Parallel Systems Course: Chapter VIII

Sorting Algorithms

Jan Lemeire ETRO Dept. Fall 2017

Vrije Universiteit Brussel

1. Parallel sort – distributed memory 2. Parallel sort – shared memory **3. Sorting Networks** A. Odd-even **B**, **Bitonic** 4. Parallel sort - GPU

Parallel Sorting

Sorting: Overview

- One of the most commonly used and well-studied kernels.
- Sorting can be comparison-based or non-comparisonbased.
 - Non-comparison: determine rank (index) in list of element
 - E.g. Radix sort: put elements in buckets
- We focus here on comparison-based sorting algorithms.
 - The fundamental operation of comparison-based sorting is compare-exchange.
 - The lower bound on any comparison-based sort of n numbers is O(nlog n), the quicksort performance.

1. Parallel sort – distributed memory 2. Parallel sort – shared memory **3. Sorting Networks** A. Odd-even **Bitonic** Β. 4. Parallel sort - GPU

Sort array *asap* by exploiting parallel system with distributed memory

Idea: based on quicksort

Ieads to most-optimal parallel algorithm?

Quicksort

- Quicksort is one of the most common sorting algorithms for sequential computers because of its simplicity, low overhead, and optimal average complexity.
- Quicksort selects one of the entries in the sequence to be the pivot and divides the sequence into two one with all elements less than the pivot and other greater.
- The process is recursively applied to each of the sublists.

Parallel Sorting Jan Lemeire

1.	procedure QUICKSORT (A, q, r)
2.	begin
3.	if $q < r$ then
4.	begin
5.	x := A[q];
6.	s := q;
7.	for $i := q + 1$ to r do
8.	if $A[i] \leq x$ then
9.	begin
10.	s := s + 1;
11.	swap(A[s], A[i]);
12.	end if
13.	swap(A[q], A[s]);
14.	QUICKSORT (A, q, s) ;
15.	QUICKSORT $(A, s + 1, r)$;
16.	end if
17.	end QUICKSORT

The sequential quicksort algorithm.

Parallel Sorting Jan Lemeire

Quicksort

Example of the quicksort algorithm sorting a sequence of size n = 8.

Parallel Sorting Jan Lemeire

Quicksort

- The performance of quicksort depends critically on the quality of the pivot.
- In the best case, the pivot divides the list in such a way that the larger of the two lists does not have more than αn elements (for some constant α).
- In this case, the complexity of quicksort is O(nlog n).

v1. Parallel Quicksort

- Lets start with recursive decomposition the list is partitioned serially and each of the subproblems is handled by a different processor.
- The time for this algorithm is lower-bounded by $\Omega(n)$!
 - Since the partitioning is done on single processor
- Can we parallelize the partitioning step in particular, if we can use *n* processors to partition a list of length *n* around a pivot in O(1) time, we have a winner.
 - Then we obtain a runtime of O(log n)!!
- This is difficult to do on real machines, though.

Parallel Quicksort

Execution Profile

Can we resolve the load imbalances?

- Make sure that each processor has the same number of elements locally.
- Merge results
- Merge sort!
 - Actually better than quicksort
 - Disadvantage: not in place (need copy of matrix)
 - ➡ Use quicksort for local sort

v2. based on merge sort

Similar communication overhead, but without load imbalances!

Jan Lemeire

v3. Can we overcome the limited parallelism in the beginning?

- A simple message passing formulation is based on the recursive halving of the machine.
- Assume that each processor in the lower half of a p processor ensemble is paired with a corresponding processor in the upper half.
- A designated processor selects and broadcasts the pivot.
- Each processor splits its local list into two lists, one less (L_i), and other greater (U_i) than the pivot.
- A processor in the low half of the machine sends its list U_i to the paired processor in the other half. The paired processor sends its list L_i.

Halving process in parallel

Pag. 16/72

Sorting: Parallel Compare Exchange Operation

A parallel <u>compare-exchange</u> operation. Processes P_i and P_j send their elements to each other. Process P_i keeps min $\{a_i, a_j\}$, and P_j keeps max $\{a_i, a_j\}$.

