Parallel Systems Course: Chapter V

Performance Analysis

See Chapter 6 of Jan's PhD

Kumar Chapter 5

Jan Lemeire Parallel Systems lab November 2017

Vrije Universiteit Brussel

Performance Metrics

$$Speedup = \frac{T_{seq}}{T_{par}}$$

We assume sequential version is run on the same processor/core as the parallel version.

$$Efficiency = \frac{Speedup}{p} = \frac{T_{seq}}{p.T_{par}}$$

Other metrics we could try to optimize: energy consumption, cost, ...

Parallel Matrix Multiplication: Execution Profile

On cluster of 3 computers - MPI

Speedup=2.55 Efficiency = 85%

Speedup i.f.o. processors

- 1) Ideal, linear speedup
- 2) Increasing, sub-linear speedup
- 3) Speedup with an optimal number of processors
- 4) No speedup
- 5) Super-linear speedup

Super-linear speedup

- The parallel execution works with data that fits in lower-level memory, while this is not the case for the sequential execution
- The work in parallel is less than that of the sequential program, called *parallel anomaly*.
 See Chapter DOP.

Speedup i.f.o. problem size

- 1) Constant speedup
- 2) Increasing, asymptotically, towards value sublinear speedup (< p)</p>
- 3) Increasing towards p
- 4) Increasing towards superlinear speedup

W is a problem-specific parameter which is related to the amount of computational work (most often linearly-related)

Performance Analysis

Goals:

- Understanding of the computational process in terms of resource consumption
- Identification of inefficient patterns
- Performance prediction
- Performance characterization of program and system

Overhead or Lost Cycles

Ideally
$$T_{par} = T_{seq}/p \implies Speedup = p$$

In practice $T_{par} > T_{seq}/p$

$$overhead = p.T_{par} - T_{seq}$$

For all processes:O $T_{par}^{i} = T_{work}^{i} + \sum_{j}^{O} T_{ovh}^{i,j}$ *i*: index of process*j*: index of overhead

lost processor cycles

= all cycles with T_{par} that are not utilized for **useful work**

Impact of Overhead on Speedup?

Speedup & Overhead Ratios

Example 1: Execution Profile of Parallel Matrix Multiplication

Speedup=2.55 Efficiency = 85%

Parallel Matrix Multiplication

$$Efficiency = \frac{1}{1 + (5,5 + 9,2 + 2,6)/100} = \frac{1}{1,173} = 0,85$$

Analysis per process

If you assume that each process has $\frac{1}{seq}$

We can calculate the overhead ratio per process:

work,

Overhead Classification

- Control of parallelism: extra functionality necessary for parallelization (like partitioning)
 - Extra computations required
 - Part of computational phases are not for useful work!
- Communication: overhead time not overlapping with computation
- *Idling*: processor has to wait for further information
- Parallel anomaly : useful work differs for sequential and parallel execution

$$T_{seq} + T_{anomaly} = \sum_{i}^{p} T_{work}^{i}$$

m

ı

Causes of Idling

Limitations of parallelism

- Cf Amdahl's law (see further)
- Load imbalances

Waiting for incoming messages, due to

- Message latency
- Limited bandwidth
- Congestion in interconnection network

Example 2: Parallel Quicksort

Execution Profile of Parallel Quicksort

Quicksort's performance

Without considering load imbalances

Speedup growth is limited! Reason?

Amdahl's Law

Limitations of inherent parallelism: a part s of the algorithm is not parallelizable

$$T_{seq} = (1-s).T_{seq} + s.T_{seq}$$

$$T_{par} = \frac{(1-s).T_{seq}}{p} + s.T_{seq}$$

parallelizable not parallelizable

$$Speedup_{\max} = \frac{T_{seq}}{T_{par}} = \frac{T_{seq}}{\frac{(1-s).T_{seq}}{p} + s.T_{seq}} = \frac{p}{1 + (p-1).s}$$

Assume no other overhead

Performance Analysis Pag.19

Amdahl's Law

Speedup
$$< \frac{p}{1+(p-1).s}$$

$$Efficiency < \frac{1}{1 + (p-1).s}$$

If *p* is big enough:

Speedup
$$< \frac{1}{s}$$

S	Speedup _{max}
10%	10
25%	4
50%	2
75%	1.33

Amdahl example: video decoding

Thanks to Wladimir van der Laan, University of Groningen

Decoding 10	sequence		
Stage	CPU (s)	CUDA (s)	-
1 MOTION_DECODE	0.64	0.64	-
2 MOTION_RENDER	16.16	1.33	<12 ×
3 RESIDUAL_DECODE	12.00	12.94	
4 WAVELET_TRANSFORM	22.52	1.63	<14 ×
5 COMBINE	11.27	0.39	← 29 ×
6 UPSAMPLE	14.53	0.85	← 17 ×
Total	77.13	17.76	<−4.3 ×
		Time (a)	-
CPU		77.13	
CUDA 17.76			

Example 3: Job Farming

Set of jobs & cluster of computers = Independent task parallelism

{job1, job2, job3, job4}

Speedup = ± 1.2

Performance of Job Farming?

