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Dense Matrix Algorithms

Overview

1. Matrix-vector 
Multiplication

2. Matrix-matrix 
Multiplication

3. Shared-memory
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Utility of Matrix Algorithms 

Applied in several numerical and non-
numerical contexts:

– 3D image calculations

– Solving (linear) equations 

– Simulations of physical systems

E.g.: makes the basis of LINPACK, a software library 
for performing numerical linear algebra, by using the 
BLAS (Basic Linear Algebra Subprograms) libraries 
for performing basic vector and matrix operations
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Dense versus Sparse Matrices

Dense matrices: have no or few known zero 
entries

Sparse matrices: are populated primarily 
with zeros 
– often appear in science or engineering when solving partial 

differential equations

– easily compressed

– very large sparse matrices are impossible to manipulate with 
the standard algorithms, due to memory limitations 

– special versions of the algorithms are necessary and are more 
efficient
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Matrix – Vector Multiplication
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for (i=0; i<n; i++){

C[i]=0;

for (k=0; k<n; k++){

C[i]+=A[i, k]*V[k];

}

}

n : number of elements in the 

vector, number of rows and 

columns of the matrix
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Matrix/Vector Partitioning?
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Data & results distributed

Now: distributed memory solutions

o In parallel applications, data remains 
distributed while operations (such as vector-
matrix operations) are performed on them.

o In the following we assume that the data is 
already distributed among the processors
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Parallel
M x V 
Multi-

plication
Version 1

(n=p)

Row-wise partitioning
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Parallel M x V Multiplication
Version 1    p < n

n/p rows of matrix and n/p elements of 
vector per processor
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Parallel
M x V 
Multi-

plication
Version 

2

(n2=p)

checkerboard partitioning
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Parallel M x V Multiplication
Version 2    p < n2

(n/√p) x (n/√p) blocks of matrix and 
n/√p elements of vector per processor
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Overview

1. Matrix-vector 
Multiplication

2. Matrix-matrix 
Multiplication

3. Shared-memory
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Matrix Multiplication 
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for (i=0; i<n; i++){

for (j=0; j<n; j++){

C[i,j]=0;

for (k=0; k<n; k++){

C[i,j]+=A[i, k]*B[k,j];

}

}

}
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MxM: one-step version

B is sent to all 
processors

Computation in 1 
step

Same amount

of communication 1

2

3

A

1, 2 & 3

B

1

2

3

C
computation step
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Alternate shift-compute version

Algorithm alternates p 
computation and communication 
steps

Computation step: each processor 
multiplies its A submatrix with its 
B submatrix, resulting in a 
submatrix of C. The black circles 
indicate the step in which each 
submatrix is computed.

After multiplication: processor 
sends it B submatrix to next 
processor and receives one from 
the preceding processor. The 
communication forms a circular 
shift operation. 
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Parallel MxM: Execution Profile

Speedup=2.55 Efficiency = 85%

Note that the communication after the first step can be hidden behind the 

computation (Mehdi Moghaddmfar 2017). 

MPI-2 supports non-blocking collective communication operations.
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Performance Analysis

Theoretical Analysis of Matrix 
Multiplication

Computation time (slave) 

Communication time (slave) – including data 
distribution (initially 2x1/p, each round 1/p [p-1 
rounds] + 1/p result)
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Overhead ratio=overhead/computation = O(n2)/O(n3/p) = O(p/n)

Scalable since efficiency remains constant 

if we increase both p and n
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Parameter Dependence of 
Matrix Multiplication

n: work size, here: matrix size
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V3: Cannon’s algorithm

Checkerboard 
partitioning
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Cannon’s 
parallel 
MxM

Communication 
steps on 16 
processes
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Initially, blocks Need to Be Aligned
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Rearrange Blocks
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Consider Process P1,2
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Consider Process P1,2
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Consider Process P1,2
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Consider Process P1,2
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Elements of A and B Needed to 
Compute the process’s portion of C

Algorithm 1 & 2

Cannon’s

Algorithm

w=n / p

w=n

b=n/p

b=n / p
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Why Cannon’s requires less communication

28
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• Amount of computations per process: 

n3/p=breadth.width.n/p ~ surface 

• Amount of communication per process: 
breadth.n+width.n=(breadth+width).n  ~ circumference 

• Version 1 & 2: n2/p (A-matrix) + n2 (B-matrix) = (n+n/p).n

• Cannon: n2/ p (A-matrix) + n2 / p (B-matrix) = (2n / p ).n

• Granularity = computations / communication

= surface / circumference

should be minimized

for a given surface, circumference is minimal for a 
square

=> Cannon (square) is optimal and better than rectangle (v1&2)



Pag.

Complexity Analysis

o Algorithm has p iterations

o During each iteration process multiplies two (n / p ) 

 (n / p ) matrices: (n3 / p 3/2)

o Computational complexity: (n3 / p)  [the same]

o During each iteration process sends and receives 

two blocks of size (n / p )  (n / p )

o Communication complexity: (n2/ p)  [lower!]

Overhead ratio= O(n2 / p) / O(n3/p) = O(p/n)

Super-scalable since efficiency drops if we increase 

both p and n
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Efficient Interconnection 
Networks for Cannon’s MxM?

line ring star

tree mesh

wraparound mesh

hypercube

Complete network
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Memory need of each processor

As a function of n, p and b (the number of 
bytes per element)
Sequential algorithm:

One-step algorithm:

Alternate algorithm:

Cannon’s algorithm:
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Special MPI functions

MxV version 2: Reduce operation

Cannon: Shift operation through a 
SendRecv_replace call

Submatrix sending:
Consist of equally spaced blocks 

DataType.Vector(int count, int blocklength, 
int stride, Datatype oldtype) 

http://parallel.vub.ac.be/documentation/mpi/mpjExpress/javadocs/mpi/Datatype.html
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Overview

1. Matrix-vector 
Multiplication

2. Matrix-matrix 
Multiplication

3. Shared-memory
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Shared-memory systems

• Computation of each element is 
independent of the others 
• Can be done by a thread without the need 

of synchronization (see chapter of shared 
memory)

• Data is accessible by all threads

• However…
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MxM on GPU

Initially, matrices are copied to GPU
If they are not still in memory from previous matrix operations, 
keep pointers in CPU to the data on the GPU

Every thread computes 1 element of C.

Not enough memory to put all data in shared 
memory (16K)

On one multiprocessor, 1 block of threads computes 
1 block of the C matrix 

Iteratively copy A row blocks and B column blocks to 
shared memory.

Result: 200x speedup, 50x if compared to quadcore
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Example:

GPUmat toolbox in Matlab
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MxM on GPU

If rows and columns do not fit in 
local memory: compute block-
by-block
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A

B

C A

B

C

1 2 3

1

2

3

Each multiprocessor 
computes 1 block
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Cache efficiency?

▪ Multicores or GPUs with cache can directly access 
RAM/global memory 

▪ Data is cached automatically

▪ However: is the data in cache reused optimally?

▪ Better is to organize the computations as with the 
GPU implementation

▪ Multicores: each thread calculates the multiplication of 2 
submatrices of A and B
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Cache efficiency
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• Row of A is reused in 
computing row of C

• Column of B is reused in 
computing column of C 

A

B
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To maximize cache usage, 
compute block by block (cf Cannon
which minimizes communication)

If A rows and B columns do not
fit in cache: alternate over A 
and B blocks like GPU version
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Experimental results
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