Parallel Systems Course: Chapter IV

GPU Programming

Jan Lemeire ¥ Vrije Universiteit Brussel
Dept. ETRO

October 2017

— Overview

1. GPUs for general purpose ST

2. GPU ‘threads’ executing kern?}

3. Starting kernels from host
ghad g (

_—

— Overview

1. GPUs for general purpose

2. GPU ‘threads’ executing kern',

3. ﬁitmg kernels from host (GB

e%_on n@eL& G }hit

w«-;},/ f' ntS

y -
/ -
-)

v
I g : -
2 .
\ » / "7/‘ b? .
ﬁ.. ., - " e
;6-‘.. ¥ "

es/second
tors GPU

trlangles/secondl/ur |
O transistors GPU,

o
I

——. 2016 \
*\i

L

000 Million triangles/second
|II|on transistors GPU

0"
&

»

"

Supercomputing for free

¢ FASTRA at university of Antwerp

Collection of 8 graphical cards in PC

FASTRA 8 cards = 8x128 processors = 4000
euro

Similar performance as University’s
supercomputer (512 regular desktop PCs)
that costed 3.5 million euro in 2005

http://fastra.ua.ac.be

GPU Programming
Jan Lemeire

Why are GPUs faster?

DDDDDDDD EEEEEEEN
D DTH_\TH_\DDD

DDDDDDDD GDGDGDDD
EEENEEEE DEEPEDEE
EEENEEEE DEEREEEE
EEEEEEEN DEEREEEN
EEENEEED DEEDEEEE
EEEEEEEN DEEREEEN

GPU specialized for math-intensive highly parallel
computation

So, more transistors can be devoted to data
processing rather than data caching and flow control

Control

‘Sequential’” processor: super-

scalar out-of-order pipeline

| | |
(in order)
|
{out of order] . .
L { ; y Different processing units
Plpellne depth ALU MEMI FPI BR
Y Y :
ez | [Fe2 Out-of-order execution
FL Branch prediction
r Register renaming
Y Y ¥ N {uul::-l‘unicr‘.___

L
][{in order)
| I
| |

,, .
GPU Programming
Jan Lemeire

Scalar Processor: Pipelined design

¢ Typically (CPU): five tasks in instruction
execution '

+ IF: instruction fetch e IF
4+ ID: instruction decode |
4+ OF: operand fetch 2 (',';Sc‘g:',z“"" ID
+ EX: instruction execution
+ 0OS: operand store, 3. Operand OF
often called write-back WB
¢ GPU: 24 stages * oeane L BX_]

5. Operand
store

GPU Programming
Jan Lemeire

Pipelining Principle

¢ Long operations
1 2] 3 § 4
¢ Combination of short operations
-~ HA BHA2 HEH §BABn

¢ Pipelining

1]12[5]4

\
1]2]3[4

1]2]3]4 time
>

GPU Programming
Jan Lemeire

Upto 4 times faster

CPU computing

manual

automatic

Algorithm

J

Implementation

J

Compiler

Write once
Run everywhere
efficiently!

Automatic
optimization

¥

Low latency of
each instruction!

Challenges of GPU computing

Algorithms

J

Implementation

programmability @ performance
Optimization

~ Compiler

portability

GPU architecture strategy

¢ Light-weight threads, supported by the hardware

+ Thread processors, upto 96 threads per processing element
+ Switching between threads can happen in 1 cycle!

¢ No caching mechanism, branch prediction, ...

+ GPU does not try to be efficient for every program, does not spend
transistors on optimization

+ Simple straight-forward sequential programming should be
abandoned...

¢ Less higher-level memory:
+ GPU: 16KB shared memory per SIMD multiprocessor
4+ CPU: L2 cache contains several MB’s

» Massively floating-point computation power

» Transparent system organization

®¥ Modern (sequential) CPUs based on simple Von Neumann
architecture

GPU Programming
Jan Lemeire

GP-GPUs: Graphics Processing Units
for General-Purpose programming

!
-(é)-

[

GPU Programming

Jan Lemeire

Usage

¢ Copy data from CPU to GPU

¢ Start kernel within CPU-program (C, java,
Matlab, python, ...)

+ Kernel = program executed on GPU by each ‘thread’
+ Several kernels can be launched (pipelined)
+ Handled on the GPU one by one or in parallel

¢ Copy results back from GPU to CPU

GPU Programming
Jan Lemeire

Host (CPU) - Device (GPU)

Host/CPU

Processor

Kernel launches

#
Hypertransport and

Intel’s Quickpath
currently 25.6 GB/s

PCle x16
4 GB/s

Device/GPU
» Processors
#
Nvidi
1

PCle x16 Gen2
8 GB/s peak

GPU bus
a Tesla C2050:
030.4 GB/s

GPU Programming
Jan Lemeire

GPU Architecture

¢ In the GTX 280, there are 10 Thread Processing Clusters
+ Each has 3 Streaming Multiprocessors, which we will refer|to
as multiprocessors (MPs).

+ Each MP has 8 Thread Processors. We will refer to these as
Scalar Processors (SP).

- 240 processor cores and 30 MPs in total!

¢ One double-precision unit (DP) per MP

SM

- ¥ - ¥

GPU Architecture

Jan Lemeire

', Custom kernel _ _
Application | |libcuda PTX code streaming multiprocessor
CPU Shader Cores l
Core‘ ‘Core Core‘ ‘Core Core Core
Memory [I
4 Interconnection Network ‘
E""i,-z-"“:“"i,-z."": E....i.z.....:
Memory Memory Memory
Controller || Controller Controller
— > \ DRAM ‘ DRAM \ \ DRAM
cudaMemcpy

1 Streaming Multiprocessor

<l

p
Shader Core

local/global access
(or L1 miss); texture
or const cache miss

y

| Thread WarE |
| Thread Warp |

Thread Warp Scheduler

SIMD)
v Pipeline
[Fetch W
‘ Decode
Y/ _ A A T

-

To intercon

:--I-‘;-.:
| %1 L1 t:local&: Sl\liaIEd
‘ ex || constio] pa): em.

> |ThreadWaE i“ \
hect
MSHRs

Jan Lemeire

All threads
Data l hit in L1?

L Writeback J

The Same Instruction is
executed on Multiple Threads
(SIMT)

Aidth of pipeline: 8 — 32 —

192 - 128

GPU vs CPU:

NVIDIA 280 vs Intel i7 860

Registers 16,384 (32-bit) / | 128 reservation stations
multi-processor3

Peak memory bandwidth 141.7 Gb/sec 21 Gb/sec

Peak GFLOPs 562 (float)/ 50 (double)
77 (double)

Cores 240 (scalar 4/8 (hyperthreaded)
pProcessors)

Processor Clock (MHZz) 1296 2800

Memory 1Gb 16Gb

Local/shared memory 16Kb/TPC?2 N/A

thttp://ark.intel.com/Product.aspx?id=41316
°TPC = Thread Processing Cluster (24 cores) e

330 multi-processors in a 280
22

Performance: GFlops?

