
Dense Matrix Algorithms

Jan Lemeire

Parallel Systems lab

November 2017

KUMAR Chapter 8

Parallel Systems Course: Chapter VI

Pag.2

Dense Matrix Algorithms

Overview

1. Matrix-vector
Multiplication

2. Matrix-matrix
Multiplication

3. Shared-memory

Pag.3

Dense Matrix Algorithms

Utility of Matrix Algorithms

Applied in several numerical and non-
numerical contexts:

– 3D image calculations

– Solving (linear) equations

– Simulations of physical systems

E.g.: makes the basis of LINPACK, a software library
for performing numerical linear algebra, by using the
BLAS (Basic Linear Algebra Subprograms) libraries
for performing basic vector and matrix operations

Pag.4

Dense Matrix Algorithms

Dense versus Sparse Matrices

Dense matrices: have no or few known zero
entries

Sparse matrices: are populated primarily
with zeros
– often appear in science or engineering when solving partial

differential equations

– easily compressed

– very large sparse matrices are impossible to manipulate with
the standard algorithms, due to memory limitations

– special versions of the algorithms are necessary and are more
efficient

Pag.5

Dense Matrix Algorithms

Matrix – Vector Multiplication

2

1

.

)..1:(.

nT

niVAC

VAC

mmseq

n

k

kiki










A11 A12 A13 A1n

A21 A22 A2n

...

Ai1 Ai2 Ai3 Ain

...

...

...

An1 An2 An3 Ann

V1

V2

...

...

...

...

...

Vn

Ci

A

V

C

for (i=0; i<n; i++){

C[i]=0;

for (k=0; k<n; k++){

C[i]+=A[i, k]*V[k];

}

}

n : number of elements in the

vector, number of rows and

columns of the matrix

Pag.6

Dense Matrix Algorithms

Matrix/Vector Partitioning?

p1

Column-wise block striping

p2

p3

p4

p1

Row-wise block striping

p2 p3 p4

Checkerboard partitioning

p1 p2 p3

p4 p5 p6

p7 p8 p9

p1

p2

p3

p4

Vector partitioning

Row-wise block Column-wise

Pag.

Data & results distributed

Now: distributed memory solutions

o In parallel applications, data remains
distributed while operations (such as vector-
matrix operations) are performed on them.

o In the following we assume that the data is
already distributed among the processors

7

Dense Matrix Algorithms

Pag.8

Dense Matrix Algorithms

Parallel
M x V
Multi-

plication
Version 1

(n=p)

Row-wise partitioning

Pag.9

Dense Matrix Algorithms

Parallel M x V Multiplication
Version 1 p < n

n/p rows of matrix and n/p elements of
vector per processor

Pag.10

Dense Matrix Algorithms

Parallel
M x V
Multi-

plication
Version

2

(n2=p)

checkerboard partitioning

Pag.11

Dense Matrix Algorithms

Parallel M x V Multiplication
Version 2 p < n2

(n/√p) x (n/√p) blocks of matrix and
n/√p elements of vector per processor

Pag.12

Dense Matrix Algorithms

Overview

1. Matrix-vector
Multiplication

2. Matrix-matrix
Multiplication

3. Shared-memory

Pag.13

Dense Matrix Algorithms

Matrix Multiplication

3

1

.

)..1:,(.

nT

njiBAC

BAC

mms

n

k

kjikij










A11 A12 A13 A1n

A21 A22 A2n

...

Ai1 Ai2 Ai3 Ain

...

...

...

An1 An2 An3 Ann

B11 B12 .. B1j B1n

B21 B22 .. B2j .. B2n

...

...

...

...

...

Bn1 Bn2 .. Bnj .. Bnn

Cij

A

B

C
for (i=0; i<n; i++){

for (j=0; j<n; j++){

C[i,j]=0;

for (k=0; k<n; k++){

C[i,j]+=A[i, k]*B[k,j];

}

}

}

Pag.14

Dense Matrix Algorithms

MxM: one-step version

B is sent to all
processors

Computation in 1
step

Same amount

of communication 1

2

3

A

1, 2 & 3

B

1

2

3

C
computation step

Pag.15

Dense Matrix Algorithms

Alternate shift-compute version

Algorithm alternates p
computation and communication
steps

Computation step: each processor
multiplies its A submatrix with its
B submatrix, resulting in a
submatrix of C. The black circles
indicate the step in which each
submatrix is computed.

After multiplication: processor
sends it B submatrix to next
processor and receives one from
the preceding processor. The
communication forms a circular
shift operation.

Pag.16

Dense Matrix Algorithms

Parallel MxM: Execution Profile

Speedup=2.55 Efficiency = 85%

Note that the communication after the first step can be hidden behind the

computation (Mehdi Moghaddmfar 2017).

MPI-2 supports non-blocking collective communication operations.

Pag.17

Performance Analysis

Theoretical Analysis of Matrix
Multiplication

Computation time (slave)

Communication time (slave) – including data
distribution (initially 2x1/p, each round 1/p [p-1
rounds] + 1/p result)

mm

i

work
p

n
T .

3



ws

i

comm tn
p

tpT .).
2

1().1(2

Overhead ratio=overhead/computation = O(n2)/O(n3/p) = O(p/n)

Scalable since efficiency remains constant

if we increase both p and n

Pag.18

Performance Analysis

Parameter Dependence of
Matrix Multiplication

n: work size, here: matrix size

Pag.19

Dense Matrix Algorithms

V3: Cannon’s algorithm

Checkerboard
partitioning

A

B

C

p1 p2 p3

p4 p5 p6

p7 p8 p9

p1 p2 p3

p4 p5 p6

p7 p8 p9

p1 p2 p3

p4 p5 p6

p7 p8 p9

Pag.20

Dense Matrix Algorithms

Cannon’s
parallel
MxM

Communication
steps on 16
processes

Pag.