Parallel Sorting Jan Lemeire

Extending to n/p elements

What is the parallel counterpart to a sequential comparator?

- If each processor has one element, the compare exchange operation can be done in t_s + t_w time (startup latency and per-word time).
- If we have more than one element per processor, we call this operation a <u>compare split</u>. Assume each of two processors have n/p elements.
 - After the compare-split operation, the smaller n/p elements are at processor P_i and the larger n/p elements at P_j, where i < j.
 - The time for a compare-split operation is $(t_s + t_w n/p)$, assuming that the two partial lists were initially sorted.

Step 3

Step 4

A compare-split operation. Each process sends its block of size n/p to the other process. Each process merges the received block with its own block and retains only the appropriate half of the merged block. In this example, process P_i retains the smaller elements and process P_i retains the larger elements.

There are alternatives! With more communication, however...

Parallel Sorting Jan Lemeire

After this step:

- all elements < pivot in the low half of the machine</p>
- all elements > pivot in the high half.
- The above process is recursed until each processor has its own local list, which is sorted locally.
- The time for a single reorganization is O(log p) for broadcasting the pivot element, O(n/p) for splitting the locally assigned portion of the array, O(n/p) for exchange and local reorganization.
- Note that this time is identical to that of the corresponding shared address space formulation.
- However, it is important to remember that the reorganization of elements is a bandwidth sensitive operation.

Parallel Sorting Jan Lemeire

1. Parallel sort – distributed memory 2. Parallel sort – shared memory **3. Sorting Networks** A. Odd-even **B**. Bitonic 4. Parallel soft - GPU

Parallel Sorting

Parallelizing Quicksort: Shared Address Space Formulation

- A list of size n equally divided across p processors.
- A pivot is selected by one of the processors and made known to all processors.
- Each processor partitions its list into two, say L_i and U_i, based on the selected pivot.
- All of the L_i lists are merged and all of the U_i lists are merged separately.
- The set of processors is partitioned into two (in proportion of the size of lists L and U). The process is recursively applied to each of the lists.

Parallelizing Quicksort: Shared Address Space Formulation

Remaining problem: global reorganization (merging) of local lists to form *L* and *U*.

- The problem is one of determining the right location for each element in the merged list.
- Each processor computes the number of elements locally less than and greater than pivot.
- It computes two sum-scans (also called prefix sum) to determine the starting location for its elements in the merged L and U lists.
- Once it knows the starting locations, it can write its elements safely.

Scan operation

Parallel prefix sum: every node got sum of previous nodes + itself

Parallel Sorting Jan Lemeire **PPP 27**

Efficient global rearrangement of the array.

Parallel Sorting Jan Lemeire

Parallelizing Quicksort: Shared Address Space Formulation

- The parallel time depends on the split and merge time, and the quality of the pivot.
- The latter is an issue independent of parallelism, so we focus on the first aspect, assuming ideal pivot selection.
- One iteration has four steps: (i) determine and broadcast the pivot; (ii) locally rearrange the array assigned to each process; (iii) determine the locations in the globally rearranged array that the local elements will go to; and (iv) perform the global rearrangement.
 - The first step takes time Θ(log p), the second, Θ(n/p), the third, Θ(log p), and the fourth, Θ(n/p).
 - The overall complexity of splitting an *n*-element array is Θ(*n/p*) + Θ(log *p*).

Parallelizing Quicksort: Shared Address Space Formulation

- The process recurses until there are p lists, at which point, the lists are sorted locally.
- Therefore, the total parallel time is:

$$T_{P} = \overbrace{\Theta\left(\frac{n}{p}\log\frac{n}{p}\right)}^{\text{local sort}} + \overbrace{\Theta\left(\frac{n}{p}\log p\right)}^{\text{array splits}} + \Theta\left(\log^{2} p\right).$$
(4)
Useful work Overhead (neglectable for large n)
(the same as sequential algorithm)

Alternative: PRAM Formulation

- We assume a CRCW (concurrent read, concurrent write) PRAM with concurrent writes resulting in an *arbitrary write* succeeding (!!).
- The formulation works by creating pools of processors. Every processor is assigned to the same pool initially and has one element.
- Each processor attempts to write its element to a common location (for the pool).
- Each processor tries to read back the location. If the value read back is greater than the processor's value, it assigns itself to the `left' pool, else, it assigns itself to the `right' pool.
- Each pool performs this operation recursively, <u>in lockstep</u>.
- Note that the algorithm generates a tree of pivots. The depth of the tree is the expected parallel runtime. The average value is O(log n).