¢ GPUs consist of MultiProcessors (MPs) grouping a
number of Scalar Processors (SPs)

¢ Nvidia GTX 280:

4+ 30MPs x 8 SPs/MP x 2FLOPs/instr/SP x 1 instr/clock x 1.3 GHz
= 624 GFlops

¢ Nvidia Tesla C2050:

+ 14 MPs x 32 SPs/MP x 2FLOPs/instr/SP x 1 instr/clock x 1.15 GHz
(clocks per second)

= 1030 GFlops

GPU Programming
Jan Lemeire

Other limit: bandwidth

¢ Nvidia GTX 280:

+ 1.1 GHz memory clock
+ 141 GB/s

¢ Nvidia Tesla C2050:

+ 1.5 GHz memory clock
+ 144 GB/s

GPU Programming
Jan Lemeire

Example: real-time image processing

KUL(/,I'encor

Accelerating Yield

:> Images of
20MegaPixels

FIVRNUN

i

AR TR

[V A A At

R

G R B
/////lli\:\\\\\\

lens correction pattern detection

Pixel rescaling

CPU gives only 4 fps

next generation machines need 50 fps
GPUs deliver 70 fps

Example: pixel transformation (FPN)

usgn_8 transform(usgn_8 in, sgn_16 gain, sgn_16 gain_divide,
sgn_8 offset)

{
sgn_32 X;

X = (in * gain / gain_divide) + offset;
if (x < 0)x=0;
if (x > 255) x = 255;

return x;

s

GPU Programming
Jan Lemeire

Pixel transformation

¢ Performance on Tesla C2050
¢ 1 pixel is represented by 1 byte [0-255]
+ Per pixel: read 4 bytes (pixel & gain & offset) and write 1 byte

¢ Integer operations: performance is half of floating point
operations

¢ Two different implementations:
o FPN1: 1 pixel per thread
o FPN4: 4 pixels per thread (treat 4 bytes as 1 ‘word’)

Prem (Dytes/s) 115 GB/s Pops (0PS/s) 500 Gops/s
bytes/pixel 5 Ops/pix 5+4 (FPN1) CI=1,8
5+1 (FPN4) Cl=1,2
PmemXCI (pix/s) 23 Gpix/s Pix/s 56 Gpix/s
(FPN1)

83 Gpix/s

@ @ (FPN4)
Memory-bound Cl = Computational Intensity
GPU Programming (take minimum)
Jan Lemeire

Roofline model

Peak

performance memory

bandwidth

flops/s

algorithm

Computational intensity
(#computations/#bytes communicates)

GPU Programming
Jan Lemeire

Roofline model applied

memory
bandwidth PCI
115GB/ XPress
8GB/s

Peak
performance

............. 7 500 Gflops/s

...........

Comp:UtationaI intensity

1,2 18 43 625
FPN4 FPN1

GPU Programming
Jan Lemeire

But... nothing is for free

¢ Harder to program!
+ Hardware architecture should be taken into account
+ Optimization is important
+ Additional complexity in code
+ Harder to debug, maintain, ...

¢ Algorithms should contain inherently
massively fine-grained parallelism

GPU Programming
Jan Lemeire

— Overview

1. GPUs for general purpose

2. GPU ‘threads’ executing kerne

3. &itmg kernels from host (

eag:_on n@eL& GE fG.I‘ChIt

Thread Structure

¢ Massively parallel programs are usually
written so that each thread computes one

part of a problem

+ For vector addition, we will add corresponding elements
from two arrays, so each thread will perform one addition

+ If we think about the thread structure visually, the threads
will usually be arranged in the same shape as the data

GPU Programming
Jan Lemeire

Thread Structure

¢ Consider a simple vector addition of 16
elements

+ 2 input buffers (A, B) and 1 output buffer (C) are
required

Array Indices \

Vector Addition: ~ © 1234567809111 111
A R S N I A s N A s N S B A e
+
B N N It A s N A s B S B e e
C

GPU Programming
Jan Lemeire

Thread Structure

¢ Create thread structure to match the

problem
+ 1-dimensional problem in this case Thread IDs
e 2 B T B i 0
VectorAdd|t|0n: 01 2 3 45 6 7 8 91 11111
0 1 2 3 4 5
'j‘_ A e A I I
B A e A I
C

GPU Programming
Jan Lemeire

Thread Structure

¢ Each thread is responsible for adding the
indices corresponding to its ID

I 5
Vector Addition: 5 7 9
A
+
° e
c 4

OpenCL Kernel code

Ta

__kernel void vectorAdd(__global const float * a,
__global const float * b, __global float * c)
{

// Vector element index

int nIndex = get_global_1d(0);

// addition

c[nIndex] = a[nIndex] + b[nIndex];

}

¢ OpenCL kernel functions are declared using
Y kernel”.

¢ __ global refers to global memory

¢ get_global_id(0) returns the ID of the thread in
execution

GPU Programming
Jan Lemeire

Kernel launch

¢ Execution environment

¢ Grid s

¢ Work groups/thread m" & || &5 [
blocks in 2 or 3 L
dimensions ez

¢ Specify at launch time: — Tl i
grid of work groups of I e ol
work items (threads)

¢ Query in kernel at run

ti
The host issues a succession of kermel invocations to the device. Each kemnel is executed as a batch

¢ Impact on performance! — s=eammans

Jan Lemeire

Work items/threads

¢ API calls allow threads to identify
themselves and their data

¢ Threads can determine their global ID in
each dimension
+ get_global_id(dim)
+ get_global_size(dim)

¢ Or they can determine their work-group ID
and ID within the workgroup
+ get_group_id(dim)
+ get_num_groups(dim)
+ get_local_id(dim)
+ get_local_size(dim)
¢ get_global_id(0) = column, get_global_id(1) = row

¢ get_num_groups(0) * get_local_size(0) ==
get_global_size(0)

Jan Lemeire

The effect of parallelism

] 100000 ———
Runtime Run more and more threads

(n S) 90000

80000

70000

60000

50000

40000

30000

20000

10000

#threads

0 T T T T T T 1
0 10000 20000 30000 40000 50000 60000 70000

GPU Programming
Jan Lemeire

Occupancy

¢ Keep all processing units busy!
+ Enough threads

¢ All Multiprocessors (MPs)
¢ All Scalar Processors (SPs)

¢ Full pipeline of scalar processor
+ Pipeline of 24 stages (see later)

GPU Programming
Jan Lemeire

So: Power is within reach?

Unfortunately...
¢ It's not that simple...

¢ It's not what we are used in the CPU-world

+ CPU: multicores also requires us to program
differently

¢ If we want the speed, we will have to pay for
it...

GPU Programming
Jan Lemeire

— Overview

1. GPUs for general purpose

3. &itmg kernels from host (CP

ST gﬁ'} /’I:,J X\ nC nts
Pl ' o,
2

) .; o~

AN R e
“ > 2 .'i': -.“

: ‘0'
t

£
-
|

N
&
3
‘ "

P
-
. B

v

R
-

-

2. GPU ‘threads’ executing kern’_.'

e%on n@eL& GE fG.I‘ChIt

J >
\ ! “ ,’ A
Cal, s , : &2 s

‘.,4._ ..‘ . '.-..