Initially, blocks Need to Be Aligned

A00

B00

A01

B01

A02

B02

A03

B03

A10

B10

A11

B11

A12

B12

A13

B13

A20

B20

A21

B21

A22

B22

A23

B23

A30

B30

A31

B31

A32

B32

A33

B33

Each triangle

represents a

matrix block

Only same-color

triangles should

be multiplied

Pag.

Rearrange Blocks

A00

B00

A01

B01

A02

B02

A03

B03

A10

B10

A11

B11

A12

B12

A13

B13

A20

B20

A21

B21

A22

B22

A23

B23

A30

B30

A31

B31

A32

B32

A33

B33

Block Aij cycles

left i positions

Block Bij cycles

up j positions

Pag.

Consider Process P1,2

B02

A10A11 A12

B12

A13

B22

B32

Step 1:

Computation & shift

Pag.

Consider Process P1,2

B12

A11A12 A13

B22

A10

B32

B02 Step 2

Pag.

Consider Process P1,2

B22

A12A13 A10

B32

A11

B02

B12 Step 3

Pag.

Consider Process P1,2

B32

A13A10 A11

B02

A12

B12

B22 Step 4

Pag.

Elements of A and B Needed to
Compute the process’s portion of C

Algorithm 1 & 2

Cannon’s

Algorithm

w=n / p

w=n

b=n/p

b=n / p

Pag.

Why Cannon’s requires less communication

28

Dense Matrix Algorithms

• Amount of computations per process:

n3/p=breadth.width.n/p ~ surface

• Amount of communication per process:
breadth.n+width.n=(breadth+width).n ~ circumference

• Version 1 & 2: n2/p (A-matrix) + n2 (B-matrix) = (n+n/p).n

• Cannon: n2/ p (A-matrix) + n2 / p (B-matrix) = (2n / p).n

• Granularity = computations / communication

= surface / circumference

should be minimized

for a given surface, circumference is minimal for a
square

=> Cannon (square) is optimal and better than rectangle (v1&2)

Pag.

Complexity Analysis

o Algorithm has p iterations

o During each iteration process multiplies two (n / p)

 (n / p) matrices: (n3 / p 3/2)

o Computational complexity: (n3 / p) [the same]

o During each iteration process sends and receives

two blocks of size (n / p)  (n / p)

o Communication complexity: (n2/ p) [lower!]

Overhead ratio= O(n2 / p) / O(n3/p) = O(p/n)

Super-scalable since efficiency drops if we increase

both p and n

Pag.30

Dense Matrix Algorithms

Efficient Interconnection
Networks for Cannon’s MxM?

line ring star

tree mesh

wraparound mesh

hypercube

Complete network

Pag.31

Dense Matrix Algorithms

Memory need of each processor

As a function of n, p and b (the number of
bytes per element)
Sequential algorithm:

One-step algorithm:

Alternate algorithm:

Cannon’s algorithm:

Pag.32

Dense Matrix Algorithms

Special MPI functions

MxV version 2: Reduce operation

Cannon: Shift operation through a
SendRecv_replace call

Submatrix sending:
Consist of equally spaced blocks

DataType.Vector(int count, int blocklength,
int stride, Datatype oldtype)

http://parallel.vub.ac.be/documentation/mpi/mpjExpress/javadocs/mpi/Datatype.html

Pag.33

Dense Matrix Algorithms

Overview

1. Matrix-vector
Multiplication

2. Matrix-matrix
Multiplication

3. Shared-memory

Pag.

Shared-memory systems

• Computation of each element is
independent of the others
• Can be done by a thread without the need

of synchronization (see chapter of shared
memory)

• Data is accessible by all threads

• However…

34

Dense Matrix Algorithms

Pag.

MxM on GPU

Initially, matrices are copied to GPU
If they are not still in memory from previous matrix operations,
keep pointers in CPU to the data on the GPU

Every thread computes 1 element of C.

Not enough memory to put all data in shared
memory (16K)

On one multiprocessor, 1 block of threads computes
1 block of the C matrix

Iteratively copy A row blocks and B column blocks to
shared memory.

Result: 200x speedup, 50x if compared to quadcore

35

Dense Matrix Algorithms

Example:

GPUmat toolbox in Matlab

Pag.

MxM on GPU

If rows and columns do not fit in
local memory: compute block-
by-block

36

Dense Matrix Algorithms

A

B

C A

B

C

1 2 3

1

2

3

Each multiprocessor
computes 1 block

Pag.

Cache efficiency?

▪ Multicores or GPUs with cache can directly access
RAM/global memory

▪ Data is cached automatically

▪ However: is the data in cache reused optimally?

▪ Better is to organize the computations as with the
GPU implementation

▪ Multicores: each thread calculates the multiplication of 2
submatrices of A and B

37

Dense Matrix Algorithms

Pag.

Cache efficiency

38

Dense Matrix Algorithms

A11 A12 A13 A1n

A21 A22 A2n

...
Ai1 Ai2 Ai3 Ain

...

...

...
An1 An2 An3 Ann

B11 B12 .. B1j B1n

B21 B22 .. B2j .. B2n

...

...

...

...

...
Bn1 Bn2 .. Bnj .. Bnn

Cij

A

B

C

• Row of A is reused in
computing row of C

• Column of B is reused in
computing column of C

A

B

C

To maximize cache usage,
compute block by block (cf Cannon
which minimizes communication)

If A rows and B columns do not
fit in cache: alternate over A
and B blocks like GPU version

Pag.

Experimental results

39

Dense Matrix Algorithms

