, but not w.r.t. the best sorting algorithm 
(Θ(n log n) ). 

Mapping Bitonic Sort to 
Hypercubes 

Parallel Sorting
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The connectivity of a mesh is lower than that of a 
hypercube, so we must expect some overhead in 
this mapping. 

Consider the row-major shuffled mapping of wires to 
processors. 

Mapping Bitonic Sort to Meshes 

Parallel Sorting
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Mapping Bitonic Sort to Meshes 

Different ways of mapping the input wires of the bitonic 
sorting network to a mesh of processes: (a) row-major 

mapping, (b) row-major snakelike mapping, and (c) 
row-major shuffled mapping. 

Parallel Sorting
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The last stage of the bitonic sort algorithm for n = 16 on a 

mesh, using the row-major shuffled mapping. During each 
step, process pairs compare-exchange their elements. 

Arrows indicate the pairs of processes that perform 
compare-exchange operations. 

Mapping Bitonic Sort to Meshes 

Parallel Sorting
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In the row-major shuffled mapping, wires that differ at 
the ith least-significant bit are mapped onto mesh 
processes that are 2(i-1)/2 communication links away. 

The total amount of communication performed by each 
process is:

The total computation performed by each process is 
Θ(log2n). 

The parallel runtime is: 

This is optimal for the mesh, but not cost optimal. 
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Mapping Bitonic Sort to Meshes 

Parallel Sorting



Jan Lemeire 68Pag. / 72

Block of Elements Per Processor 

Each process is assigned a block of n/p elements. 

The first step is a local sort of the local block. 

Each subsequent compare-exchange operation is 
replaced by a compare-split operation. 

We can effectively view the bitonic network as 
having    (1 + log p)(log p)/2 steps => Θ(log2p) . 

Parallel Sorting
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Block of Elements Per Processor: 
Hypercube 

Initially the processes sort their n/p elements (using 
merge sort) in time  Θ((n/p)log(n/p)) and then perform   
Θ(log2p) compare-split steps. 

The parallel run time of this formulation is 

Parallel Sorting
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Block of Elements Per 
Processor: Mesh 

The parallel runtime in this case is given by: 

Parallel Sorting
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Which algorithms on GPU?

Quicksort: shared-memory formulation?

Mergesort?

PRAM formulation

Odd-even transposition

Bitonic sort

Parallel Sorting