OpenCL Working Group

* Diverse industry participation
- Processor vendors, system OEMs, middieware vendors, application developers

+ Many industry-leading experts involved in OpenCL’s design
- A healthy diversity of industry perspectives

« Apple initially proposed and is very active in the working group
- Serving as specification editor

* Here are some of the other companies in the OpenCL working group

LABS aavmon BiZi) AMDZU ARM sofhcou

\
ﬂ}

%w&eﬁhy ERICSSON Z 2

freescatle @f.... ELEEE intel)
Imagmatmn \ m EE NDK[A @ w

UMK SOFTWARE SYSTEMS
............ Ol NVIDIA.
5 | ¢ -:).:,; LV,
-~
TEXAS ~<
RAPID TAKUM- (CTEXAS s CER -

CUDA Working Group

GPU Programming
Jan Lemeire

OpenCL Keywords & functions

¢ Address space qualifiers:
+ _ global, _ _local, _ constant and __ private

¢ Function qualifiers:
+ _ kernel

¢ Access qualifiers for images:
+ __read_only, __ write_only, and __read_write

¢ OpenCL functions: start with ¢/ prefix

GPU Programming
Jan Lemeire

OpenCL Kernel code

Ta

__kernel void vectorAdd(__global const float * a,
__global const float * b, __global float * c)
{

// Vector element index

int nIndex = get_global_1d(0);

// addition

c[nIndex] = a[nIndex] + b[nIndex];

}

¢ OpenCL kernel functions are declared using
Y kernel”.

¢ __ global refers to global memory

¢ get_global_id(0) returns the ID of the thread in
execution

GPU Programming
Jan Lemeire

Architecture — Computing elements

Processing
Element \
(= scalar

N
processor) H

Host
(mostly [CPU)

Compute Unit Compute Device
(also called multiprocessor) (GPU, CPU, cell processor, ...)

GPU Programming
Jan Lemeire

OpenCL Software Stack

+ Host program

- Query compute devices

- Create contexts

- Create memory objects associated to contexts
- Compile and create kernel program objects

- Issue commands to command-queue

- Synchronization of commands

- Clean up OpenCL resources

+ |Kernels
- C code with some restrictions and extensions

> Platform Layer

> Runtime

> Language

Shows the steps to develop an OpenCL

program

GPU Programming
Jan Lemeire

On Host: platform layer

¢ Creating the basic OpenCL run-time

environment

+ Select Platform: collection of devices managed by the
OpenCL framework that allow an application to share
resources and execute kernels on devices in the platform

- OpenCL framework & OpenCL implementation: NIVDIA, AMD,
Intel, ...

+ Device: hardware such as GPU, multicore, cell processor

+ Context: defines the entire environment, including kernels,
devices, memory management, command-queues, etc.

+ Command-Queue: object where OpenCL commands are
enqueued to be executed by the device.

GPU Programming
Jan Lemeire

Setup

1. Get the device(s)
2. Create a context
3. Create command queue(s)

platformis set to NULL

el uint num devices_returned;
cl device_id devices([2];

err = clGetDevicelDs (NULL, CL DEVICE TYPE GPU, 1,
&devices?ﬂ] ; nuﬁ_devi_ces_returned] H

err = clGetDevicelIDs (NULL, CL DEVICE TYPE CPU, 1,
&devices([l], &num_devices_ returned) ;

cl context context;
context = clCreateContext(0, 2, devices, HULL, HULL, &err):;

cl command queue queue gpu, gueue cpu;
queue gpu = clCreateCommandQueue(context, dewvices[0], 0, &err);
queue cpu = clCreateCommandQueue(context, dewvices[l], 0, &err);

& Copyright Khrones Group, 2009 - Pags 16

Within context

OpenCL @

Context
Programs Kernels Command Queues|
kermel void
dp_mulglobal const float *a, dp_mul ’”I In
global const fleat *b, CPU program bina
global fleat *c) Order
{ d I
int id = get_global id{0}; I GPU prnpgrr:: hIrnr]rI Queue
cfid] =alid] * blid];
) GPU

Compile code | /

& Copyright Khrancs Group, 2009 - Pags 15

Data movement & kernel calls

¢ Create buffers for this context.
+ In global memory

¢ Data movement

+ Host => device: clEnqueueWriteBuffer()
+ Device => host: clEnqueueReadBuffer()

¢ Create program using input file for this

context.
+ build this program.

¢ Create kernel from program.

GPU Programming
Jan Lemeire

Executing Code

* Programs huild executable code for multiple devices
* Execute the same code on different devices

karnal woid
horizontal reflect{rsad only image?d t =ara,
writa only image?d € dat)

{

int x = gat glahal id(0); // z-occoxd

int vy = gat gloahal id(l); // y-ccoxd

int width = gat image width (=xra);

floatd ara wval = reasd imsagaf{ara, aamplar,

{int2) (width-1-x,

¥)):
writa imagef{dst, (int?)(x, y), ara wal);
}

‘ Compile for GPU -

Compile for CPU ‘

& Copyright Khrones Group, 2009 - Page 25

Cleanup

/| release kernel, program, and memory objects
DeleteMemobjs (cmMemObjs, 3);

free (cdDevices);

clReleaseKernel (ckKernel);

clReleaseProgram (cpProgram);
clReleaseCommandQueue (cqCommandQue);
clReleaseContext (cxMainContext);

— Overview

1. GPUs for general purpose

2. GPU ‘threads’ executing kerne

Execution Model

¢ Kernel = smallest unit of execution, like a C
function, executed by each work item (= thread)

¢ Data parallelism: kernel is run by a grid of work
groups

¢ Work group consist of instances of same kernel:
work items

¢ Different data elements are fed into the work items
of the work groups
= We talk about stream computing

GPU Programming
Jan Lemeire

Architecture — Execution Model

work-group size S,

| - =l
~ -
i work-group (w, wy) T
II
s
,I
Y ¢
’
¥ work-item work-item

¥4 (W) S,+s,. wy Sy,s)) S (Wy S8, wy Sy«rsy/

s,

7
g (Sy s’) = {0, 0} {5y sy) =({8,-1.0)
,I
/s
s’
2 P : . : work-group size S
s - -7 3
/) - b~
work-item work-item
NDRange size G, (wy S8y W, Sy#s) (Wy Sy#5,. W, Sy #5)
\ == —— & {s'_s’)zfo,sy-l) . st.sy)=(sx-f,8y-!)
. ¥
[ad
| 1
NDRange size Gy

GPU Programming

Jan Lemeire

Kernel execution

¢ Simple scheduler

+ Assigns work groups to available streaming MultiProcessors (MPs)

+ Basically, a waiting queue for work groups

¢ Work groups (WGs) execute independently

+ Global Synchronization among work groups is not possible!

