
Parallel Sorting

Sorting Algorithms

Jan Lemeire

ETRO Dept.

Fall 2017

Parallel Systems Course: Chapter VIII

Kumar Chapter 9

Jan Lemeire 2Pag. / 72
Parallel Sorting

Overview

1. Parallel sort – distributed memory

2. Parallel sort – shared memory

3. Sorting Networks

A. Odd-even

B. Bitonic

4. Parallel sort - GPU

Jan Lemeire 3Pag. / 72

Sorting: Overview

One of the most commonly used and well-studied kernels.

Sorting can be comparison-based or non-comparison-
based.

Non-comparison: determine rank (index) in list of element

– E.g. Radix sort: put elements in buckets

We focus here on comparison-based sorting algorithms.

The fundamental operation of comparison-based sorting is
compare-exchange.

The lower bound on any comparison-based sort of n numbers
is Θ(nlog n), the quicksort performance.

Parallel Sorting

Jan Lemeire 4Pag. / 72
Parallel Sorting

Overview

1. Parallel sort – distributed memory

2. Parallel sort – shared memory

3. Sorting Networks

A. Odd-even

B. Bitonic

4. Parallel sort - GPU

Jan Lemeire 5Pag. / 72

Mission

Sort array asap by exploiting parallel system
with distributed memory

Idea: based on quicksort
leads to most-optimal parallel algorithm?

Parallel Sorting

Jan Lemeire 6Pag. / 72

Quicksort

Quicksort is one of the most common sorting
algorithms for sequential computers because of its
simplicity, low overhead, and optimal average
complexity.

Quicksort selects one of the entries in the sequence
to be the pivot and divides the sequence into two -
one with all elements less than the pivot and other
greater.

The process is recursively applied to each of the
sublists.

Shellsort is eruit gehaald

Parallel Sorting

Jan Lemeire 7Pag. / 72

The sequential quicksort algorithm.

Parallel Sorting

Jan Lemeire 8Pag. / 72

Quicksort

Example of the quicksort algorithm sorting a sequence of
size n = 8.

Parallel Sorting

Jan Lemeire 9Pag. / 72

Quicksort

The performance of quicksort depends critically on
the quality of the pivot.

In the best case, the pivot divides the list in such a
way that the larger of the two lists does not have
more than αn elements (for some constant α).

In this case, the complexity of quicksort is O(nlog n).

Parallel Sorting

Jan Lemeire 10Pag. / 72

v1. Parallel Quicksort

Lets start with recursive decomposition - the list is
partitioned serially and each of the subproblems is
handled by a different processor.

The time for this algorithm is lower-bounded by Ω(n)!

Since the partitioning is done on single processor

Can we parallelize the partitioning step - in
particular, if we can use n processors to partition a
list of length n around a pivot in O(1) time, we have a
winner.

Then we obtain a runtime of O(log n)!!

This is difficult to do on real machines, though.

Parallel Sorting

Jan Lemeire 11Pag. / 72

Parallel Quicksort

Parallel Sorting

Jan Lemeire 12Pag. / 72

Execution Profile

Parallel Sorting

Jan Lemeire 13Pag. / 72

Can we resolve the load imbalances?

Make sure that each processor has the same
number of elements locally.

Merge results

Merge sort!
Actually better than quicksort

Disadvantage: not in place (need copy of matrix)

Use quicksort for local sort

Parallel Sorting

Jan Lemeire 14Pag. / 72

v2. based on merge sort

Similar communication overhead, but without load

imbalances!
Parallel Sorting

Jan Lemeire 15Pag. / 72

A simple message passing formulation is based on the
recursive halving of the machine.

Assume that each processor in the lower half of a p
processor ensemble is paired with a corresponding
processor in the upper half.

A designated processor selects and broadcasts the pivot.

Each processor splits its local list into two lists, one less
(Li), and other greater (Ui) than the pivot.

A processor in the low half of the machine sends its list Ui

to the paired processor in the other half. The paired
processor sends its list Li.

Parallel Sorting

v3. Can we overcome the limited
parallelism in the beginning?

Jan Lemeire 16Pag. / 72

Halving process in parallel

Parallel Sorting

Jan Lemeire 17Pag. / 72

Sorting: Parallel Compare Exchange Operation

A parallel compare-exchange operation. Processes Pi

and Pj send their elements to each other. Process Pi

keeps min{ai,aj}, and Pj keeps max{ai, aj}.

Parallel Sorting

Jan Lemeire 18Pag. / 72

Extending to n/p elements
What is the parallel counterpart to a sequential comparator?

