
Parallel Systems: Introduction

Parallel Systems

Introduction

Jan Lemeire

Parallel Systems

September - December 2017

Principles of Parallel Programming, Calvin Lin & Lawrence Snyder, 

Chapters 1 & 2





Parallel Systems: Introduction



Parallel Systems: Introduction

September 14, 2015 



In faze 

In tegenfaze

Superpositie van signalen

UPDATE: August 14, 2017

Detection of a gravitional wave by 3 detectors, 

also by the European Virgo.

1.8 billion years ago, collision of black holes  

of 25 and 31 times the mass of the sun



Jan Lemeire 7Pag. / 72
7

The third pillar 
of the scientific world



Jan Lemeire 8Pag. / 72

Jan Lemeire (jan.lemeire@vub.ac.be)

Civil Engineer - elektronics, 1994, VUB

+ additional masters in computer sciences (1995)

Worked for 4 year in the private sector, 2 IT-consultancy companies

2000-2007: did PhD at the VUB as assistant

Thaught practica informatics

Since 2008: professor at VUB

Course ‘Parallel systems’ in the masters

Since 2011: ‘Informatics’ first year bachelors engineer

Since october 2013: teaching to engineers in industrial sciences

Computer architecture, electronics, informatics

Research topics: parallel processing, gpu computing, processor 
architectures & data mining/machine learning/probabilistic models

http://parallel.vub.ac.be



Jan Lemeire 9Pag. / 72
Parallel Systems: Introduction

Goals of course

Understand architecture of modern parallel systems.

Employ software technologies for parallel programming.

Design efficient and two-fold generic parallel solutions.

For a wide variety of parallel systems & broad class of similar algorithms.

Sharpen your low-level and high-level IT skills.

Understand their performance.

Make successful technology. Understand economics.

50% Oral exam on theoretical part

50% Project: parallelize an algorithm with the 3 technologies



Jan Lemeire 10Pag. / 72

References

"Principles of Parallel Programming" by 
Calvin Lin and Larry Snyder

Chapters 1-6, 7 (partly)

"Introduction to Parallel Computing" by 
Grama, Gupta, Karypsis & Kumar.

Chapters 1-7, 8.2, 9, 11

http://parallel.vub.ac.be/education/parsys

Parallel Systems: Introduction

PPP

KUMAR

http://www.pearsonhighered.com/educator/academic/product/0,3110,0321487907,00.html
http://www-users.cs.umn.edu/~karypis/parbook/
http://parallel.vub.ac.be/education/parsys


Jan Lemeire 11Pag. / 72

Parallel computing is hot

1. Urgent need

2. New technologies

Parallel Systems: Introduction



Jan Lemeire 12Pag. / 72
Parallel Systems: Introduction

The Free Lunch is Over

Chuck Moore, "DATA PROCESSING IN EXASCALE-CLASS COMPUTER SYSTEMS", The 

Salishan Conference on High Speed Computing, 2011.



Jan Lemeire 13Pag. / 72
Parallel Systems: Introduction

The Free Lunch is Over

http://www.gotw.ca/publications/concurrency-ddj.htm

Why You Don’t Have 10GHz Today?

• heat/surface is the problem (power wall)

• 12 nm would mean electric paths of 10 atoms wide!

Moreover:

• memory bottleneck

• instruction level parallelism (ILP) wall

What about Moore’s Law?

➢ increase of Clock speed: stopped

➢ increase of Transistors: ongoing

It’s now about the number of cores!



Jan Lemeire 14Pag. / 72

Multi- & manycores

Parallel Systems: Introduction



Jan Lemeire 15Pag. / 72
Parallel Systems: Introduction

Graphics Card Processors

Graphics card



Jan Lemeire 16Pag. / 72
Parallel Systems: Introduction

Goals of this lesson

➢What is a parallel system?

➢Basics of parallel programming.

➢Why are they harder to program than 
sequential computers?



Jan Lemeire 17Pag. / 72
Parallel Systems: Introduction

Overview

1. Definition

2. Why?

3. Parallel compiler? 

4. Parallel architectures

5. Parallel Processing Paradigms

Multi-threading.

Message-passing.

6. End notes



Jan Lemeire 18Pag. / 72
Parallel Systems: Introduction

Overview

1. Definition

2. Why?

3. Parallel compiler? 

4. Parallel architectures

5. Parallel Processing Paradigms

Multi-threading.