GPU with 2 MPs

«
WG

v

~

time

GPU with 4 MPs

GPU Programming
Jan Lemeire

Multiple WGs per MP

¢ One MP can execute work groups concurrently
¢ Determined by available resources (hardware

limits):

+ Max. work groups simultaneously on MP: 8
+ Private memory (registers) per MP: 16/48KB
+ Local (shared) memory per MP: 16/32KB

weo WGl
S
WG timel

GPU with 4 MPs

GPU Programming
Jan Lemeire

The execution on a GPU

QW
Nm
Nm
B
Nm

\ Work group Warp

| \ Compute Unit

timeOfRun:

execution time P

GPU Programming
Jan Lemeire

Architecture - Memory Model

OpenCL Device

s N D N

Private Private Private Private

Memory Memory Memory Memory)
|

1 1 1 1 Multi
3y ¥ | ¥ ¥ ultiprocessor
Work Item Work ltem Work ltem Work Item /
L \ J /\ S /\ J A\ \ J

| | | &
v h v

[Local Memory J [Local Memory }

Workgroup Workgroup
N g z”x
v v
‘ Global/Constant Memory }
|
[Host Memory J
Host

GPU Programming

Jan Lemeire

OpenCL Memory Model on NVIDIA

Software Hardware » Each hardware thread has a dedicated
2 __private region for stack
L
_ Scalar
__private Processor

OO » Each multiprocessor has dedicated storage
22282228 =0 for _local memory and __constant caches
0O
E * Work-items running on a multiprocessor
local can communicate through __local memory
I Multiprocessor

« All work-groups on the device can
access __ global memory

__global Device of global communication
_constant

» Atomic operations allow powerful forms

Memory requirements

¢ # local variables per thread (registers)
¢ # work items per work group
¢ => memory per work group

GPU Programming
Jan Lemeire

Work group execution

¢ Work items can synchronize within a work group
barrier(CLK_LOCAL_MEM_FENCE); // barrier synchronization

¢ Work items can share on-chip local memory
4+ Local memory is on MultiProcessor (MP)
+ Visible to work group only

__local int shrfNUMBER_OF_ROWS][NUMBER_OF_COLS];

GPU Programming
Jan Lemeire

GPU Programming Concepts

Device/GPU + 1TFLOPS :
Grid (1D, 2D or 3D)
: : « Kkernel
Multiprocessor 1 Multiprocessor 2 - get local size (0)
i B S
o
40GB/S few cycles ml (01 0) (1, O) (2, O)
- \
Host/ 8 Group,' Group \\Group
CPU o v O @1 €, 1)
| 7 k \
Pri(éilsasror Scalar Scalar Scalar -l&” ,’ I.' \\ \\
+ 1GHz Processor Processor Processov\ o // , \\ \\
i
1 100GB/s 4 200 cycle \ ———
>
? |(get group id(0) ,get group id(1))
3 A | Work item | Work item | Work item
5)' (0, 0) (1, 0) (2, 0)
0, Work item | Work item | Work item
5 (0, 1) ,1) 2, 1)
8 Work item | Work item | Work item
4-8 GB/s o 4 (_9, 2) 1,2 (2, 2)
,ﬁ 4:‘ k } <
. ~ Wor roup size
Max #work items per work group: 1024 £ grotp *

Executed in warps/wavefronts of 32/64 work items (get_local_id(0), get_local id(1))

Max work groups simultaneously on MP: 8
OpenCL terminology

Max active warps/wavefronts on MP: 24/48

GPU Threads v/s CPU Threads

< GPU work items or threads:

4 Lightweight, small creation and scheduling overhead, extremely fast
switching between threads
— No context switch is required

4+ Need to issue 1000s of GPU threads to hide global memory latencies
(600-800 cycles)
— GPU=Thread processor, upto 96 threads per processor

¢ CPU threads:

4+ Heavyweight, large scheduling overhead, slow context switching
(processor state has to be saved)

GPU Programming
Jan Lemeire

Example: convolution

Source pixel

+(4x2) Parallelism: +++
Locality: ++
e Work/pixel: ++

")
= >

Convolution kernel
(emboss)

-
L
24
-
-

New pixel value (destination pixel)

-
-
-
-
-
=L
-
-

3x3 kernel (also called filter or
mask) is applied to each pixel of
the image

Jan Lemeire

Examples of convolution

' -_ _ - —
— Blur Filter ‘
L S e B o -

Bufferedimage BufferedimageOp Bufferedimage
The source The filter The destination

Edge detection
~ with sobel filter

GPU Programming
Jan Lemeire

Speedup

times

120

100

80

60

40

20

seperable convolution speedup

pr

pal

4

__-—".

10 20 30

kernel radius (pixels)

40

=&—The maximum
speedup(without
communicationtime)

== The minimum
speedup(include
communicationtime)

GPU Programming

Jan Lemeire

Convolution on GPU

< DATA W >

H ¥LV¥V3d

GPU Progr
Jan Lemeij
v

Convolution Kernel Code

__kernel void convolutionUsingSharedMemory(
__global int *in, __global int *out, __local int *in_local, __constant int *filter, int
filter_height, int filter_width)
{
uint row = get_global id(1);
uint col = get_global id(0);

in_local[get_local id(1) * get local _size(0) + get_local id(0)] =
in[row * get_global size(0) + col];
... I/ copy 9 pixels to local

barrier(CLK_LOCAL_MEM_FENCE);
int sum=0;
for (inti = 0; i< filter_height; ++i)
for (intj = O; j< filter_width; ++))
sum += filter[...] * in_locall...];

out[row * get_global_size(0) + col] = sum,

L. |

Jan Lemeire

Global and Local Dimensions

* Global Dimensions: 1024 x 1024 (whole problem space)
* Local Dimensions: 128 x 128 (executed together) by a work group)

1024
Synchronization between work-items

possible only within workgroups:
barriers and memory fences

Cannot synchronize outside
of a workgroup

1024

* Choose the dimensions that are “best” for your algorithm

@ Copyright Khronos Group, 2009 - Page 10

— Overview

1. GPUs for general purpose

2. GPU ‘threads’ executing kern',

3. ﬁitmg kernels from host (GB

e%_on n@eL& G }hit

«;, avetfonts

y -
/ -
-)

v
)} , . 'I \
2 .
\ » / "7/‘ b? .
ﬁ.. ., - " e
;6-‘.. ¥ "

Pipelining Principle

¢ Long operations
1 2] 3 § 4
¢ Combination of short operations
-~ HA BHA2 HEH §BABn

¢ Pipelining

1]12[5]4

\
1]2]3[4

1]2]3]4 time
>

GPU Programming
Jan Lemeire

Pipelining

¢ On GPU: 24 stages
¢ Multiple instructions simultaneously in flight

¢ Higher throughput, except if dependencies
between threads

+ E.g.: If instruction 2 depends on the outcome of instruction

1, then instruction 2 can only proceed in pipeline after the
termination of instruction 1

+ Pipeline stall

¢ GPU: instructions of different threads in flight

GPU Programming
Jan Lemeire

Work group execution

¢ Work items are executed in

— Block 1 Warps — Block 2 Warps — Block 3 Warps
NVIDIA_WarpS/AMD_ “(.) 1t2 .I31 ..(.) 1t2 .!3»1 ..(.) 112 :I’>
tot1t2 ...t tot1t2 ...t t0tlt2...t31
wa VEfI‘OﬂtS, they are the q\\\\\\\\\\ :\\\:\\:} q\\\\\\\\\\
scheduling units in the MP. || <222 ||| | 22222 | || |4
] 335553 335553
¢ Groups of 32/64 work items

that execute in lockstep: they

execute the same instruction. S —— — Block 4

t0 t1 t2

Example: 3 work groups on MP, R

each group has 256 work items, 40GB/s 4 few cycles | €%
how many Warps are there in the ’ ’

MP? -

calar Scalar — Bloc

> Each group is divided into S loty | Processor —

256/32 = 8 Warps <

» There are 8 * 3 = 24 Warps - %

GPU Programming
Jan Lemeire

Warp scheduling

’

<l

> |ThreadWaE i“ \

Shader Core

local/global access
(or L1 miss); texture
or const cache miss

y

| Thread WarE |
| Thread Warp |

Thread Warp Scheduler

_SIMD)
v Pipeline

[Fetch W

‘ Decode

B AN/ N0/ e

-

To interconfect

:--I-‘;-.:
| %1 L1 t:local&: Sl\liaIEd
‘ ex || constio] pa): em.