• If each processor has one element, the compare
exchange operation can be done in ts + tw time (startup

latency and per-word time).

• If we have more than one element per processor, we call
this operation a compare split. Assume each of two
processors have n/p elements.

• After the compare-split operation, the smaller n/p
elements are at processor Pi and the larger n/p
elements at Pj, where i < j.

• The time for a compare-split operation is (ts+ twn/p),
assuming that the two partial lists were initially sorted.

Parallel Sorting

Jan Lemeire 19Pag. / 72

A compare-split operation. Each process sends its block of
size n/p to the other process. Each process merges the

received block with its own block and retains only the
appropriate half of the merged block. In this example,
process Pi retains the smaller elements and process Pi

retains the larger elements.

There are alternatives! With more communication, however…

Parallel Sorting

Jan Lemeire 20Pag. / 72

After this step:
– all elements < pivot in the low half of the machine
– all elements > pivot in the high half.

The above process is recursed until each processor
has its own local list, which is sorted locally.

The time for a single reorganization is Θ(log p) for
broadcasting the pivot element, Θ(n/p) for splitting
the locally assigned portion of the array, Θ(n/p) for

exchange and local reorganization.

Note that this time is identical to that of the
corresponding shared address space formulation.

However, it is important to remember that the
reorganization of elements is a bandwidth sensitive
operation.

Parallel Sorting

Jan Lemeire 21Pag. / 72
Parallel Sorting

Overview

1. Parallel sort – distributed memory

2. Parallel sort – shared memory

3. Sorting Networks

A. Odd-even

B. Bitonic

4. Parallel sort - GPU

Jan Lemeire 22Pag. / 72

Parallelizing Quicksort: Shared Address
Space Formulation

A list of size n equally divided across p processors.

A pivot is selected by one of the processors and made
known to all processors.

Each processor partitions its list into two, say Li and Ui,
based on the selected pivot.

All of the Li lists are merged and all of the Ui lists are
merged separately.

The set of processors is partitioned into two (in
proportion of the size of lists L and U). The process is
recursively applied to each of the lists.

Parallel Sorting

Jan Lemeire 23Pag. / 72
Parallel Sorting

Jan Lemeire 24Pag. / 72

Remaining problem: global reorganization (merging) of
local lists to form L and U.

The problem is one of determining the right location for
each element in the merged list.

Each processor computes the number of elements
locally less than and greater than pivot.

It computes two sum-scans (also called prefix sum) to
determine the starting location for its elements in the
merged L and U lists.

Once it knows the starting locations, it can write its
elements safely.

Parallelizing Quicksort: Shared Address
Space Formulation

Parallel Sorting

Jan Lemeire 25Pag. / 72

Scan operation

Parallel prefix sum: every node got sum of previous
nodes + itself

PPP 27

Parallel Sorting

Jan Lemeire 26Pag. / 72

Efficient global rearrangement of the array.

Parallel Sorting

Jan Lemeire 27Pag. / 72

The parallel time depends on the split and merge time, and the
quality of the pivot.

The latter is an issue independent of parallelism, so we focus
on the first aspect, assuming ideal pivot selection.

One iteration has four steps: (i) determine and broadcast the
pivot; (ii) locally rearrange the array assigned to each process;
(iii) determine the locations in the globally rearranged array
that the local elements will go to; and (iv) perform the global
rearrangement.

The first step takes time Θ(log p), the second, Θ(n/p) , the third, Θ(log
p) , and the fourth, Θ(n/p).

The overall complexity of splitting an n-element array is Θ(n/p) +
Θ(log p).

Parallelizing Quicksort: Shared Address
Space Formulation

Parallel Sorting

Jan Lemeire 28Pag. / 72

The process recurses until there are p lists, at

which point, the lists are sorted locally.

Therefore, the total parallel time is:

Parallelizing Quicksort: Shared Address
Space Formulation

Parallel Sorting

Useful work

(the same as sequential algorithm)

Overhead (neglectable for large n)

Jan Lemeire 29Pag. / 72

Alternative: PRAM Formulation

We assume a CRCW (concurrent read, concurrent write)
PRAM with concurrent writes resulting in an arbitrary write
succeeding (!!).

The formulation works by creating pools of processors. Every
processor is assigned to the same pool initially and has one
element.

Each processor attempts to write its element to a common
location (for the pool).

Each processor tries to read back the location. If the value
read back is greater than the processor's value, it assigns
itself to the `left' pool, else, it assigns itself to the `right'
pool.

Each pool performs this operation recursively, in lockstep.

