
Message-passing Parallel Processing

The Message-Passing
Paradigm

Parallel Systems Course: Chapter III

Jan Lemeire

Dept. ETRO

October - November 2016

Jan Lemeire 2Pag. / 93
Message-passing Parallel Processing

Overview

1. Definition

2. MPI

Efficient communication

3. Collective Communications

4. Interconnection networks

Static networks

Dynamic networks

5. End notes

Jan Lemeire 3Pag. / 93
Message-passing Parallel Processing

Overview

1. Definition

2. MPI

Efficient communication

3. Collective Communications

4. Interconnection networks

Static networks

Dynamic networks

5. End notes

Jan Lemeire 4Pag. / 93

Message-passing paradigm

Partitioned address space
Each process has its own exclusive

address space

Typical 1 process per processor

Only supports explicit parallelization
Adds complexity to programming

Encourages locality of data access

Often Single Program Multiple Data (SPMD) approach
The same code is executed by every process.

Identical, except for the master

loosely synchronous paradigm: between interactions (through
messages), tasks execute completely asynchronously

Message-passing Parallel Processing

KUMAR p233

Jan Lemeire 5Pag. / 93

Clusters

Message-passing

Made from commodity parts
or blade servers

Open-source software available

Message-passing Parallel Processing

Jan Lemeire 6Pag. / 93

Computing Grids

Provide computing resources as a service
Hiding details for the users (transparency)

Users: enterprises such as financial services, manufacturing,
gaming, …

Hire computing resources, besides data storage, web
servers, etc.

Issues:
Resource management, availability, transparency,
heterogeneity, scalability, fault tolerance, security, privacy.

Message-passing Parallel Processing

PPP 305

Jan Lemeire 7Pag. / 93

Cloud Computing, the new hype

Internet-based computing, whereby shared
resources, software, and information are provided to
computers and other devices on demand

Like the electricity grid.

Message-passing Parallel Processing

Jan Lemeire 8Pag. / 93

Messages…

The ability to send and receive messages is
all we need

void Send(message, destination)

char[] Receive(source)

boolean IsMessage(source)

But… we also want performance!
More functions will be provided

Message-passing Parallel Processing

Jan Lemeire 9Pag. / 93

Message-passing

Message-passing Parallel Processing

Jan Lemeire 10Pag. / 93
Message-passing Parallel Processing

Overview

1. Definition

2. MPI

Efficient communication

3. Collective Communications

4. Interconnection networks

Static networks

Dynamic networks

5. End notes

Jan Lemeire 11Pag. / 93

MPI: the Message Passing Interface

A standardized message-passing API.

There exist nowadays more than a dozen
implementations, like LAM/MPI, MPICH, etc.

For writing portable parallel programs.

Runs transparently on heterogeneous systems
(platform independence).

Aims at not sacrificing efficiency for genericity:

encourages overlap of communication and
computation by nonblocking communication calls

Message-passing Parallel Processing

KUMAR Section 6.3PPP Chapter 7LINK 1

Jan Lemeire 12Pag. / 93
Message-passing Parallel Processing

Replaces the good old PVM (Parallel Virtual Machine)

Jan Lemeire 13Pag. / 93

Fundamentals of MPI

Each process is identified by its rank, a counter
starting from 0.

Tags let you distinguish different types of messages

Communicators let you specify groups of processes
that can intercommunicate

Default is MPI_COMM_WORLD

All MPI routines in C, data-types, and constants are
prefixed by “MPI_”

We use the MPJ API, an O-O version of MPI for java

Message-passing Parallel Processing

LINK 2

Jan Lemeire 14Pag. / 93

The minimal set of MPI routines

MPI_Init Initializes MPI.

MPI_Finalize Terminates MPI.

MPI_Comm_size Determines the number of processes.

MPI_Comm_rank Determines the label of calling process.

MPI_Send Sends a message.

MPI_Recv Receives a message.

MPI_Probe Test for message (returns Status object).

