
Performance Analysis

Jan Lemeire

Parallel Systems lab

November 2017

See Chapter 6 of Jan’s PhD

Parallel Systems Course: Chapter V

Kumar Chapter 5

Pag.2

Performance Analysis

Performance Metrics

Other metrics we could try to optimize:

energy consumption, cost, …

We assume sequential version is run

on the same processor/core as the

parallel version.

Pag.3

Performance Analysis

Parallel Matrix Multiplication:
Execution Profile

Speedup=2.55 Efficiency = 85%

On cluster of 3 computers - MPI

Pag.4

Performance Analysis

Speedup i.f.o. processors

1) Ideal, linear speedup

2) Increasing, sub-linear
speedup

3) Speedup with an optimal
number of processors

4) No speedup

5) Super-linear speedup

Pag.5

Performance Analysis

Super-linear speedup

The parallel execution works with data that fits in
lower-level memory, while this is not the case for
the sequential execution

The work in parallel is less than that of the
sequential program, called parallel anomaly.
See Chapter DOP.

PPP p. 92

Pag.

Speedup i.f.o. problem size

6

Performance Analysis

1) Constant speedup

2) Increasing, asymptotically,
towards value sublinear
speedup (< p)

3) Increasing towards p

4) Increasing towards super-
linear speedup

W is a problem-specific parameter which is

related to the amount of computational

work (most often linearly-related)

Pag.7

Performance Analysis

Performance Analysis

Goals:

Understanding of the computational process in
terms of resource consumption

Identification of inefficient patterns

Performance prediction

Performance characterization of program and
system

Pag.8

Performance Analysis

Overhead or Lost Cycles

= all cycles with Tpar that are

not utilized for useful work

i: index of process j: index of overhead

For all processes:

Pag.9

Performance Analysis

Impact of Overhead on Speedup?

We sum overheads of type

j over all processes i

Pag.10

Performance Analysis

Speedup & Overhead Ratios

Total overhead (sum of

per process overhead)!

Pag.11

Performance Analysis

Example 1: Execution Profile of
Parallel Matrix Multiplication

Speedup=2.55 Efficiency = 85%

Pag.12

Performance Analysis

Parallel Matrix Multiplication

Parallel anomaly = 2.6%

85,0
173,1

1

100/)6,22,95,5(1

1



Efficiency

Pag.

Analysis per process

13

Performance Analysis

If you assume that each process has work,

We can calculate the overhead ratio per process:

p

Tseq

p

T

T
Ovh

seq

ji

ovhi

j

,



Pag.14

Performance Analysis

Overhead Classification

Control of parallelism: extra functionality
necessary for parallelization (like partitioning)

Extra computations required

Part of computational phases are not for useful work!

Communication: overhead time not overlapping
with computation

Idling: processor has to wait for further
information

Parallel anomaly : useful work differs for
sequential and parallel execution

KUMAR p195

Pag.15

Performance Analysis

Causes of Idling

Limitations of parallelism
Cf Amdahl’s law (see further)

Load imbalances

Waiting for incoming messages, due to
Message latency

Limited bandwidth

Congestion in interconnection network

Pag.

Example 2: Parallel Quicksort

16

Performance Analysis

Pag.

Execution Profile of Parallel Quicksort

17

Performance Analysis

Pag.

Quicksort’s performance

Speedup growth is limited!

Reason?

18

Performance Analysis

0

2

4

6

8

0 10 20 30 40
p

Performance i.f.o. p (n = 1000)

Tp

S

E

Without considering
load imbalances

Pag.19

Performance Analysis

Amdahl’s Law

Limitations of inherent parallelism: a part s
of the algorithm is not parallelizable

PPP p. 80

seqseqseq TsTsT .).1(
seq

seq

par Ts
p

Ts
T .

).1(





sp

p

Ts
p

Ts

T

T

T
Speedup

seq

seq

seq

par

seq

).1(1
.

).1(max








Assume

no other

overhead

not parallelizableparallelizable

Pag.20

Performance Analysis

Amdahl’s Law

sp

p
Speedup

).1(1 


sp
Efficiency

).1(1

1




If p is big enough:

s
Speedup

1


s Speedupmax

10% 10

25% 4

50% 2

75% 1.33

Pag.