Message-passing.

6. End notes



Jan Lemeire 19Pag. / 72
Parallel Systems: Introduction

What is a Parallel System?

CPU

CPU

M

M
CPU

M

N

➢Memory

➢Processors

➢ Interconnect

CPU

M

CPU CPU

M

CPU

CPU

M

CPU

M

CPU

MN



Jan Lemeire 20Pag. / 72
Parallel Systems: Introduction

Biggest Parallel System?

Brain
Internet

Frequency of brain waves: 10Hz

Number of neurons: 100 billion = 1011



Jan Lemeire 22Pag. / 72

A bit of a History

1980s, early `90s: a golden age for parallel 
computing

special parallel computers: Connection Machine, MasPar, 
Cray (VUB also!)

True supercomputers: incredibly exotic, powerful, expensive

Based on vectorization (see further)

But…impact of data-parallel computing limited

Thinking Machines sold 100s of systems in total

MasPar sold ~200 systems

Parallel Systems: Introduction



Jan Lemeire 23Pag. / 72

History II: now

Parallel computing steamrolled from behind 
by the inexorable advance of commodity 
technology

Economy of scale rules!

Commodity technology outperforms special machines

Massively-parallel machines replaced by clusters of ever-
more powerful commodity microprocessors

Clusters: federates of standard pcs (MPI & OpenMP)

Parallel Systems: Introduction

In this course we focus on widespread commodity parallel technology



Jan Lemeire 24Pag. / 72
Parallel Systems: Introduction

More…

Supercomputer Cluster

Multicore

But also a single core…



Jan Lemeire 25Pag. / 72
Parallel Systems: Introduction

Flynn's taxonomy of 
architectures

Single 
Instruction

Multiple 
Instructions

Single 
Data

Multiple 
Data



Jan Lemeire 26Pag. / 72
Parallel Systems: Introduction

Floating-Point Operations per 
Second for the CPU and GPU 

Figure 1.1. Enlarging Performance Gap between GPUs and CPUs.

Multi-core CPU

Many-core GPU

Courtesy: John Owens



Jan Lemeire 27Pag. / 72
Parallel Systems: Introduction

FASTRA at University of 
Antwerp

Collection of graphical cards

FASTRA 8 cards = 8x128 processors = 4000 

euro

Similar performance as University’s 

supercomputer  (512 regular desktop PCs) 

that costed 3.5 million euro in 2005

http://fastra.ua.ac.be



Jan Lemeire 28Pag. / 72
Parallel Systems: Introduction

Overview

1. Definition

2. Why?

3. Parallel compiler? 

4. Parallel architectures

5. Parallel Processing Paradigms

Multi-threading.

Message-passing.

6. End notes



Jan Lemeire 29Pag. / 72
Parallel Systems: Introduction

Why use parallel systems

Complete computation faster

More (local) memory available

But… not simple!    

Why?? Since a parallelizing compiler 

does not exist



Jan Lemeire 30Pag. / 72

Speedup

Ideally: speedup = number of 
processors

Parallel Systems: Introduction



Jan Lemeire 31Pag. / 72
3

1

Performance Analysis

Speedup i.f.o. processors

1) Ideal, linear speedup

2) Increasing, sub-linear 
speedup

3) Speedup with an optimal 
number of processors

4) No speedup

5) Super-linear speedup



Jan Lemeire 32Pag. / 72
Parallel Systems: Introduction

Parallel vs Distributed

Parallel computing: provide performance.
In terms of processing power or memory

To solve a single problem

Typically: frequent, reliable interaction, fine grained, low 
overhead, short execution time.

Distributed computing: provide convenience.
In terms of availability, reliability and accessibility from 
many different locations

Typically: interactions infrequent, with heavier weight and 
assumed to be unreliable, coarse grained, much overhead 
and long uptime.

PPP 20-21OUR FOCUS



Jan Lemeire 33Pag. / 72
Parallel Systems: Introduction

Example: Distributed 3rd 
generation web application

Web

Client

Application Server

Data
Local

Client

Firewall

Component

Component

Component

Component Services

Web server



Jan Lemeire 34Pag. / 72
Parallel Systems: Introduction

Overview

1. Definition

2. Why?

3. Parallel compiler? 

4. Parallel architectures

5. Parallel Processing Paradigms

Multi-threading.