Message-passing Parallel Processing

Jan Lemeire 15Pag. / 93

Counting 3s with MPI

Message-passing Parallel Processing

master

partition array

send subarray to
each slave

receive results
and sum them

slaves

receive subarray

count 3s

return result

Different program on master and slave

We’ll see an alternative later

Jan Lemeire 16Pag. / 93

int rank = MPI.COMM_WORLD.Rank(); int size = MPI.COMM_WORLD.Size(); int nbrSlaves = size - 1;

if (rank == 0) { // we choose rank 0 for master program

// initialise data

int[] data = createAndFillArray(arraySize);

// divide data over slaves

int slavedata = arraySize / nbrSlaves; // # data for one slave

int index = 0;

for (int slaveID=1; slaveID < size; slaveID++) {

MPI.COMM_WORLD.Send(data, index, slavedata + rest, MPI.INT, slaveID, INPUT_TAG);

index += slavedata;

}

// slaves are working...

int nbrPrimes = 0;

for (int slaveID=1; slaveID < size; slaveID++){

int buff[] = new int[1]; // allocate buffer size of 1

MPI.COMM_WORLD.Recv(buff, 0, 1, MPI.INT, slaveID, RESULT_TAG);

nbrPrimes += buff[0];

}

} else { // *** Slave Program ***

Status status = MPI.COMM_WORLD.Probe(0, INPUT_TAG);

int[] array = new int[status.count]; // check status to know data size

MPI.COMM_WORLD.Recv(array, 0, status.count, MPI.INT, 0, INPUT_TAG);

int result = count3s(array); // sequential program

int[] buff = new int[] {result};

MPI.COMM_WORLD.Send(buff, 0, 1, MPI.INT, 0, RESULT_TAG)

}

MPI.Finalize(); // Don't forget!!

Message-passing Parallel Processing

Jan Lemeire 17Pag. / 93

MPJ Express primitives

void Comm.Send(java.lang.Object buf, int offset,
int count, Datatype datatype, int dest, int tag)

Status Comm.Recv(java.lang.Object buf, int offset,
int count, Datatype datatype, int source, int tag)

Message-passing Parallel Processing

Java array

http://parallel.vub.ac.be/documentation/mpi/mpjExpress/javadocs/mpi/Comm.html
http://parallel.vub.ac.be/documentation/mpi/mpjExpress/javadocs/mpi/Datatype.html

Jan Lemeire 18Pag. / 93

Communicators

A communicator defines a communication domain - a set of
processes that are allowed to communicate with each other.

Default is COMM_WORLD, includes all the processes

Define others when communication is restricted to certain subsets
of processes

Information about communication domains is stored in
variables of type Comm.

Communicators are used as arguments to all message transfer
MPI routines.

A process can belong to many different (possibly overlapping)
communication domains.

Message-passing Parallel Processing

Jan Lemeire 19Pag. / 93

Example

Message-passing Parallel Processing

A process has a specific rank in each communicator it
belongs to.

Other example: use a different communicator in a
library than application so that messages don’t get
mixed

KUMAR p237

Jan Lemeire 20Pag. / 93

MPI Datatypes

Message-passing Parallel Processing

MPI++ Datatype C Datatype Java

MPI.CHAR signed char char

MPI.SHORT signed short int

MPI.INT signed int int

MPI.LONG signed long int long

MPI.UNSIGNED_CHAR unsigned char

MPI.UNSIGNED_SHORT unsigned short int

MPI.UNSIGNED unsigned int

MPI.UNSIGNED_LONG unsigned long int

MPI.FLOAT float float

MPI.DOUBLE double double

MPI.LONG_DOUBLE long double

MPI.BYTE byte

MPI.PACKED

Jan Lemeire 21Pag. / 93

User-defined datatypes

Message-passing Parallel Processing

Specify displacements and types => commit

Irregular structure: use DataType.Struct

Regular structure: Indexed, Vector, …

E.g. submatrix

Alternative: packing & unpacking via buffer

Jan Lemeire 22Pag. / 93

Packing & unpacking

Message-passing Parallel Processing

From objects and pointers to a linear

structure… and back.

Example:

tree

Jan Lemeire 23Pag. / 93

Inherent serialization in java

For your class: implement interface Serializable

No methods have to be implemented, this turns on automatic
serialization

Example code of writing object to file:

Message-passing Parallel Processing

public static void writeObject2File(File file, Serializable o)

throws FileNotFoundException, IOException{

FileOutputStream out = new FileOutputStream(file);

ObjectOutputStream s = new ObjectOutputStream(out);

s.writeObject(o);

s.close();

}

Add serialVersionUID to denote class compatibility

private static final long serialVersionUID = 2;

Attributes denoted as transient are not serialized

Jan Lemeire 24Pag. / 93
Message-passing Parallel Processing

Overview

1. Definition

2. MPI

Efficient communication

3. Collective Communications

4. Interconnection networks

Static networks

Dynamic networks

5. End notes

Jan Lemeire 25Pag. / 93

Message-passing

Message-passing Parallel Processing

Jan Lemeire 26Pag. / 93

Non-Buffered Blocking
Message Passing Operations

Message-passing Parallel Processing

Handshake for a blocking non-buffered send/receive operation.