Parallel Sorting Jan Lemeire

Parallel Quicksort: PRAM Formulation

Each thread has 1 value, which will be arranged in a sorted tree

Performed by all threads in lock-step

```
\Rightarrow GPU:
Within warps OK,
otherwise barrier
```

Parallel Sorting Jan Lemeire

Parallel Quicksort: PRAM Formulation

- A binary tree generated by the execution of the quicksort algorithm. Each level of the tree represents a different arraypartitioning iteration.
- If pivot selection is optimal, then the height of the tree is $\Theta(\log n)$, which is also the number of iterations. Which is almost the ideal speedup! Overhead = pivot selection.

Parallel Sorting Jan Lemeire

		1	2	3	4	5	6	7	8	
	leftchild				1					
,	ightchild				5					(c)

(b) root = 4

		1	2	3	4	5	6	7	8
	leftchild	2			1	8			
(d)	rightchild	6			5				

	1	2	3	4	5	6	7	8	
leftchild	2	3		1	8				
rightchild	6			5		7			(e)

The execution of the PRAM algorithm on the array shown in (a).

Parallel Sorting Jan Lemeire

1. Parallel sort – distributed memory 2. Parallel sort – shared memory **3. Sorting Networks** A. Odd-even **B.** Bitonic 4. Parallel soft - GPU

Parallel Sorting

Mission

- Digital circuit that transforms an unsorted list (input) into a sorted list (output)
- Idea: parallel processing! By putting components in parallel (width)!!
- So: runtime is determined by depth
- Goal: minimal depth

Sorting Networks

A typical sorting network. Every sorting network is made up of a series of columns, and each column contains a number of comparators connected in parallel.

Parallel Sorting Jan Lemeire

Sorting Networks

- Networks of comparators designed specifically for sorting (time < O(nlog n)).</p>
- Specific-designed parallel system.
- A comparator is a device with two inputs x and y and two outputs x' and y'. For an *increasing comparator*, x' = min{x,y} and y' = max{x,y}; and vice-versa for a *decreasing comparator*.
- ♦ We denote an increasing comparator by ⊕ and a decreasing comparator by Θ.
- The speed of the network is proportional to its depth.
Basic component: Comparators

$$x = \underbrace{x' = \min\{x, y\}}_{y' = \max\{x, y\}} x \underbrace{x' = \min\{x, y\}}_{y = \max\{x, y\}} y \underbrace{x' = \min\{x, y\}}_{y' = \max\{x, y\}}$$

$$x = \underbrace{x' = \max\{x, y\}}_{y' = \min\{x, y\}} x \underbrace{x' = \max\{x, y\}}_{y = \min\{x, y\}} x \underbrace{x' = \max\{x, y\}}_{y' = \min\{x, y\}}$$

A schematic representation of comparators: (a) an increasing comparator, and (b) a decreasing comparator.

Best algorithm to hardwire?

Can we sort n elements in time O(log n)?

- + = quicksort performance
- Quicksort not possible: communication paths are not fixed
- Best: using O(n.log n) comparators, but with a quite large constant (many thousands)
 Not practical

Bitonic sort and odd-even sort: sort n elements in time O(log² n)

1. Parallel sort – distributed memory 2. Parallel sort – shared memory **3. Sorting Networks** A. Odd-even **B.** Bitonic 4. Parallel sort - GPU

Parallel Sorting

Bubble Sort and its Variants

The sequential bubble sort algorithm compares and exchanges adjacent elements in the sequence to be sorted:

1.	procedure $BUBBLE_SORT(n)$
2.	begin
3.	for $i := n - 1$ downto 1 do
4.	for $j := 1$ to i do
5.	$compare-exchange(a_j, a_{j+1});$
6.	end BUBBLE_SORT

Sequential bubble sort algorithm.