Message-passing.

6. End notes



Jan Lemeire 35Pag. / 72
Parallel Systems: Introduction

Sequential programming world

Understand this to port it to the parallel world

Write Once, Compile Everywhere

C, C++, Pascal, Modula-2, …

Compile Once, Run Everywhere

Java, C#

Sequential programming is close to our algorithmic 
thinking (> 2 GL).

Von Neumann architecture provides useful 
abstraction



Jan Lemeire 36Pag. / 72
Parallel Systems: Introduction

The Random Access Machine

Sequential computer = device with an instruction 
execution unit and unbounded memory.

Memory stores program instructions and data.

Any memory location can be referenced in ‘unit’ time

The instruction unit fetches and executes an instruction 
every cycle and proceeds to the next instruction.

Today’s computers depart from RAM, but function as 
if they match this model.

Model guides algorithm design.

Programs do not perform well on e.g. vector machines.

CPU

M

PPP 58-60



Jan Lemeire 37Pag. / 72

Software success relies on 

abstraction & user transparency
A library offers a service and hides implementation 
details for you.

Layered approaches such as the 

OSI model in telecommunication

3rd generation language => 

assembler => machine code =>

machine

Language hides hardware details

Software engineering concepts

Parallel Systems: Introduction



Jan Lemeire 38Pag. / 72
Parallel Systems: Introduction

Generic Compilation Process
PPP 22-25



Algorithm

Implementation

Compiler

Automatic

optimization



Jan Lemeire 40Pag. / 72
Parallel Systems: Introduction

Parallel compilers

Goal: automatically compile sequential program into 
an efficient parallel program that does the same 
thing.

Programmers would not have to learn special parallel constructs 

Is a dream that seems beyond reach…

Many user-defined algorithms contain data dependencies that 
prevent efficient parallelization.

Automatic dependency analysis and algorithm transformation: still 
in their infancy,  far from optimal. Real breakthrough not expected 
in the near future.

For efficient parallel programs, a simple hardware model such as 
the RAM model does not work.

PPP 22-23



Jan Lemeire 41Pag. / 72
Parallel Systems: Introduction

Example: Iterative Sum

Parallelism? Independent computations needed.

n data values x0, …, xn in array x
sum=0;

for (int i=0;i<n;i++)

sum+=x[i];

By associativity 

of sum

Can this be done 

by a compiler??

PPP 23



Jan Lemeire 42Pag. / 72
Parallel Systems: Introduction

Overview

1. Definition

2. Why?

3. Parallel compiler? 

4. Parallel architectures

5. Parallel Processing Paradigms

Multi-threading.

Message-passing.

6. End notes



Jan Lemeire 43Pag. / 72
Parallel Systems: Introduction

PRAM: Parallel Random Access Machine

Global memory of unbounded size that is 
uniformly accessible to all processors

It fails by misrepresenting memory behavior.

Impossible to realize the unit-time single memory 
image

Cf: memory is now the bottleneck, also in 
sequential computers



Jan Lemeire 44Pag. / 72
Parallel Systems: Introduction

Memory has become the main 
bottleneck…

Memory speed lags behind processor speed...

Pentium chip 

devoted about 10% 

of chip area to 

cache,

Pentium 4 devotes 

about 50%
1

10

100

1,000

10,000

100,000

1980 1985 1990 1995 2000 2005 2010

Year

P
e
rf

o
rm

a
n

c
e

Memory

Processor



Jan Lemeire 45Pag. / 72
Parallel Systems: Introduction

Memory Latency λ

Memory Latency = delay required to make a 
memory reference.

Relative to processor’s local memory latency, 
≈ unit time ≈ one word per instruction

Variable, due to cache mechanisms etc

Locality Rule: Fast programs maximize 
number of local memory references.

Sometimes it is better to recalculate globals locally (e.g. 
random number)

PPP 63



Jan Lemeire 46Pag. / 72
Parallel Systems: Introduction

1. Shared Memory

Natural extension of sequential computer: all memory 
can be referenced (single address space). Hardware 
ensures memory coherence.