There can be considerable idling overheads.

Jan Lemeire 27Pag. / 93

Non-Blocking communication

With support for overlapping communication with computation

Message-passing Parallel Processing

Jan Lemeire 28Pag. / 93

With HW support: communication overhead is
completely masked (Latency Hiding 1)

Network Interface Hardware allow the transfer of messages
without CPU intervention

Message can also be buffered
Reduces the time during which the data is unsafe

Initiates a DMA operation and returns immediately

– DMA (Direct Memory Access) allows copying data from one
memory location into another without CPU support (Latency
Hiding 2)

Generally accompanied by a check-status operation
(whether operation has finished)

Message-passing Parallel Processing

Non-Blocking
Message Passing Operations

Jan Lemeire 29Pag. / 93

Be careful!

Consider the following code segments:

Which protocol to use?

Blocking protocol
Idling…

Non-blocking buffered protocol
Buffering alleviates idling at the expense of copying overheads

Message-passing Parallel Processing

P0

a = 100;

send(&a, 1, 1);

a=0;

P1

receive(&a, 1, 0);

cout << a << endl;

Jan Lemeire 30Pag. / 93

Non-blocking buffered
communication

Message-passing Parallel Processing

Jan Lemeire 31Pag. / 93

Deadlock with blocking calls

Solutions

 Switch send and receive

at uneven processor

 Buffered send

 Use non-blocking calls
• Receive should use a different buffer!

 MPI built-in function: Send_recv_replace

Message-passing Parallel Processing

All processes

send(&a, 1, rank+1);

receive(&a, 1, rank-1);

KUMAR p246

All processes

If (rank % 2 == 0){

send(&a, 1, rank+1);

receive(&a, 1, rank-1);

} else {

receive(&b, 1, rank-1);

send(&a, 1, rank+1);

a=b;

}

Jan Lemeire 32Pag. / 93

Send and Receive Protocols

Message-passing Parallel Processing

The default (large messages)

The default (small messages)

Jan Lemeire 33Pag. / 93

MPI Point-to-point communication

Blocking
Returns if locally complete (<> globally complete)

Non-blocking
Wait & test for completion functions

Modes
Buffered

Synchronous: wait for a rendez-vous

Ready: no hand-shaking or buffering
– Assumes corresponding receive is posted

Send_recv & send_recv_replace
Simultaneous send & receive. Solves slide 31 problem!

Message-passing Parallel Processing

Jan Lemeire 34Pag. / 93
Message-passing Parallel Processing

Overview

1. Definition

2. MPI

Efficient communication

3. Collective Communications

4. Interconnection networks

Static networks

Dynamic networks

5. End notes

Jan Lemeire 35Pag. / 93

Collective Communication
Operations

Message-passing Parallel Processing

MPI provides an extensive set of functions for
performing common collective communication
operations.

Each of these operations is defined over a group
corresponding to the communicator.

All processors in a communicator must call these
operations.

For convenience & performance

Collective operations can be optimized by the library
by taking the underlying network into consideration!

KUMAR 260

Jan Lemeire 36Pag. / 93

Counting 3s with MPI bis

Message-passing Parallel Processing

All processes

allocate subarray

scatter array from master to subarrays

count 3s

reduce subresults to master

The same program on master and slave

Jan Lemeire 37Pag. / 93

public static int countPrimesPar(int[] data, String[] args) {

final int myRank = MPI.COMM_WORLD.Rank();

final int NBR_PROCESSES = MPI.COMM_WORLD.Size();

final int NBR_ELEMENTS_PER_PROCESS = data.length/NBR_PROCESSES;

final int NBR_REST_ELEMENTS = data.length%NBR_PROCESSES; // modulo.

int[] process_data = new int[NBR_ELEMENTS_PER_PROCESS]; // send buffer cannot be reused
in this MPI implementation...