Note that the algorithm generates a tree of pivots. The depth
of the tree is the expected parallel runtime. The average
value is O(log n).

Parallel Sorting

Jan Lemeire 30Pag. / 72

while(true){

write value to pool

read pivot from pool

if (pivot == value)

break

else if (pivot < value)

pool = pool->left

else

pool = pool->right

}

Parallel Sorting

Parallel Quicksort: PRAM Formulation

Performed by all

threads in lock-step

 GPU:

Within warps OK,

otherwise barrier

barrier

Each thread has 1 value, which will be arranged in a sorted tree

Jan Lemeire 31Pag. / 72

Parallel Quicksort: PRAM Formulation

A binary tree generated by the execution of the quicksort
algorithm. Each level of the tree represents a different array-
partitioning iteration.

If pivot selection is optimal, then the height of the tree is Θ(log n),
which is also the number of iterations. Which is almost the
ideal speedup! Overhead = pivot selection.

Parallel Sorting

Jan Lemeire 32Pag. / 72

The execution of
the PRAM algorithm
on the array shown
in (a).

Parallel Sorting

Jan Lemeire 33Pag. / 72
Parallel Sorting

Overview

1. Parallel sort – distributed memory

2. Parallel sort – shared memory

3. Sorting Networks

A. Odd-even

B. Bitonic

4. Parallel sort - GPU

Jan Lemeire 34Pag. / 72

Mission

Digital circuit that transforms an unsorted list
(input) into a sorted list (output)

Idea: parallel processing! By putting
components in parallel (width)!!

So: runtime is determined by depth

Goal: minimal depth

Parallel Sorting

Jan Lemeire 35Pag. / 72

Sorting Networks

A typical sorting network. Every sorting network is made
up of a series of columns, and each column contains a

number of comparators connected in parallel.

Parallel Sorting

Jan Lemeire 36Pag. / 72

Sorting Networks

Networks of comparators designed specifically for
sorting (time < Θ(nlog n)).

Specific-designed parallel system.

A comparator is a device with two inputs x and y and
two outputs x' and y'. For an increasing comparator, x'
= min{x,y} and y' = max{x,y}; and vice-versa for a

decreasing comparator.

We denote an increasing comparator by  and a
decreasing comparator by Ө.

The speed of the network is proportional to its depth.

Parallel Sorting

Jan Lemeire 37Pag. / 72

Basic component: Comparators

A schematic representation of comparators: (a) an
increasing comparator, and (b) a decreasing comparator.

Parallel Sorting

Jan Lemeire 38Pag. / 72

Best algorithm to hardwire?

Can we sort n elements in time O(log n)?
= quicksort performance

Quicksort not possible: communication paths
are not fixed

Best: using O(n.log n) comparators, but with
a quite large constant (many thousands)

Not practical

Bitonic sort and odd-even sort: sort n
elements in time O(log2 n)

Parallel Sorting

KUMAR p. 416

Jan Lemeire 39Pag. / 72
Parallel Sorting

Overview

1. Parallel sort – distributed memory

2. Parallel sort – shared memory

3. Sorting Networks

A. Odd-even

B. Bitonic

4. Parallel sort - GPU

Jan Lemeire 40Pag. / 72

Bubble Sort and its Variants

The sequential bubble sort algorithm compares and
exchanges adjacent elements in the sequence to be

sorted:

Sequential bubble sort algorithm.

Parallel Sorting

Jan Lemeire 41Pag. / 72

Bubble Sort and its Variants

The complexity of bubble sort is Θ(n2).

Bubble sort is difficult to parallelize since the
algorithm has no concurrency.

A simple variant, though, uncovers the concurrency.

Complexity is lower than quicksort, but parallelization is
more efficient

Parallel Sorting

Jan Lemeire 42Pag. / 72

Odd-Even Transposition

Sequential odd-even transposition sort algorithm.

Parallel Sorting

Jan Lemeire 43Pag. / 72

Sorting n = 8 elements,
using the odd-even
transposition sort
algorithm. During each
phase, n = 8 elements
are compared.

Parallel Sorting

Jan Lemeire 44Pag. / 72

Odd-Even Transposition

After n phases of odd-even exchanges, the sequence is

sorted.

Each phase of the algorithm (either odd or even) requires
Θ(n) comparisons.

Serial complexity is Θ(n2).

Parallel version can be implemented by 1 network which
is used iteratively!

Conclusion: very simple, but not the fastest

Parallel Sorting

Jan Lemeire 45Pag. / 72

Implementation with 1 network

Parallel Sorting

Use wraparound links

to iterate over both stages

Jan Lemeire 46Pag. / 72

Consider the one item per processor case.