Bubble Sort and its Variants

- The complexity of bubble sort is $\Theta(n^2)$.
- Bubble sort is difficult to parallelize since the algorithm has no concurrency.
- A simple variant, though, uncovers the concurrency.
 - Complexity is lower than quicksort, but parallelization is more efficient

Odd-Even Transposition

1.	procedure ODD-EVEN (n)
2.	begin
3.	for $i := 1$ to n do
4.	begin
5.	if <i>i</i> is odd then
6.	for $j := 0$ to $n/2 - 1$ do
7.	$compare-exchange(a_{2j+1}, a_{2j+2});$
8.	if <i>i</i> is even then
9.	for $j := 1$ to $n/2 - 1$ do
10.	$compare-exchange(a_{2j}, a_{2j+1});$
11.	end for
12.	end ODD-EVEN

Sequential odd-even transposition sort algorithm.

Sorted

Sorting *n* = 8 elements, using the odd-even transposition sort algorithm. During each phase, *n* = 8 elements are compared.

Pag. 43/72

Odd-Even Transposition

- After n phases of odd-even exchanges, the sequence is sorted.
- Each phase of the algorithm (either odd or even) requires
 O(n) comparisons.
- Serial complexity is Θ(n²).
- Parallel version can be implemented by 1 network which is used iteratively!
- Conclusion: very simple, but not the fastest

Implementation with 1 network

Use wraparound links to iterate over both stages

Parallel Odd-Even Transposition

- Consider the <u>one item per processor</u> case.
- There are n iterations, in each iteration, each processor does one compare-exchange.
- The parallel run time of this formulation is O(n).
- This is cost optimal with respect to the base serial algorithm but not to the optimal one (O(n log n)).

1.	procedure ODD-EVEN_PAR (n)
2.	begin
3.	id := process's label
4.	for $i := 1$ to n do
5.	begin
6.	if <i>i</i> is odd then
7.	if <i>id</i> is odd then
8.	$compare-exchange_min(id + 1);$
9.	else
10.	$compare-exchange_max(id-1);$
11.	if <i>i</i> is even then
12.	if <i>id</i> is even then
13.	$compare-exchange_min(id + 1);$
14.	else
15.	$compare-exchange_max(id-1);$
16.	end for
17.	end ODD-EVEN_PAR

Parallel formulation of odd-even transposition.

Parallel Odd-Even Transposition

- Consider a block of <u>n/p elements per processor</u>.
- The first step is a local sort.
- In each subsequent step of p steps, the compare exchange operation is replaced by the compare split operation (n/p comparisons).
- The parallel run time of the formulation is

$$T_P = \overbrace{\Theta\left(\frac{n}{p}\log\frac{n}{p}\right)}^{\text{local sort}} + \overbrace{\Theta(n)}^{\text{comparisons}} + \overbrace{\Theta(n)}^{\text{communication}}$$

1. Parallel sort – distributed memory 2. Parallel sort – shared memory **3. Sorting Networks** A. Odd-even **B.** Bitonic 4. Parallel soft - GPU

Parallel Sorting

Sorting Networks: Bitonic Sort

- A bitonic sorting network sorts n elements in O(log²n) time.
- A <u>bitonic sequence</u> has two tones increasing and decreasing, or vice versa..
- (1,2,4,7,6,0) is a bitonic sequence, because it first increases and then decreases.
 - Not important here: Any cyclic rotation of a two-tone sequence is also considered bitonic. (8,9,2,1,0,4) is another bitonic sequence, because it is a cyclic shift of (0,4,8,9,2,1).

The kernel of the network is the rearrangement of a bitonic sequence into a sorted sequence.

Sorting Networks: Bitonic Sort

◆ Let $s = \langle a_0, a_1, ..., a_{n-1} \rangle$ be a bitonic sequence such that $a_0 \le a_1 \le \cdots \le a_{n/2-1}$ and $a_{n/2} \ge a_{n/2+1} \ge \cdots \ge a_{n-1}$.