// scatter

MPI.COMM_WORLD.Scatter(data, NBR_REST_ELEMENTS, process_data.length, MPI.INT , process_data, 0,
process_data.length, MPI.INT, 0);

// count 3s

int n = 0;

for (int value: process_data)

if (value == 3)

n++;

int[] send_buffer = new int []{n};

int[] recv_buffer = new int [1];

// reduce

MPI.COMM_WORLD.Reduce(send_buffer, 0, recv_buffer, 0, 1, MPI.INT, MPI.SUM, 0);

return recv_buffer[0];

}

Message-passing Parallel Processing

Jan Lemeire 38Pag. / 93

Optimization of Collective operations

Message-passing Parallel Processing

Jan Lemeire 39Pag. / 93

MPI Collective Operations

Message-passing Parallel Processing

Barrier synchronization in MPI:
int MPI_Barrier(MPI_Comm comm)

The one-to-all broadcast operation is:
int MPI_Bcast(void *buf, int count, MPI_Datatype

datatype, int source, MPI_Comm comm)

The all-to-one reduction operation is:
int MPI_Reduce(void *sendbuf, void *recvbuf, int

count, MPI_Datatype datatype, MPI_Op op, int

target, MPI_Comm comm)

Jan Lemeire 40Pag. / 93

MPI Collective Operations

Message-passing Parallel Processing

Jan Lemeire 41Pag. / 93

with
computations

Message-passing Parallel Processing

TOT HIER

Jan Lemeire 42Pag. / 60

Predefined Reduction Operations

Operation Meaning Datatypes

MPI_MAX Maximum C integers and floating point

MPI_MIN Minimum C integers and floating point

MPI_SUM Sum C integers and floating point

MPI_PROD Product C integers and floating point

MPI_LAND Logical AND C integers

MPI_BAND Bit-wise AND C integers and byte

MPI_LOR Logical OR C integers

MPI_BOR Bit-wise OR C integers and byte

MPI_LXOR Logical XOR C integers

MPI_BXOR Bit-wise XOR C integers and byte

MPI_MAXLOC max-min value-location Data-pairs

MPI_MINLOC min-min value-location Data-pairs

Message-passing Parallel Processing

Jan Lemeire 43Pag. / 93

Maximum + location

MPI_MAXLOC returns the pair (v, l) such that v is the

maximum among all vi 's and l is the
corresponding li (if there are more than one, it is
the smallest among all these li 's).

MPI_MINLOC does the same, except for minimum

value of vi.

An example use of the MPI_MINLOC and MPI_MAXLOC operators.

Message-passing Parallel Processing

Jan Lemeire 44Pag. / 93

Scan operation

Parallel prefix sum: every node got sum of previous
nodes + itself

Message-passing Parallel Processing

PPP 27

Jan Lemeire 45Pag. / 93
Message-passing Parallel Processing

Overview

1. Definition

2. MPI

Efficient communication

3. Collective Communications

4. Interconnection networks

Static networks

Dynamic networks

5. End notes

Jan Lemeire 46Pag. / 93

Interconnection Networks

Interconnection networks carry data between
processors and memory.

Interconnects are made of switches and links (wires,
fiber).

Interconnects are classified as static or dynamic.

Static networks consist of point-to-point
communication links among processing nodes and are
also referred to as direct networks.

Dynamic networks are built using switches and
communication links. Dynamic networks are also
referred to as indirect networks.

KUMAR 33-45

Message-passing Parallel Processing

Jan Lemeire 47Pag. / 93

Static and Dynamic
Interconnection Networks

Message-passing Parallel Processing

Jan Lemeire 48Pag. / 93

Important characteristics

Performance
Depends on application:

Cost

Difficulty to implement

Scalability
Can processors be added with the same cost

Message-passing Parallel Processing

Jan Lemeire 49Pag. / 93
Message-passing Parallel Processing

Overview

1. Definition

2. MPI

Efficient communication

3. Collective Communications

4. Interconnection networks

Static networks

Dynamic networks

5. End notes

Jan Lemeire 50Pag. / 93

Network Topologies: Completely
Connected and Star Connected Networks

(a) A completely-connected network of eight nodes;

(b) a star connected network of nine nodes.

Message-passing Parallel Processing

Jan Lemeire 51Pag. / 93

Completely Connected
Network

Each processor is connected to every other
processor.

The number of links in the network scales as O(p2).

While the performance scales very well, the
hardware complexity is not realizable for large
values of p.

In this sense, these networks are static counterparts
of crossbars (see later).