There are n iterations, in each iteration, each processor

does one compare-exchange.

The parallel run time of this formulation is Θ(n).

This is cost optimal with respect to the base serial
algorithm but not to the optimal one (Θ(n log n)).

Parallel Odd-Even Transposition

Parallel Sorting

Jan Lemeire 47Pag. / 72

Parallel formulation of odd-even transposition.

Parallel Sorting

Jan Lemeire 48Pag. / 72

Consider a block of n/p elements per processor.

The first step is a local sort.

In each subsequent step of p steps, the compare
exchange operation is replaced by the compare split
operation (n/p comparisons).

The parallel run time of the formulation is

Parallel Odd-Even Transposition

Parallel Sorting

Jan Lemeire 49Pag. / 72
Parallel Sorting

Overview

1. Parallel sort – distributed memory

2. Parallel sort – shared memory

3. Sorting Networks

A. Odd-even

B. Bitonic

4. Parallel sort - GPU

Jan Lemeire 50Pag. / 72

Sorting Networks: Bitonic Sort

A bitonic sorting network sorts n elements in Θ(log2n) time.

A bitonic sequence has two tones - increasing and
decreasing, or vice versa..

1,2,4,7,6,0 is a bitonic sequence, because it first increases

and then decreases.

Not important here: Any cyclic rotation of a two-tone
sequence is also considered bitonic. 8,9,2,1,0,4 is another
bitonic sequence, because it is a cyclic shift of 0,4,8,9,2,1.

The kernel of the network is the rearrangement of a
bitonic sequence into a sorted sequence.

Parallel Sorting

Also in PPP118

Jan Lemeire 51Pag. / 72

Sorting Networks: Bitonic Sort

Let s = a0,a1,…,an-1 be a bitonic sequence such that
a0 ≤ a1 ≤ ··· ≤ an/2-1 and an/2 ≥ an/2+1 ≥ ··· ≥ an-1.

Consider the following subsequences of s:

s1 = min{a0,an/2},min{a1,an/2+1},…,min{an/2-1,an-1}

s2 = max{a0,an/2},max{a1,an/2+1},…,max{an/2-1,an-1}

(1)

s1 and s2 are both bitonic and each element of s1 is
less than every element in s2.

We can apply the procedure recursively on s1 and s2

to get the sorted sequence.

Parallel Sorting

Jan Lemeire 52Pag. / 72

Bitonic sort’s basic merge component

Merging a 16-element bitonic sequence through a series of
log 16 bitonic splits.

Parallel Sorting

Basic operation: change a bitonic array into a sorted array.

For 16 elements this can be done in 4 steps.

The complete network will be based on this component.

Jan Lemeire 53Pag. / 72

We can easily build a sorting network to
implement this bitonic merge algorithm.

Such a network is called a bitonic merging
network.

The network contains log n columns. Each column
contains n/2 comparators and performs one step of

the bitonic merge.

We denote a bitonic merging network with n inputs
by BM[n].

Replacing the  comparators by Ө comparators
results in a decreasing output sequence; such a
network is denoted by ӨBM[n].

Parallel Sorting

Jan Lemeire 54Pag. / 72

A bitonic merging network for n = 16. The input wires are numbered
0,1,…, n - 1, and the binary representation of these numbers is

shown. Each column of comparators is drawn separately; the
entire figure represents a BM[16] bitonic merging network. The

network takes a bitonic sequence and outputs it in sorted order.

Parallel Sorting

Jan Lemeire 55Pag. / 72

Sorting Networks: Bitonic Sort

How do we sort an unsorted sequence using a bitonic
merge?

• We must first build a single bitonic sequence from
the given sequence.

• A sequence of length 2 is a bitonic sequence.

• A bitonic sequence of length 4 can be built by sorting
the first two elements using BM[2] and next two,
using ӨBM[2].

This process can be repeated to generate larger
bitonic sequences.

Parallel Sorting

Jan Lemeire 56Pag. / 72

A schematic representation of a network that converts an input

sequence into a bitonic sequence. In this example, BM[k] and
ӨBM[k] denote bitonic merging networks of input size k that

use  and Ө comparators, respectively. The last merging

network (BM[16]) sorts the input. In this example, n = 16.

Parallel Sorting

Jan Lemeire 57Pag. / 72

The comparator network that transforms an input sequence
of 16 unordered numbers into a bitonic sequence.