Consider the following subsequences of s:

 $s_{1} = \langle \min\{a_{0}, a_{n/2}\}, \min\{a_{1}, a_{n/2+1}\}, \dots, \min\{a_{n/2-1}, a_{n-1}\} \rangle$ $s_{2} = \langle \max\{a_{0}, a_{n/2}\}, \max\{a_{1}, a_{n/2+1}\}, \dots, \max\{a_{n/2-1}, a_{n-1}\} \rangle$

(1)

 \Rightarrow s₁ and s₂ are both bitonic and each element of s₁ is less than every element in s₂.

• We can apply the procedure recursively on s_1 and s_2 to get the sorted sequence.

Bitonic sort's basic merge component

Basic operation: change a bitonic array into a sorted array. For 16 elements this can be done in 4 steps.

Original																
sequence	3	5	8	9	10	12	14	20	95	90	60	40	35	23	18	0
1st Split	3	5	8	9	10	12	14	0	95	90	60	40	35	23	18	20
2nd Split	3	5	8	0	10	12	14	9	35	23	18	20	95	90	60	40
3rd Split	3	0	8	5	10	9	14	12	18	20	35	23	60	40	95	90
4th Split	0	3	5	8	9	10	12	14	18	20	23	35	40	60	90	95

Merging a 16-element bitonic sequence through a series of log 16 **bitonic splits**.

The complete network will be based on this component.

- We can easily build a sorting network to implement this bitonic merge algorithm.
- Such a network is called a *bitonic merging network*.
- The network contains log n columns. Each column contains n/2 comparators and performs one step of the bitonic merge.
- ♦ We denote a bitonic merging network with *n* inputs by ⊕BM[n].
- ◆ Replacing the ⊕ comparators by ⊖ comparators results in a decreasing output sequence; such a network is denoted by ⊖BM[n].

A bitonic merging network for n = 16. The input wires are numbered 0,1,..., n - 1, and the binary representation of these numbers is shown. Each column of comparators is drawn separately; the entire figure represents a \oplus BM[16] **bitonic merging network**. The network takes a bitonic sequence and outputs it in sorted order.

Sorting Networks: Bitonic Sort

How do we sort an unsorted sequence using a bitonic merge?

- We must first build a single bitonic sequence from the given sequence.
- A sequence of length 2 is a bitonic sequence.
- A bitonic sequence of length 4 can be built by sorting the first two elements using \oplus BM[2] and next two, using \oplus BM[2].
- This process can be repeated to generate larger bitonic sequences.

Wires 0000 \oplus BM[2] 0001 \oplus BM[4] 0010 \ominus BM[2] 0011 \oplus BM[8] 0100 \oplus BM[2] 0101 \ominus BM[4] 0110 \ominus BM[2] \oplus BM[16] 0111 1000 \oplus BM[2] 1001 \oplus BM[4] 1010 \ominus BM[2] 1011 \ominus BM[8] 1100 \oplus BM[2] 1101 \ominus BM[4] 1110 \ominus BM[2] 1111

A schematic representation of a network that converts an input sequence into a bitonic sequence. In this example, $\bigoplus BM[k]$ and $\Theta BM[k]$ denote bitonic merging networks of input size k that use \bigoplus and Θ comparators, respectively. The last merging network ($\bigoplus BM[16]$) sorts the input. In this example, n = 16.

The comparator network that transforms an input sequence of 16 unordered numbers into a bitonic sequence.

Sorting Networks: Bitonic Sort

The depth of the network is O(log² n).

+ $1+2+3+...+ \log n = (1+ \log n) \cdot \log n / 2$

Each stage of the network contains n/2 comparators. A serial implementation of the network would have complexity O(nlog² n).

- Map on a general-purpose parallel computer.
- Consider the case of one item per processor. The question becomes one of how the wires in the bitonic network should be mapped to the hypercube interconnect.
- Note from our earlier examples that the compareexchange operation is performed between two wires only if their labels *differ in exactly one bit*!
- a direct mapping of wires to processors; all communication is nearest neighbor!

Communication during the last stage of bitonic sort. Each wire is mapped to a hypercube process; each connection represents a compare-exchange between processes.

Processors

Communication characteristics of bitonic sort on a hypercube. During each stage of the algorithm, processes communicate along the dimensions shown.