Message-passing Parallel Processing

Jan Lemeire 52Pag. / 93

Star Connected Network

Every node is connected only to a common
node at the center.

Distance between any pair of nodes is O(1).
However, the central node becomes a
bottleneck.

In this sense, star connected networks are
static counterparts of buses.

Message-passing Parallel Processing

Jan Lemeire 53Pag. / 93

Linear Arrays

Linear arrays: (a) with no wraparound links; (b) with

wraparound link.

Message-passing Parallel Processing

Jan Lemeire 54Pag. / 93

Network Topologies:
Two- and Three Dimensional Meshes

Two and three dimensional meshes: (a) 2-D mesh with no

wraparound; (b) 2-D mesh with wraparound link (2-D torus); and

(c) a 3-D mesh with no wraparound.

Message-passing Parallel Processing

Jan Lemeire 55Pag. / 93

Network Topologies:
Linear Arrays, Meshes, and k-d Meshes

In a linear array, each node has two neighbors,
one to its left and one to its right. If the nodes at
either end are connected, we refer to it as a 1D
torus or a ring.

Mesh: generalization to 2 dimensions has nodes
with 4 neighbors, to the north, south, east, and
west.

A further generalization to d dimensions has nodes
with 2d neighbors.

A special case of a d-dimensional mesh is a
hypercube. Here, d = log p, where p is the total
number of nodes.

Message-passing Parallel Processing

Jan Lemeire 56Pag. / 93

Hypercubes and torus

Construction of hypercubes from

hypercubes of lower dimension.

Torus (2D wraparound mesh).

Message-passing Parallel Processing

Jan Lemeire 57Pag. / 93

Super computer: BlueGene/L

IBM, No 1 in 2007
www.top500.org

65.536 dual core nodes
E.g. one processor dedicated to
communication, other to
computation

Each 512 MB RAM

US$100 miljoen

Now replaced by BlueGene/P
and BlueGene/Q

a BlueGene/L node.

Message-passing Parallel Processing

Jan Lemeire 58Pag. / 93

BlueGene/L communication
networks

(a) 3D torus (64x32x32) for standard

interprocessor data transfer

• Cut-through routing (see later)

(b) collective network for fast evaluation of

reductions.

(c) Barrier network by a common wire

Message-passing Parallel Processing

Jan Lemeire 59Pag. / 93

Network Topologies: Tree-Based Networks

Complete binary tree networks: (a) a static tree network; and (b)

a dynamic tree network.

Message-passing Parallel Processing

Jan Lemeire 60Pag. / 93

Tree Properties

p = 2d - 1 with d depth of tree

The distance between any two nodes is no more
than 2 log p.

Links higher up the tree potentially carry more
traffic than those at the lower levels.

For this reason, a variant called a fat-tree, fattens
the links as we go up the tree.

Trees can be laid out in 2D with no wire crossings.
This is an attractive property of trees.

Message-passing Parallel Processing

Jan Lemeire 61Pag. / 93

Network Topologies: Fat Trees

A fat tree network of 16 processing nodes.

Message-passing Parallel Processing

Jan Lemeire 62Pag. / 60

Network Properties
Diameter: The distance between the farthest two
nodes in the network.

Bisection Width: The minimum number of links
you must cut to divide the network into two equal
parts.

Arc connectivity: minimal number of links you
must cut to isolate two nodes from each other. A
measure of the multiplicity of paths between any
two nodes.

Cost: The number of links. Is a meaningful
measure of the cost.

However, a number of other factors, such as the
ability to layout the network, the length of wires,
etc., also factor into the cost.

Message-passing Parallel Processing

Jan Lemeire 63Pag. / 60

Static Network Properties

Network Diameter
Bisection

Width

Arc

Connectivity

Cost

(No. of links)

Completely-connected

Star

Complete binary tree

Linear array

2-D mesh, no wraparound

2-D wraparound mesh

Hypercube

Wraparound k-ary d-cube

Message-passing Parallel Processing

/

Jan Lemeire 64Pag. / 93

Message Passing Costs

The total time to transfer a message over a
network comprises of the following:

Startup time (ts): Time spent at sending and receiving
nodes (executing the routing algorithm, programming
routers, etc.).

Per-hop time (th): This time is a function of number of hops
and includes factors such as switch latencies, network
delays, etc.

Per-word transfer time (tw): This time includes all overheads
that are determined by the length of the message. This
includes bandwidth of links, error checking and correction,
etc.