MSHRs

Jan Lemeire

All threads
Data l hit in L1?

L Writeback J

The Same Instruction is
executed on Multiple Threads
(SIMT)

width of pipeline: 8 — 32 —
192 - 128

Warp/wavefront execution

© Work items are sent into pipeline grouped in warp /wavefront

+ ALUs all execute the same instruction: Single Instruction,
Multiple Threads (SIMT)

+ 32 work items / 8 SPs => 4 cycles

Wavefront 1 Wavefront 2 Wavefront 3
SIMD Width
0 > | 32 1 — 5| 64
Add Add H;:H: Add
Thread ID 3 > | 40 1L S
Add Add |
16 > | 48 : — >
Add Add |}
24 H > | 56 !
Add [Add
Cycle 1 2 3 4 5 6 7 8 9 ...

GPU Programming
Jan Lemeire

Warp/wavefront execution

¢ Kernels proceeds to next instruction if all warps are in the pipeline
+ If 192 work items => 6 warps => 24 cycles needed
— pipeline has independent instructions => no stalling

Wavefront 6

Wavefront 1

Wavefront 2

32
Mul

SIMD Width
2 /\5— =
160 s| O 5
Add Mul
168 > | 8
Add Mul
176 S 16
Add Mul |1}
184 H > | 24
Add [Mul
Cycle 21 22 23 24 25 26 27 28

29 ...

GPU Programming
Jan Lemeire

Why do we have to consider

warps/wavefronts?

¢ Different branching of threads within a warp

incurs ‘lost cycles’ (see next section)
+ SIMT execution happens per warp/wavefront, in lockstep

¢ Memory access pattern of a warp should

be considered

+ Memory access also happens per warp

+ Not all access patterns can happen concurrently (see
further)

GPU Programming
Jan Lemeire

— Overview

1. GPUs for general purpose

2. GPU ‘threads’ executing kerne

3. &itmg kernels from host (

eag:_on n@eL& GE fG.I‘ChIt

Example of optimization process starting with a naive version

il

Step Cumulative
Time (222ints) Bandwidth gpeedup Speedup

Kernel 1:

interleaved addressing 8.054 ms 2.083 GB/s

with divergent branching

Kernel 2:

siinib e 3.456 ms 4.854 GBls 2.33x 2.33x
with bank conflicts

iyl L 1.722ms 9.741GB/s 2.01x 4.68x
Kernel 4:

pommen 0.965ms 17.377 GB/s 1.78x 8.34x
“K;;';ft'wi 0.536 ms 31.289 GB/s 1.8x 15.01x
b 0.381ms 43.996GB/s 1.41x 21.16x
Kernel 7: 0.268 ms 62.671 GB/s 1.42x 30.04x

multiple elements per thread

GPU Computing Performance

TN
/ \ .-
Problem/ ,-"'\
function Problem
APPs...

Inefficiency of codg in
the serial sense s

Algorithm/
implementatio

[] ’

nsufficient paraﬁeﬁfm

.
L]

3ranching of threads

Anti-parallel patterns
°" inherent to the problem

architecture

,

resource-

bound

. Thread block sizes, work
\ " per thread, ...

L]

L]
' Concurrent memory access
H
L]
L}

. Synchronization of threads

«. Dependence of instructions
" within a thread

APP= Anti-Parallel Pattern

Compute-bound versus

,». memory-bound

Peak
erformance

Performance)

overhead
[]

», Interms of idle or lost
" processor cycles

A. Peak Performance

oo | 15 G

' : Roofline model
| |
computations : 1 TeraFlops
| | '
B. Non-overlap
< -
I I Non-overlap factors
' >
| |
| |
: ' computations | : >
lwaiting point '
synchraonization point ‘
C. Anti-parallel interactions
< T

Anti-parallel patterns
> & model for latency hiding

computations >

branching e/

non-concurrent mem ory Qccess

1
amdahl J

General approach

s
W

Estimate a performance bound for your kernel

+ Compute bound: t, = #operations / #operations per
second

+ Data Cllwound: t, = # memory accesses / # accesses per
secon

+ Minimal runtime t;, = max(t, t,)
expressed by roofline model

¢ Measure the actual runtime

+ tactual - tmin + tdelta

¢ Try to account for and minimize t g,
+ Due to non-overlap of computation and communication
+ Due to anti-parallel patterns (APPs)
4+ Consult remedies for APPs

GPU Programming
Jan Lemeire

Anti-parallel Patterns

¢ Definition: Common parts of kernel code that work
against the available parallelism.
+ Can be inferred from the source code
4+ Map parts of the source to parallel overhead

¢ Systematic way to categorize performance topics
¢ Systematic way to optimize kernels

¢ PhD research of Jan G. Cornelis

Anti-parallelism results in sequential execution;
not all parallel resources are used

GPU Programming
Jan Lemeire

il
W

il
W

Latency Hiding
E Memory period
1 warp, without latency hiding

1L)BC e e e e ®mC e

. Computation period

<€

8 Computation + 8 Memory

2 warps running concurrently

2 2 2 2

<€ :
5 Computation + 4 Memory >

4 warps running concurrently: full latency hiding

GPU Programming
Jan Lemeire

Latency Hiding for Memory

Accesses

¢ Latency Hiding
+ During global to local memory copying
+ During local memory reads

¢ Keep multiprocessors busy with a huge amount of

threads
+ 1 multiprocessor can simultaneously execute multiple work
group of maximal 512/1024 work items
+ Is limited by amount of local and register memory needed
by each work item

+ Maximize occupancy= Number of warps running
concurrently on a multiprocessor divided by maximum

number of warps that can run concurrently

GPU Programming
Jan Lemeire

4 warps running concurrently

But only 2 concurrent memory transactions...

Idle cycles

2 Computation + 4 Memory

1st Memory period . 1st Computation period

L__ _] 2" Memory period I:I 2nd Computation period
GPU Programming
Jan Lemeire

Keep occupancy high

¢ Maximal warps: 24, maximal Work Groups (WGs): 8

8 WGs x 3 warps

1 1400 -

09
1200
08 >
_ 07" WGs x 5 warps 1000
[7)]
% 06 & ~.E.- 800 -
o
S o5 8 x 2 warps P4 g
S 04 . 1 WG, 13 warps |\ 600
=
03 "W, 3 400 - --SVM_Ver_1
02 8 WGs x 1 warps]
-#-SVM_Ver_1 W 200 -
01
4 16 36 64 100 144 196 256 324 400 484 4 16 36 64 100 144 196 256 324 400 484
Threads per work group Threads per work group

¢ Conclusion: in general, higher occupancy leads to a
better performance

GPU Programming
Jan Lemeire

APPO: AMDAHL

Insufficient parallelism

4 Processor needs sufficient work groups/work items to keep the
system busy, to keep all pipelines full; to get full performance.
+ WEe'll discuss Amdahl and the law attributed to him in more depth in
the lecture on Performance Analysis
+1f GPU is not fully used, additional work can be scheduled without
cost
+ See earlier slide with graph of runtime in function of the number
of threads for vector addition
4 the runtime does not increases as long as GPU is not full.
& function shaped as a staircase
4 only just before the jump to the next step the GPU is fully
busy