Overheads? Bottlenecks?

- 1. Communication overhead
 - Impact on speedup ~ T_{seq}/T_{comm} ~ granularity
 - Granularity = computation/communication
 - overlap communication with computation
- 2. Bottleneck at master => idling of slaves
 - use several masters ('tree'-structure)

Scalability

Can we keep efficiency constant while simultaneously increasing W and p?

п	p = 1	p = 4	p = 8	<i>p</i> = 16	p = 32
64	1.0	0.80	0.57	0.33	0.17
192	1.0	0.92	0.80	0.60	0.38
320	1.0	0.95	0.87	0.71	0.50
512	1.0	0.97	0.91	0.80	0.62

Scalability

Runtime remains constant if efficiency remains constant and increasing p and W at the same rate:

$$T_{par} = \frac{T_{seq}}{speedup} = \frac{\alpha.W}{efficiency(W, p).p}$$
$$= \frac{\alpha}{efficiency(W, p)} \cdot \frac{W}{p} = \text{constant}$$

- Problem doubles? Double processing power! Same time!
- Program is scalable: the ability to maintain efficiency at a fixed value by simultaneously increasing the number of processors and the size of the problem.
- It reflects a parallel system's ability to utilize increasing processing resources effectively.

Iso-efficiency

$$Efficiency = \frac{1}{1 + \frac{T_{ovh}}{T_{seq}}}$$

iso-efficiency curve: When is efficiency constant

$$\Rightarrow \frac{T_{ovh}(W, p)}{T_{seq}} = \text{constant} = \frac{T_{ovh}(W, p)}{\alpha . W}$$

If sequential runtime~W

Function tells us how W must increase with an increasing p for maintaining efficiency

- If perfectly scalable (T_{ovh} linear or sub-linear in p):
 - Increase W linearly with increasing p
 - Parallel run time stays the same
 - Workload per processor remains constant (see next slide)
- If fairly/poorly scalable $(T_{ovh} \text{ super-linear in } p)$:
 - Problem size should be increased more than p to keep the efficiency
 - Bigger work load per processor (see next slide)
 - More memory needed!!

Iso-efficiency curves

scalable

highly scalable

poorly scalable

Thanks to Noah Van Es (2016)

Gustafson's law

• Amdahl's law: pessimistic view

- parallelization is limited
- Amdahl only changes p, keeps W constant

• **Gustafson**: more optimistic

- the problems we run in parallel will be bigger and have more parallelism: for higher p, higher W
 - > Iso-efficiency curve
- Bigger problems: smaller serial fraction, less overhead

Approach to follow

- I. Generate/draw execution profile
- II. Identify lost cycles
- III. Determine causes of overhead
- IV. Plot performance in function of p and W
- V. Study impact of overheads on speedup
- VI. Study scalability

VII.Determine optimization possibilities

Performance analysis of your GPU program

- Measure computational performance (Gflops) and memory bandwidth (Bytes/sec)
 - Estimate number of instructions
 - Count data access
 - If applicable: memory bandwidth for each memory level:
 - CPU \Leftrightarrow GPU: PCIexpress bus (*this you can measure separately*)
 - Global memory access
 - Local memory access
- Compare with peak performance (see next slide)
 - Try to explain non-ideal performance
- Compare results for different versions of your program
 - From a naïve version to a highly-optimized version. *Are you coming close to peak performance?*
 - You can make idealized versions to measure impact of a certain aspect

Measure peak performance

- Microbenchmarks: small programs that measure a specific performance characteristic in isolation
 - E.g. Flops, bandwidth, cost of special functions such as cos, ...
- www.gpuperformance.org
 - Java app with microbenchmarks
 - Write them to database
 - Consult database

Theoretical performance analysis

Estimate a performance bound for your kernel

- Count #instructions (in kernel, multiplied with the number of threads)
- Count #memory transfer in bytes
- Compute bound: t₁ = #instructions / #instructions per second (theoretical computational peak performance of GPU)
- Data bound: t₂ = # memory accesses / bandwidth
- Minimal runtime t_{min} = max(t₁, t₂)
 <u>expressed by roofline model</u> (compute intensity = granularity)

Measure the actual runtime

 $+ t_{actual} = t_{min} + t_{delta}$

- Try to account for and minimize t_{delta}
 - Due to non-overlap of computation and communication
 - Due to overheads caused by anti-parallel patterns (APPs)
 - Consult remedies for the overheads

Roofline model

A. Peak Performance

B. Non-overlap

Non-overlap factors

C. Anti-parallel interactions

Anti-parallel patterns & model for latency hiding