KUMAR 53-60

Message-passing Parallel Processing

Jan Lemeire 65Pag. / 93

Routing Techniques

Passing a message from node

P0 to P3:

(a) a store-and-forward

communication network;

(b) and (c) extending the

concept to cut-through

routing. The shaded

regions: message is in

transit. The startup time of

message transfer is

assumed to be zero.

Message-passing Parallel Processing

Jan Lemeire 66Pag. / 60

Store-and-Forward Routing

A message traversing multiple hops is
completely received at an intermediate hop
before being forwarded to the next hop.

The total communication cost for a message of
size m words to traverse l communication links
is

In most platforms, th is small and the above
expression can be approximated by

Message-passing Parallel Processing

Jan Lemeire 69Pag. / 60

Cut-Through Routing

The total communication time for cut-through
routing is approximated by:

Identical to packet routing, however, tw is
typically much smaller.

th is typically smaller than ts and tw. Thus,
particularly, when m is large:

Message-passing Parallel Processing

Jan Lemeire 70Pag. / 93

Routing Mechanisms
for Interconnection Networks

Routing a message from node Ps (010) to node Pd (111) in a three-

dimensional hypercube using E-cube routing.

KUMAR 64

Message-passing Parallel Processing

Jan Lemeire 71Pag. / 93

A broadcast in a Hypercube

Message-passing Parallel Processing

KUMAR 156

for(int d: dimensions)

if (all bits with index > d are 0)

if (dth bit == 0)

send message to (flip dth bit)

else

receive message from (flip dth

bit)

Message from node 0 to all others: d steps

Reduce operation is the opposite…

Jan Lemeire 72Pag. / 93

Cost of Communication Operations

Broadcast on hypercube: log p steps
With cut-through routing: Tcomm=(ts+twm).log p

All-to-all broadcast (full duplex links)
Hypercube: log p steps

Linear array: p-1 steps

ring: p/2 steps

2D-Mesh: 2p steps

Scatter and gather: similar to broadcast

Circular q-shift: send msg to (i+q)mod p
Mesh: maximal p/2 steps

In a hypercube: embedding a linear array

Message-passing Parallel Processing

Jan Lemeire 73Pag. / 93
Message-passing Parallel Processing

All-to-all

personalized

communication

on hypercube

KUMAR

Jan Lemeire 74Pag. / 93

Embedding a Linear
Array into a Hypercube

Gray code problem:

arrange nodes in a ring

so that neighbors only

differ by 1 bit

(a) A three-bit reflected

Gray code ring

(b) its embedding into a

three-dimensional

hypercube.

KUMAR 67

Message-passing Parallel Processing

Jan Lemeire 75Pag. / 93

Application of Gray code

To facilitate error correction in digital
communications

The problem with natural binary codes is that, with
real switches, it is very unlikely that switches will
change states exactly in synchrony

transition from 011 (3) to 100 (4) might look like
011 - 001 — 101 — 100

For receiver it is unclear whether 101 is send or not…

Solution: use Gray code

Message-passing Parallel Processing

http://en.wikipedia.org/wiki/Error_correction
http://en.wikipedia.org/wiki/Binary_numeral_system

Jan Lemeire 76Pag. / 93
Message-passing Parallel Processing

Overview

1. Definition

2. MPI

Efficient communication

3. Collective Communications

4. Interconnection networks

Static networks

Dynamic networks

5. End notes

Jan Lemeire 77Pag. / 93

Dynamic networks: Buses

Bus-based interconnect

Message-passing Parallel Processing

Jan Lemeire 78Pag. / 93

Dynamic Networks: Crossbars

A crossbar network uses an p×m grid of switches to

connect p inputs to m outputs in a non-blocking manner.

Message-passing Parallel Processing

Processing elements

P
r
o
c
e
s
s
in

g
 e

le
m

e
n

ts

Jan Lemeire 79Pag. / 93

Multistage Dynamic Networks

Crossbars have excellent performance
scalability but poor cost scalability.

The cost of a crossbar of p processors grows as O(p2).

This is generally difficult to scale for large values of p.

Buses have excellent cost scalability, but
poor performance scalability.

Multistage interconnects strike a compromise
between these extremes.

Message-passing Parallel Processing

Jan Lemeire 80Pag. / 93

The schematic of a typical multistage interconnection network.