1.	procedure BITONIC_SORT($label, d$)
2.	begin
3.	for $i := 0$ to $d - 1$ do
4.	for $j := i$ downto 0 do
5.	if $(i+1)^{st}$ bit of $label \neq j^{th}$ bit of $label$ then
6.	comp_exchange_max(j);
7.	else
8.	comp_exchange_min(j);
9.	end BITONIC_SORT

Parallel formulation of bitonic sort on a hypercube with $n = 2^d$ processes.

Paral	lel	So	rting	
Jan	Le	emo	eire	

- During each step of the algorithm, every process performs a compare-exchange operation (single nearest neighbor communication of one word).
- Since each step takes O(1) time, the parallel time is

$$T_p = \Theta(\log^2 n) \tag{2}$$

This algorithm is cost optimal w.r.t. its serial counterpart, but not w.r.t. the best sorting algorithm (O(n log n)).

- The connectivity of a mesh is lower than that of a hypercube, so we must expect some overhead in this mapping.
- Consider the row-major shuffled mapping of wires to processors.

Different ways of mapping the input wires of the bitonic sorting network to a mesh of processes: (a) row-major mapping, (b) row-major snakelike mapping, and (c) row-major shuffled mapping.

Stage 4

The last stage of the bitonic sort algorithm for n = 16 on a mesh, using the *row-major shuffled mapping*. During each step, process pairs compare-exchange their elements. Arrows indicate the pairs of processes that perform compare-exchange operations.

- ◆ In the row-major shuffled mapping, wires that differ at the *i*th least-significant bit are mapped onto mesh processes that are 2^[(i-1)/2] communication links away.
- ♦ The total amount of communication performed by each process is: $\sum^{\log n} \sum^{i} 2^{\lfloor (j-1)/2 \rfloor} \sim 7 \sqrt{n} \text{ or } \Theta(\sqrt{n})$

$$\sum_{i=1}^{S} \sum_{j=1}^{2^{\lfloor (j-1)/2 \rfloor}} \approx 7\sqrt{n}, \text{ or } \Theta(\sqrt{n})$$

- The total computation performed by each process is
 Θ(log²n).
 comparisons
 communication
- The parallel runtime is: $T_P = \widetilde{\Theta(\log^2 n)} + \widetilde{\Theta(\sqrt{n})}$.

This is optimal for the mesh, but not cost optimal.

Block of Elements Per Processor

- Each process is assigned a block of n/p elements.
- The first step is a local sort of the local block.
- Each subsequent compare-exchange operation is replaced by a *compare-split* operation.
- ♦ We can effectively view the bitonic network as having (1 + log p)(log p)/2 steps => Θ(log²p).

Block of Elements Per Processor: Hypercube

- Initially the processes sort their n/p elements (using merge sort) in time O((n/p)log(n/p)) and then perform O(log²p) compare-split steps.
- The parallel run time of this formulation is

$$T_P = \underbrace{\Theta\left(\frac{n}{p}\log\frac{n}{p}\right)}_{\text{local sort}} + \underbrace{\Theta\left(\frac{n}{p}\log^2 p\right)}_{\text{comparisons}} + \underbrace{\Theta\left(\frac{n}{p}\log^2 p\right)}_{\text{communication}} + \underbrace{\Theta\left(\frac{n}{p}\log^2 p\right)}_{\text{$$

Block of Elements Per Processor: Mesh

The parallel runtime in this case is given by:

$$T_P = \overbrace{\Theta\left(\frac{n}{p}\log\frac{n}{p}\right)}^{\text{local sort}} + \overbrace{\Theta\left(\frac{n}{p}\log^2 p\right)}^{\text{comparisons}} + \overbrace{\Theta\left(\frac{n}{\sqrt{p}}\right)}^{\text{communication}}$$

1. Parallel sort – distributed memory 2. Parallel sort – shared memory **3. Sorting Networks** A. Odd-even **B**, **Bitonic** 4. Parallel sort - GPU

Parallel Sorting

Which algorithms on GPU?

- Quicksort: shared-memory formulation?
- Mergesort?

- PRAM formulation
- ♦ Odd-even transposition

+ Bitonic sort