Amdahl example: video decoding

21

Performance Analysis

Thanks to Wladimir van der Laan, University of Groningen

Pag.22

Performance Analysis

Example 3: Job Farming

Set of jobs & cluster of computers

= Independent task parallelism

{job1, job2, job3, job4}

Pag.23

Performance Analysis

A

B

C

master

slave1

slave2

A

B

CA

B

C

A

B

C A

B

C A

A

Request job

Send job

Return result

jo
b

1

jo
b

2

jo
b

3

jo
b

4

ti
m

e

Tpar

jo
b

1
jo

b
2

jo
b

3
jo

b
4

Tseq

Speedup = ±1.2

Pag.24

Performance Analysis

Performance of Job Farming?

Overheads? Bottlenecks?

1. Communication overhead

Impact on speedup ~ Tseq/Tcomm ~ granularity

Granularity = computation/communication

overlap communication with computation

2. Bottleneck at master => idling of slaves

use several masters (‘tree’-structure)

Pag.

Scalability

Can we keep efficiency constant while
simultaneously increasing W and p?

25

Performance Analysis

Pag.26

Performance Analysis

Scalability

Runtime remains constant if efficiency remains constant
and increasing p and W at the same rate:

Problem doubles? Double processing power! Same time!

Program is scalable: the ability to maintain efficiency at a
fixed value by simultaneously increasing the number of
processors and the size of the problem.

It reflects a parallel system’s ability to utilize increasing
processing resources effectively.

PPP p. 95

KUMAR p. 211

Gustafson’s law

constant.
),(

).,(

.





p

W

pWefficiency

ppWefficiency

W

speedup

T
T

seq

par





Pag.

Iso-efficiency

27

Performance Analysis

Function tells us how W must increase with an increasing p for
maintaining efficiency

• If perfectly scalable (Tovh linear or sub-linear in p):
• Increase W linearly with increasing p
• Parallel run time stays the same
• Workload per processor remains constant (see next slide)

• If fairly/poorly scalable (Tovh super-linear in p):
• Problem size should be increased more than p to keep the

efficiency
• Bigger work load per processor (see next slide)

• More memory needed!!

iso-efficiency curve:

When is efficiency constant

If sequential runtime~W

W

pWT

T

pWT ovh

seq

ovh

.

),(
constant

),(




Pag.

Iso-efficiency curves

28

Performance Analysis

W

p
80%

x2

x2

scalable highly scalable poorly scalable

Thanks to Noah Van Es (2016)

Pag.

Gustafson’s law

▪ Amdahl’s law: pessimistic view

▪ parallelization is limited

▪ Amdahl only changes p, keeps W constant

▪ Gustafson: more optimistic

▪ the problems we run in parallel will be bigger and have
more parallelism: for higher p, higher W

➢ Iso-efficiency curve

▪ Bigger problems: smaller serial fraction, less overhead

30

Performance Analysis

See Link

Pag.

I. Generate/draw execution profile

II. Identify lost cycles

III. Determine causes of overhead

IV. Plot performance in function of p and W

V. Study impact of overheads on speedup

VI. Study scalability

VII.Determine optimization possibilities

31

Performance Analysis

Approach to follow

Pag.

Performance analysis of
your GPU program

• Measure computational performance (Gflops) and memory
bandwidth (Bytes/sec)

• Estimate number of instructions

• Count data access

• If applicable: memory bandwidth for each memory level:

• CPU  GPU: PCIexpress bus (this you can measure separately)

• Global memory access

• Local memory access

• Compare with peak performance (see next slide)

• Try to explain non-ideal performance

• Compare results for different versions of your program

• From a naïve version to a highly-optimized version. Are you coming
close to peak performance?

• You can make idealized versions to measure impact of a certain aspect

32

Performance Analysis

Pag.

Measure peak performance

• Microbenchmarks: small programs that
measure a specific performance
characteristic in isolation
• E.g. Flops, bandwidth, cost of special functions such as

cos, ...

• www.gpuperformance.org
• Java app with microbenchmarks

• Write them to database

• Consult database

33

Performance Analysis

http://www.gpuperformance.org/

Jan Lemeire

Estimate a performance bound for your kernel
Count #instructions (in kernel, multiplied with the number of threads)

Count #memory transfer in bytes

Compute bound: t1 = #instructions / #instructions per second
(theoretical computational peak performance of GPU)

Data bound: t2 = # memory accesses / bandwidth

Minimal runtime tmin = max(t1, t2)

expressed by roofline model (compute intensity = granularity)

Measure the actual runtime

tactual = tmin + tdelta

Try to account for and minimize tdelta

Due to non-overlap of computation and communication

Due to overheads caused by anti-parallel patterns (APPs)

Consult remedies for the overheads

Theoretical performance analysis

Pag.

Roofline model

Performance Analysis

algorithm

= granularity

Jan Lemeire

GPU Programming