GPU Programming
Jan Lemeire

APP1:BRANCH

SIMT Conditional Processing

Ak
W

Ak
W

Ak
W

Ak
W

Unlike threads in a CPU-based program, SIMT programs cannot
follow different execution paths
4 All threads of a warp/wavefront are executing the same instruction

Ideal scenario:
<+ All GPU threads of a work group follow the same execution path
< All processors continuously active
If divergent paths within a warp/wavefront, the then- and else-

instructions are scheduled executed for all threads, but only executed for the
correct threads, dependent on the condition

4+ Program flow cannot actually diverge, a bit is used to enable/disable
processors based on the thread being executed (instruction predication)

Parallelism is reduced, impacting performance... (see later)

GPU Programming
Jan Lemeire

APP1:BRANCH

SIMT Conditional Processing

¢ Example: assume only one warp, one instruction in if-clause, one in
then-clause

+ 12 cyles in which 64 instructions are executed, 32 lost cycles

(66% usage)
Desactivated
instructions\(‘red)

0
If
8
If
16
If
Cycle
1 2 3 4 5 6 7 8 9 10 11 12

GPU Programming

Jan Lemeire

APP1:BRANCH

Branching

dh
w

dh
w

dh
w

dh
w

Threads of the same warp/wavefront (32/64 threads) are run
in lockstep

For example:
if (x < 5) y =5; else y = -5;

- SIMD performs the 3 steps
4+ y = 5; is only executed by threads for which x < 5
+y = -5; is executed by all others

Warp branch divergence decreases performance: cycles are lost

+ Possible solution: statically or dynamically reorder threads such
that all threads of a warp follow same branch

No latency hiding possible

GPU Programming
Jan Lemeire

APP2:MEM

Global memory

¢ Memory coalescing for warps

+ Accessed elements belong to same aligned segment
+ Older cards: sequential threads access sequential locations
+ Newer cards: not necessary anymore

¢ Global memory is a collection of partitions

+ 200 series and 10 series NVIDIA GPUs have 8 partitions of
256 bytes wide

+ Partition camping when different thread Work groups access
the same partition

GPU Programming
Jan Lemeire

12) |11 20/

25

Memory: linear addressing, 2D layout

BEEEH

B

333338

- (52)-(56)-(60
@‘: %
al B \

. (60) Memory
@%) 488 (92 T8/ o) 1y Controllers:
@? REEE EEEE EEE R RN B | Can handle 1
) divided into banks request at a

|!||! time

SoDdBD

GPU Programming
Jan Lemeire

APP2:MEM

Local/Shared memory

¢ Local/Shared memory is divided into banks
¢ Each bank can service one address per cycle

¢ Multiple simultaneous accesses to a bank
result in a bank conflict

Conflicting accesses are serialized

Cost = max # simultaneous accesses to single bank

¢ No bank conflict:
all threads of a half-warp access different banks,

all threads of a half-warp access identical address,
(broadcast)

'II-
4

'II-
4

'II-
4

'II-
4

GPU Programming
Jan Lemeire

APP2:MEM

Bank Addressing Examples

No Bank Conflicts No Bank Conflicts
Linear addressing Random 1:1
stride of 1 Permutation

Thread O > Thread O

Thread 1 > Thread 1

Thread 2 > Thread 2 v >

Thread 3 > Thread 3 ‘

Thread 4 > Thread 4

Thread 5 > Thread 5

Thread 6 > Thread 6 >

Thread 7 > Thread 7
o]
o]
s A

Thread 15 > Thread 15

GPU Programming
Jan Lemeire

APP2:MEM

Bank Addressing Examples

2-way Bank Conflicts 8-way Bank Conflicts
Linear addressing Linear addressing
stride of 2 stride of 8

Thread O
Thread 1
Thread 2
Thread 3 §
Thread 4

Thread 5 3

Thread O
Thread 1

Thread 2 ~
Thread 3 ~
Thread 4 '

Thread 8 /

Thread 9
Thread 10
Thread 11

GPU Programming
Jan Lemeire

Thread 6 >

Thread 7

Thread 15

APP3:SYN

Synchronization

¢ Barrier synchronization within a work group
+ barrier(CLK_LOCAL_MEM_FENCE);
+ Work items that reached the barrier must wait

s

¢ Global synchronization should happen across kernel calls
+ Work groups that have completed

¢ Greater instruction dependency
+ => less potential for latency hiding

¢ Thus: try to minimize synchronization

GPU Programming
Jan Lemeire

Lost cycles due to

synchronization

Additional delay

Synchronization Synchronization
(a) (b)
: 1st Memory period . 1t Computation period
. _ _ ' 2m Memory period (| 2 Computation period

GPU Programming
Jan Lemeire

Tree traversal

¢ Each work item follows a different path in a tree,
from root to leave.
+ While-loop

¢ If not all leaves are at the same depth: the highest
depth determines the execution time of a
warp/wavefront

¢ Imbalances in trees result in many lost cycles

GPU Programming
Jan Lemeire

APP4:DEP

Dependent Code

¢ Well-known fact: latency is hidden by launching other
threads

¢ Less-known fact: one can also exploit instruction level
parallelism in one thread.
+ Data level parallelism in one thread.

¢ Anti-parallel pattern?
+ Dependent instructions can not be parallelized.
+ Dependent memory accesses can not be parallelized.

GPU Programming
Jan Lemeire

AMD’s static kernel analyzer

it Hele

File Edit Help

—Source Code —Object Code N
Function Im ;I | Compile I Format |Radeon HD 5870 (Cypress) Assembly LI
1l inline void waveReduee(_ loczl wvolatile ELT « Source type IODEHCL ;I 1; ————- Disassembly --———————————----— -
3 §if WGESIZE >= 128 il 2 00 RLU: BDDR(3Z) CNT(17) ECRCHEO(CBO:O0-15[|
3 if {(1lid < &4) { 3 O w: LSHL , RO.m, 4 =
4 shared w[lid] += shared v[lid + &4 ~OpenCL Compiler 4 t: ADD_INT RO.w, Rl.x, EKECO
3 fendif 8 - - 5 1 y: ADD_INT R0.y, ECL[1].x,
5 = Options I'ﬂ"”'a""d'l 6 t: MULLO_INT , Rl.x, ECO
7 gif WESIZE == &4 = 7 Z y: ADD INT Rlo.y, DVli.y, 4
8 if (1lid < 3Z) { a8 =: ADD_TINT . RO_x, BS1
3 fendif] w: ADD INT Rlo.w, PVl.y, 1
10 10 t: ADD_INT 20.z, DVli.y, &
11 shared w[lid] += shared w[lid + 32 11 3 =z ADD INT , PVi.z, EC
z shared w[lid] += shared w[lid + 1&'— 1z 4 y: LSHL ., BVa.xm, 4
13 shared_w([1lid] += shared_w[lid + &] 1z 5 =z ADD INT RZ.=, EKCLI[O0].=x,
14 shared w[lid] += shared w[lid + 4] 14 & =: LSHR RBl.x, IVs.z, 4
15 shared w[lid] += shared w[lid + 2] 15 01 TEX: RDDR(ZE8) CNT(1)
18 shared w[lid] += shared_w([lid + 1] 18 7 WEEICH R1, Rl.x, fecl75 FORMAT(Z
17 1 17 FETCH_TYPE(NO INDEX OFFSET)
18 } 18 02 ALU: RDDR(4%) CNT(3)
19 —Macro Definitions 13 5 x: LDS_WRITE REL (cffset: 1) _
b e — 20 % x: LDS_WRITE REL (offset: 1) _
Z1 // - lead and directly sum elements from g Symbol | Value 21 10 =x=: GROUP_BARRIER
2z 7/ local memory (balances ALU:Fetch) WGSIZE 256u 22 03 ALU: ADDR(5Z) CHT(Z7)
23 // - reduce in local memory SUMOMNLOAD Su 23 11 =: LDS_HERDZ RET QARE, Rl0.y, =
24 // - write back to host memory ELTYPE uint4 24 ¥: ADD INT , Rz.z, 402
25 // | reguires a warp/wavefront size of a2t | 25 zZ D.DD_INT . RZ_z, 815
28 /7 synchronization for work items within i8 w: ADD INT , Rz_=z, l&z
27 _ kernel _ sttribute_ ((reqd work group_si: 27 t: ADD INT To0.y, RZ.z, 1:zZ:z
28 void main(_ globzl ELTY¥PE* source, _ local 28 1z =x: LDS_RERDZ RET QARB, R10.w, R
29 const size_t gid = get_global_idid); = 25 ¥: LSHR Rl.y, DBV1l.y, 4 _
“om i T i J— JEpp— i