Parallel Sorting

Jan Lemeire 58Pag. / 72

Sorting Networks: Bitonic Sort

The depth of the network is Θ(log2 n).

1+2+3+…+ log n = (1+ log n). log n /2

Each stage of the network contains n/2
comparators. A serial implementation of the
network would have complexity Θ(nlog2 n).

Parallel Sorting

Jan Lemeire 59Pag. / 72

Mapping Bitonic Sort to
Hypercubes

Map on a general-purpose parallel computer.

Consider the case of one item per processor. The question
becomes one of how the wires in the bitonic network
should be mapped to the hypercube interconnect.

Note from our earlier examples that the compare-
exchange operation is performed between two wires only if
their labels differ in exactly one bit!

a direct mapping of wires to processors; all communication
is nearest neighbor!

Parallel Sorting

Jan Lemeire 60Pag. / 72

Communication during the last stage of bitonic sort. Each
wire is mapped to a hypercube process; each connection

represents a compare-exchange between processes.

Parallel Sorting

Jan Lemeire 61Pag. / 72

Mapping Bitonic Sort to
Hypercubes

Communication characteristics of bitonic sort on a hypercube.
During each stage of the algorithm, processes communicate

along the dimensions shown.

Parallel Sorting

Jan Lemeire 62Pag. / 72

Parallel formulation of bitonic sort on a hypercube with n = 2d

processes.

Mapping Bitonic Sort to
Hypercubes

Parallel Sorting

Jan Lemeire 63Pag. / 72

During each step of the algorithm, every process
performs a compare-exchange operation (single
nearest neighbor communication of one word).

Since each step takes Θ(1) time, the parallel time is

Tp = Θ(log2n) (2)

This algorithm is cost optimal w.r.t. its serial
counterpart, but not w.r.t. the best sorting algorithm
(Θ(n log n)).

Mapping Bitonic Sort to
Hypercubes

Parallel Sorting

Jan Lemeire 64Pag. / 72

The connectivity of a mesh is lower than that of a
hypercube, so we must expect some overhead in
this mapping.

Consider the row-major shuffled mapping of wires to
processors.

Mapping Bitonic Sort to Meshes

Parallel Sorting

Jan Lemeire 65Pag. / 72

Mapping Bitonic Sort to Meshes

Different ways of mapping the input wires of the bitonic
sorting network to a mesh of processes: (a) row-major

mapping, (b) row-major snakelike mapping, and (c)
row-major shuffled mapping.

Parallel Sorting

Jan Lemeire 66Pag. / 72

The last stage of the bitonic sort algorithm for n = 16 on a

mesh, using the row-major shuffled mapping. During each
step, process pairs compare-exchange their elements.

Arrows indicate the pairs of processes that perform
compare-exchange operations.

Mapping Bitonic Sort to Meshes

Parallel Sorting

Jan Lemeire 67Pag. / 72

In the row-major shuffled mapping, wires that differ at
the ith least-significant bit are mapped onto mesh
processes that are 2(i-1)/2 communication links away.

The total amount of communication performed by each
process is:

The total computation performed by each process is
Θ(log2n).

The parallel runtime is:

This is optimal for the mesh, but not cost optimal.

 )(or ,72
log

1 1

2/)1(
nn

n

i

i

j

j
  



Mapping Bitonic Sort to Meshes

Parallel Sorting

Jan Lemeire 68Pag. / 72

Block of Elements Per Processor

Each process is assigned a block of n/p elements.

The first step is a local sort of the local block.

Each subsequent compare-exchange operation is
replaced by a compare-split operation.

We can effectively view the bitonic network as
having (1 + log p)(log p)/2 steps => Θ(log2p) .

Parallel Sorting

Jan Lemeire 69Pag. / 72

Block of Elements Per Processor:
Hypercube

Initially the processes sort their n/p elements (using
merge sort) in time Θ((n/p)log(n/p)) and then perform
Θ(log2p) compare-split steps.

The parallel run time of this formulation is

Parallel Sorting

Jan Lemeire 70Pag. / 72

Block of Elements Per
Processor: Mesh

The parallel runtime in this case is given by:

Parallel Sorting

Jan Lemeire 71Pag. / 72
Parallel Sorting

Overview

1. Parallel sort – distributed memory

2. Parallel sort – shared memory

3. Sorting Networks

A. Odd-even

B. Bitonic

4. Parallel sort - GPU

Jan Lemeire 72Pag. / 72

Which algorithms on GPU?

Quicksort: shared-memory formulation?

Mergesort?

PRAM formulation

Odd-even transposition

Bitonic sort

Parallel Sorting

