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Performance Metrics

Other metrics we could try to optimize: 

energy consumption, cost, …

We assume sequential version is run 

on the same processor/core as the 

parallel version.
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Parallel Matrix Multiplication: 
Execution Profile

Speedup=2.55 Efficiency = 85%

On cluster of 3 computers - MPI
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Speedup i.f.o. processors

1) Ideal, linear speedup

2) Increasing, sub-linear 
speedup

3) Speedup with an optimal 
number of processors

4) No speedup

5) Super-linear speedup
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Super-linear speedup

The parallel execution works with data that fits in 
lower-level memory, while this is not the case for 
the sequential execution

The work in parallel is less than that of the 
sequential program, called parallel anomaly.         
See Chapter DOP.

PPP p. 92
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Speedup i.f.o. problem size
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1) Constant speedup

2) Increasing, asymptotically, 
towards value sublinear
speedup (< p)

3) Increasing towards p

4) Increasing towards super-
linear speedup

W is a problem-specific parameter which is 

related to the amount of computational 

work (most often linearly-related)
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Performance Analysis

Goals:

Understanding of the computational process in 
terms of resource consumption

Identification of inefficient patterns

Performance prediction

Performance characterization of program and 
system
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Overhead or Lost Cycles

= all cycles with Tpar that are 

not utilized for useful work

i: index of process j: index of overhead

For all processes:
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Impact of Overhead on Speedup?

We sum overheads of type 

j over all processes i
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Speedup & Overhead Ratios

Total overhead (sum of 

per process overhead)!
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Example 1: Execution Profile  of 
Parallel Matrix Multiplication

Speedup=2.55 Efficiency = 85%
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Parallel Matrix Multiplication

Parallel anomaly = 2.6%
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Analysis per process
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If you assume that each process has          work,

We can calculate  the overhead ratio per process:
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Overhead Classification

Control of parallelism: extra functionality 
necessary for parallelization (like partitioning)

Extra computations required

Part of computational phases are not for useful work!

Communication: overhead time not overlapping 
with computation

Idling: processor has to wait for further 
information

Parallel anomaly : useful work differs for 
sequential and parallel execution 

KUMAR p195
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Causes of Idling

Limitations of parallelism
Cf Amdahl’s law (see further)

Load imbalances

Waiting for incoming messages, due to
Message latency

Limited bandwidth

Congestion in interconnection network
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Example 2: Parallel Quicksort
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Execution Profile of Parallel Quicksort
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Quicksort’s performance

Speedup growth is limited!

Reason?
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Amdahl’s Law

Limitations of inherent parallelism: a part s
of the algorithm is not parallelizable

PPP p. 80
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Amdahl’s Law

sp

p
Speedup

).1(1 


sp
Efficiency

).1(1

1




If p is big enough:

s
Speedup

1


s Speedupmax

10% 10

25% 4

50% 2

75% 1.33



Pag.

Amdahl example: video decoding
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Thanks to Wladimir van der Laan, University of Groningen
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Example 3: Job Farming

Set of jobs & cluster of computers

= Independent task parallelism

{job1, job2, job3, job4}
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Performance of Job Farming?

Overheads? Bottlenecks?

1. Communication overhead

Impact on speedup ~ Tseq/Tcomm ~ granularity

Granularity = computation/communication

overlap communication with computation

2. Bottleneck at master => idling of slaves

use several masters (‘tree’-structure)
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Scalability

Can we keep efficiency constant while
simultaneously increasing W and p?
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Scalability

Runtime remains constant if efficiency remains constant 
and increasing p and W at the same rate:

Problem doubles? Double processing power! Same time!

Program is scalable: the ability to maintain efficiency at a 
fixed value by simultaneously increasing the number of 
processors and the size of the problem.

It reflects a parallel system’s ability to utilize increasing 
processing resources effectively.

PPP p. 95

KUMAR p. 211

Gustafson’s law
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Iso-efficiency
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Function tells us how W must increase with an increasing p for 
maintaining efficiency

• If perfectly scalable (Tovh linear or sub-linear in p):
• Increase W linearly with increasing p
• Parallel run time stays the same 
• Workload per processor remains constant (see next slide)

• If fairly/poorly scalable (Tovh super-linear in p):
• Problem size should be increased more than p to keep the 

efficiency
• Bigger work load per processor (see next slide)

• More memory needed!!

iso-efficiency curve:

When is efficiency constant

If sequential runtime~W
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Iso-efficiency curves
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W

p
80%

x2

x2

scalable highly scalable poorly scalable

Thanks to Noah Van Es (2016)
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Gustafson’s law

▪ Amdahl’s law: pessimistic view

▪ parallelization is limited

▪ Amdahl only changes p, keeps W constant

▪ Gustafson: more optimistic

▪ the problems we run in parallel will be bigger and have 
more parallelism: for higher p, higher W

➢ Iso-efficiency curve

▪ Bigger problems: smaller serial fraction, less overhead

30

Performance Analysis

See Link
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I. Generate/draw execution profile

II. Identify lost cycles

III. Determine causes of overhead

IV. Plot performance in function of p and W

V. Study impact of overheads on speedup

VI. Study scalability

VII.Determine optimization possibilities
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Approach to follow
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Performance analysis of 
your GPU program

• Measure computational performance (Gflops) and memory 
bandwidth (Bytes/sec)

• Estimate number of instructions

• Count data access

• If applicable: memory bandwidth for each memory level:

• CPU  GPU: PCIexpress bus  (this you can measure separately)

• Global memory access

• Local memory access

• Compare with peak performance (see next slide)

• Try to explain non-ideal performance

• Compare results for different versions of your program

• From a naïve version to a highly-optimized version. Are you coming 
close to peak performance?

• You can make idealized versions to measure impact of a certain aspect
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Measure peak performance

• Microbenchmarks: small programs that 
measure a specific performance 
characteristic in isolation
• E.g. Flops, bandwidth, cost of special functions such as 

cos, ...

• www.gpuperformance.org
• Java app with microbenchmarks

• Write them to database

• Consult database
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http://www.gpuperformance.org/


Jan Lemeire

Estimate a performance bound for your kernel
Count #instructions (in kernel, multiplied with the number of threads)

Count #memory transfer in bytes

Compute bound: t1 = #instructions / #instructions per second 
(theoretical computational peak performance of GPU)

Data bound: t2 = # memory accesses / bandwidth

Minimal runtime tmin = max(t1, t2)    

expressed by roofline model (compute intensity = granularity)

Measure the actual runtime

tactual = tmin + tdelta

Try to account for and minimize tdelta

Due to non-overlap of computation and communication

Due to overheads caused by anti-parallel patterns (APPs)

Consult remedies for the overheads

Theoretical performance analysis
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Roofline model

Performance Analysis

algorithm

= granularity



Jan Lemeire

GPU Programming