—Compiler Statistics (Using CAL 11.7) -

Mame | GPR | ScratchReg | Min | Max | Avg | ALU | Fetch | Write | Est Cydes | ALU:Fetch | BotteMedk | Thread\Clodk | Throughput |
Radeon HD 5870 11 o 320 1110 705 111 g 1 7.05 2,20 ALU Ops 4,54 3853 M Threads\Sec
Radeon HD 5770 11 o0 320 1110 F05 111 g 1 7.05 2,20 ALU Ops 2,27 1929 M Threads\Sec
Radeon HD 5670 11 0 6,00 2220 1410 111 g 1 14,10 441 ALUOps 0,57 440 M Threads\Sec
Radeon HD 5450 11 0 1500 5550 3525 111 3 1 33,25 3.81 ALUOps 0.11 74 M Threads\Sec
Radeon HD 6370 12 o 275 95 6,17 115 3 1 6.17 2.31 ALUOps 5.19 4566 M Threads'Sec
Radeon HD 6370 11 0 457 15856 10,07 111 3 1 10,07 2,20 ALU Ops 3.18 2860 M Threads\Sec
Radeon HD 6670 11 0 500 1850 11.75 111 3 1 11,75 441 ALU Ops 1.36 1089 M Threads\Sec
Radeon HD 6450 11 0 1500 5550 3525 111 3 1 35.25 3.81 ALUOps 0,45 340 M Threads\Sec

EE—

AMD’s dynamic profiler

0000

| A P

IIIllllllllnl|lllbllll|IIII.>V
157,428

31485 82971

94 457 125,943

(LY

lllll|lll|ll||
188914 220400

251,885 283371

T IIIIIll-|3I71ID3l3|llI-lllllllllllIlIIl.llllllllllrllllllllll

314857 345342

377826 409314

440799 472285

11 e

503.771

|| =

535756 BEA74Z

595.228 829713

| =

9FD70)
|

View Options

[¥] Show Kernel Dispatch [¥] Show Data Transfer Show Zero Column
Method ExecutionOrder ThreadIlD Callindex GlobalWorkSize GroupWorkSize Time LocalMemSize DataTransferSize ScratchRegs FCStacks Wavefronts ALUlnsts Fetchlr
WriteBufferAsynch | 1 3432 80 31,87611 65536,00
main_ll Cypressl | 2 3432 89 (524288 1 1} /{256 1 1} 0,23722 4096 0 1 £192,00 5125 8,0
ReadBuffer 3 3492 95 016278 0,06
main_ki_Cypressi| 4 3492 9% C26 1 1 (6 1 1) 001057 4096 K : | 400 5125 | s
ReadBuffer |8 3492 102 | 0,22911 | 006 \ [| \

GPU Programming

Jan Lemeire

Intel Xeon Phi

Intel’s Xeon Phi coprocessor =

Intel’s response
to GPUs...

60 cores

~FOND M ~MNAD M-

UK ML LUK WV i

~OND MO DN M
'}

RAM

ring network

10/13/2017
1ah9E sERter technology

Intel’s Xeon Phi’s core

Thread scheduler

L1 TLB
and 32KB
Code Cache | TLB Miss
4 hardware , s
Decode & uCode _ 512KB
threads ; TLB Miss L2 Cache

I Handler

Pipe 0 Pipe 1 e

VPU RF I X87 RF | Scalar RF

VPU X87 | ALU O | ALU 1 To On-Die Interconnect
512b SIMD

TLB Miss

L1 TUB and 32KB Data Cache ‘ >
DCache Miss

512-bit
Vector unit
(SIMD)

Usage of the coprocessor =

¢ As MPI-node

¢ Off-load from main processor
¢ As standalone processor

¢ Common c-programming
+ Pthreads
+ Openmp
+ Intel threading building blocks

1ahGE sEREr technology

Vector processors (SIMD)

128-bit vector registers

71812]-
31315 Instructions can be performed at once

on all elements of vector registers
10{5]7]|-

¢ Has long be viewed as the solution for high-
performance computing

+ Why always repeating the same instructions
(on different data)? => just apply the
instruction immediately on all data

¢ However: difficult to program
¢ Is SIMT (OpenCL) a better alternative??

Jan Lemeire

Vectorization needed for peae

inside”
XEON PHI”

performance

ASM code (addps) Programming control

_m512 register

Vector Intrinsics (mm_add_ps()) .
~mmb512 add operations

SIMD Intrinsic Class (F32vec4 add)

SIMD Vectorization (#pragma simd)

Auto-vectorization Hints (#pragma ivdep)

Automatic Vectorization Ease of use

13/10/2017 '
1ahGE sEREr technology

Auto-vectorization

Coewaeleldknc-2;
icc —wec-reporttb -mmic —Std 99 fupenmp -03

TE= L,

test,
test,
test,
test,
test,
test,
test,
test,
test,
test,
test,
test,
test,
test,
test,
test,
test,
test,

S

=y

cl36);
cla6):
clhab);
cl36);
clhab);
cl36);
clhab):
cl36);
cla6):
cl36);
cld6);
clhab);
cl36);
clhaG6):
cl36);
cla6):
cl3l)

ct9):

[N |

(ool
ool .
ool .,
(ool
ool .,
(ool
ool .,
(ool
ool .
ool .,
(col,
ool .,
(ool
ool .
(ool
ool .

ool .,
[col .

“/Projectsfadhd/simplet iopsg 2

AN

<
<
<
<
<
N
=N
N
<
<
4
<
N
<
N
<
2

Faarm =Ii_|

remark:
remark:
Femarlk:
remark:
Femarlk:
remark:
remark:
remark:
remark:
remark
remark:
Femarlk:
remark:
remark:
remark:
==
rerark:

21 remar.