Multistage Dynamic Networks

Message-passing Parallel Processing

Processors

Jan Lemeire 81Pag. / 93

An example of blocking in omega network: one of the messages

(010 to 111 or 110 to 100) is blocked at link AB.

Multistage Dynamic Networks

An Omega

network is based

on 2×2 switches.

Message-passing Parallel Processing

Jan Lemeire 82Pag. / 60

Evaluating Dynamic
Interconnection Networks

Network Diameter
Bisection

Width

Arc

Connectivity

Cost

(No. of links)

Crossbar

Omega Network

Dynamic Tree

Message-passing Parallel Processing

1 p log p

Jan Lemeire 83Pag. / 60

Recent trend: networks-on-chip

Many-cores (such as cell processor)

Increasing number of cores

bus or crossbar switch become infeasible

specific network has to be chosen

When even more cores

scalable network required

Message-passing Parallel Processing

Jan Lemeire 84Pag. / 93

Memory Latency λ

Message-passing Parallel Processing

PPP 63

Memory Latency = delay required to make a
memory reference, relative to processor’s local
memory latency, ≈ unit time ≈ one word per
instruction

Jan Lemeire 85Pag. / 93
Message-passing Parallel Processing

Overview

1. Definition

2. MPI

Efficient communication

3. Collective Communications

4. Interconnection networks

Dynamic networks

Static networks

5. End notes

Jan Lemeire 86Pag. / 93

Choose MPI

Makes the fewest assumptions about the
underlying hardware, is the least common
denominator. It can execute on any
platform.

Currently the best choice for writing large,
long-lived applications.

Message-passing Parallel Processing

Jan Lemeire 87Pag. / 93

MPI Issues

MPI messages incur large overheads for each
message

Minimize cross-process dependences

Combine multiple message into one

Safety

Deadlock & livelock still possible…

– But easier to deal with since synchronization is explicit

Sends and receives should be properly matched

Non-blocking and non-buffered messages are more efficient
but make additional assumptions that should be enforced by
the programmer.

Message-passing Parallel Processing

Jan Lemeire 88Pag. / 93

MPI-3: non-blocking collective
communication operations

Start a collective operation

Proceed with some other stuff

Check whether collective has been finished

Hide communication behind useful computations

Message-passing Parallel Processing

Jan Lemeire 89Pag. / 93

MPI-2: also supports one-
sided communication

process accesses remote memory without
interference of the remote ‘owner’ process

Process specifies all communication parameters, for
the sending side and the receiving side

exploits an interconnect with RDMA (Remote DMA) facilities

Additional synchronization calls are needed to assure
that communication has completed before the
transferred data are locally accessed.

User imposes right ordering of memory accesses

Message-passing Parallel Processing

Jan Lemeire 90Pag. / 93

One-sided primitives

Communication calls
MPI_Get: Remote read.

MPI_Put: Remote write.

MPI_Accumulate: accumulate content based on predefined

operation

Initialization: first, process must create window to
give access to remote processes

MPI_Win_create

Synchronization to prevent concflicting accesses
MPI_Win_fence: like a barrier

MPI_Win_post, MPI_Win_start, MPI_Win_complete,

MPI_Win_wait : like message-passing

MPI_Win_lock, MPI_Win_unlock: like multi-threading

Message-passing Parallel Processing

Jan Lemeire 91Pag. / 93

Partitioned Global Address
Space Languages (PGAS)

Higher-level abstraction: overlay a single
address space on the virtual memories of the
distributed machines.

Programmers can define global data
structures

Language eliminates details of message passing, all
communication calls are generated.

Programmer must still distinguish between local and non-
local data.

Message-passing Parallel Processing

PPP 243

Jan Lemeire 92Pag. / 93

Parallel Paradigms

Message-passing Parallel Processing

Shared-
memory

architecture

Distributed-
memory

architecture

Direct,
uncontrolled

memory access

Controlled remote
memory access via

messages

MPI

Protection of
critical sections
(lock-unlock)

Start and end of
‘transactions’
(post-start-

complete-wait)

PThreads
PGAS

one-sided comm
Erlang

Jan Lemeire 93Pag. / 93

Supercomputers are like Formula 1

Do we need ever bigger supercomputers?

1. Always more expensive (> 108 euro)

2. Enormous power consumption (price =
equals to cost!)

3. Efficiency decreases (<5 %)

4. Which applications need this power?

Message-passing Parallel Processing