1T ———

S

uectur
vector
vectos
Ve or
vecto
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
coL Lar

Lo wectorized:
dependence:
dependenaoas
aependence;
dependence:
dependence:
depenaeiic
dependence:
dependence:
dependence:
dependence:
dependence:
dependence:
dependence:
dependence:
dEﬂﬁnHﬂ““”'
dependence:
loop was not vectorized:

tast. o

assumed

assumed
gssumed
assumed

- — = =

assumed
assumed
assumed
assumed
assumed
assumed
assumed
assumed

555umed

CLAGS="-vec-reporth -mmic”

-lrt -o test

FLOW dependence between

[N u:'_lclll_lﬁ_ll-_--_

FLOW dependence between
AHTI dependence between

OUTPUT
aLTrolLT
OUTPUT
QUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
QUTPUT
OUTPUT

Sl Tl T

QUTPUT

dependen:e

dependen:e
dependence
dependence
dependence
dependence
dependence
dependence
dependence

dependence

not inner loop.

loop was not wectorized: existence of wector dependence

CC=icc make -B

existence of wector dependence.

line
totucen line
L7

line
between =23
o Leen a. 25
between a. 2?5
between a. 25
between a. 2?5
between a. 25
between a. 25
between a. 25
between a. 25
between a. 25
between a. 25
betwee, o b

(e

SIMD pragma to indicate =+

wold dflopsidouble = restrict a) t
const double © = 1.;
const double = 9
#pragma simd
(long long i = B; 1 < niterations; 1 += 1lb) ¢

In 1
=1

ald]l = alH] = = +
alll = all]l = « + c;
alZ] = ald]l = = + C;
aldl = alal = = + C;
ald]l = ald]l = = + o
al5] = al5] = = + C;
algl = ale]l = & + C;
al7]l = al?]l = = +
al8l = ald]l = « + c;
al9] = al9] = & + C;
alld]l = allBd]l = = + C;
allll = allll = = + C;
all2]l = alli]l = = + C;
all13] = all3l = = +
alld]l = alld]l = = + C;
all5] = all5] = =» + C;

Successful vectorization

rdewael e@knc-2: " /Projects/adhd/simpleflops/simpleflops$ CFLAGS="-vec-re
icc -wec-reportt -mmic -std=c99 -03 -fopermp -funroll-loops -wvec-report
test.cio4d): (col. 5 remark: wectorization support: reference sa has un
test.cidd): (col. 5) roiag k) wvectorization suppor coownaligned access us
test.ci(83): (col. dywrcemark: LOOP LAS UEETDEIEED

test.cl7b): (col. 3) remark. 1oop woovos veowur 1zed: not inmer loop.
test.c(7d): (col. &) remark: lonn wssemctewastarized: not inner loop.
test.c(79): (col. 4) rem=~%: SIMD LOOP WAS YECTORIZEU:

test.c(13): (col. 2 rimark: SIMD LOOP LIAS WECTORIZED.

test.c(38): (col. 20 remeck: SIMD LOOP LIAS WECTORIZED.

e ——

SIMD (vectorisation)

Versus

SIMT (Single Instruction Multiple Thread
— OpenCL/CUDA)

— Overview

1. GPUs for general purpose

2. GPU ‘threads’ executing kern',

3. ﬁitmg kernels from host (GB

e%_on n@eL& G }hit

.

w«-;},/ f' ntS

r o -
)}

ﬁ. ; - " e

y -
/ -
-)

,
y
W . .'

:..H ,

Link 1: white paper

GPU Strategy

¢ Don't write explicitly threaded code
4+ Compiler handles it => no chance of deadlocks or race conditions

¢ Think differently: analyze the data instead of the algorithm.

¢ In contrast with modern superscalar CPUs: programmer writes
sequential code (single-threaded), processor tries to execute it
in parallel, through pipelining etc. (instruction parallelism). But
by the data and resource dependencies more speedup cannot
be reached with > 4-way superscalar CPUs. 1.5 Instructions
per cycles seems a maximum.

¢ Programming models have to make a delicate balance between
opacity (making an abstraction of the underlying architecture)
and visibility (showing the elements influencing the
performance). It's a trade-off between productivity and
implementation efficiency.

GPU Programming
Jan Lemeire

F
W

F
W

F
W

F
W

F
W

F
W

Results

Performance doubling every 6 months!
1000s of threads possible!

High Bandwidth
+ PCI Express bus (connection GPU-CPU) is the bottleneck

Enormous possibilities for latency hiding

Matrix Multiplication 13 times faster on a standard
GPU (GeForce 8500GT) compared to a state-of-the

art CPU (Intel Dual Core)
+ 200 times faster on a high-end GPU, 50 times if quadcore.

Low threshold (especially Nvidia’s CUDA):

+ C, good documentation, many examples, easy-to-install,
automatic card detection, easy-compilation

GPU Programming
Jan Lemeire

How to get maximal performance,

or call it ... limitations

¢ Create many threads, make them
‘aggressively’ parallel

¢ Keep threads busy in a warp

¢ Align memory reads
+ Global memory <> Shared/local memory
+ Using shared memory

¢ Limited memory per thread

¢ Close to hardware architecture
+ Hardware is made for exploiting data parallelism

GPU Programming
Jan Lemeire

Disadvantages

¢ Maintenance...
¢ CUDA = NVIDIA

4+ Alternatives:

- OpenCL: a standard language for writing code for GPUs and
multicores. Supported by ATI, NVIDIA, Apple, ...

— RapidMind’s Multicore Development, supports multiple
architectures, less dependent on it

- AMD, IBM, Intel, Microsoft and others are working on standard
parallel-processing extensions to C/C++

— Intel’s Xeon Phi: combining processing power of GPUs with
programmability of x86 processors Links in Scientific Study section

¢ CUDA/OpenCL promises an abstract, scalable

hardware model, but will it remain true?
Link 1: white paper

GPU Programming

Jan Lemeire

Heterogeneous Chip Designs

¢ Augment standard CPU with attached

processors performing the compute-intensive
portions:

+ Graphics Processing Unit (GPU)

+ Field Programmable Gate Array (FPGA)

+ Xeon Phi coprocessor

+ Cell processor, designed for video games

GPU Programming
Jan Lemeire

Go parallel: take decisions now based

on expectations of the future.

¢ But future is unclear...
+ Parallel world is evolving.

¢ What do Intel, NVIDIA & Riverside tell us?

+ Workshop in Ghent, May 16 2011: “Challenges Towards

Exascale Computing”

¢ They agree on:
- Heterogeneous hardware is the future
Data movement will determine the cost (power & cycles)
Power consumption & Programmability are the challenges
- Commodity products & programming languages

- Hope for a programming model expressing parallelism and
locality

GPU Programming
Jan Lemeire

S H S b b

The future... 11

¢ They do not agree on:

+ Intel sticks to x86 architecture
- That’s what programmers know & they won’t change
- Intel platforms have to support legacy code
— New architecture: Knights Ferry & Knights Corner (cf Larrabee)

- GPU: stream processor with high throughput, latency is
hidden by massively multithreading

- CPU: one-thread processor with low latencies

Riverside sees reconfigurable hardware as the sole solution:
no data movement necessary.

- NVIDIA envisages that the CPU will still be on board... in a
corner of the chip ;-)

GPU Programming
Jan Lemeire

.

. .

.