Easier to use
• Through multi-threading

Easier to create faulty programs
• Race conditions

More difficult to debug
• Intertwining of threads is implicit

Easier to create inefficient programs
• Easy to make non-local references



Jan Lemeire 47Pag. / 72
Parallel Systems: Introduction

2. Distributed Memory

Processors can only access their own memory 
and communicate through messages.

Requires the least hardware support.

Easier to debug.
• Interactions happens in well-defined program parts

• The process is in control of its memory!

Cumbersome communication protocol is 
needed
• Remote data cannot be accessed directly, only via request.



Jan Lemeire 48Pag. / 72

3. Fine-grain parallelism

Parallel Systems: Introduction

Needs many small pieces that can be processed in 
parallel.

Enormous processing power: vector processors, 
GPUs

No single programming model
• OpenCL versus vectorization

Harder to program

Independence & locality & high computational 
intensity needed to reach peak performance.



Jan Lemeire 51Pag. / 72
Parallel Systems: Introduction

Overview

1. Definition

2. Why?

3. Parallel compiler? 

4. Parallel architectures

5. Parallel Processing Paradigms

Multi-threading.

Message-passing.

6. End notes



Jan Lemeire 52Pag. / 72

1. Multithreading

One process is split into separate threads, 
executing a different sequence of instructions 

having access to the same memory

= Shared address space approach

Parallel Systems: Introduction

CPU CPU

M

CPU



Jan Lemeire 53Pag. / 72

Multi-threading primitives

Fork & join



Jan Lemeire 54Pag. / 72
9/28/2017

5

4

Parallel Systems: Multi-threading

The Java Thread Class
PPP 202



Pag.9/28/2017 55

Parallel Systems: Multi-threading

Thread creation

class PrimeThread extends Thread 
{ 

long minPrime; 
PrimeThread(long minPrime) { 

this.minPrime = minPrime; 
} 
public void run() { 
// compute primes larger 
// than minPrime

. . . 
} 
}

PrimeThread p = new PrimeThread(143);
p.start();

class PrimeRun implements Runnable
{ 
long minPrime; 
PrimeRun(long minPrime) { 
this.minPrime = minPrime; 
} 
public void run() { 
// compute primes larger 
// than minPrime
. . . 
} 
}

PrimeRun p = new PrimeRun(143); 
new Thread(p).start();

LINK 2



Jan Lemeire 56Pag. / 72
Parallel Systems: Introduction

Example: Counting 3s

Parallelism? Yes.

Multithreaded solution: divide counting

count=0;

for (int i=0;i<array.length;i++)

if  (array[i] == 3)

count++;

n data values x0, …, xn 

in array array

PPP 29



Jan Lemeire 57Pag. / 72
Parallel Systems: Introduction

Multithreaded Counting 3s

count=0;

Thread[] threads = new Thread[nbrThreads];

for(int t=0;t<nbrThreads;t++){

final int T = t;

threads[t] = new Thread(){

public void run(){

int length_per_thread=array.length/ nbrThreads;

int start=T*length_per_thread;

for(int i=start;i<start+length_per_thread; i++)

if (array[i] == 3)

count++;

}

};

threads[t].start();

}

// wait until all threads have finished

for(int t=0;t<nbrThreads;t++)

try {

threads[t].join();

} catch (InterruptedException e) {}

Note: this program is faulty

Will be discussed



Jan Lemeire 58Pag. / 72

Some advanced java…

Parallel Systems: Introduction

Anonymous



Jan Lemeire 59Pag. / 72
Parallel Systems: Introduction

Counting 3s: experiments

Counting 3s in an array of 1000 elements and 4 threads:

* Seq : counted 100 3s in 234us

* Par 1: counted 100 3s in 3ms 615us

Counting 3s in an array of 40000000 elements and 4 threads:

* Seq : counted 4000894 3s in 147ms

* Par 1: counted 3371515 3s in 109ms

On a dual core processor



Jan Lemeire 60Pag. / 72

2. Message-passing

Different processes
Communicate through messages

Got their own dedicated memory (and got full control over 
it)

=Message-passing approach

Parallel Systems: Introduction

CPU

M

CPU

M

CPU

MN



Jan Lemeire 61Pag. / 72

Messages…

The ability to send and receive messages is 
all we need

void Send(message, destination)

char[] Receive(source)

boolean IsMessage(source)

But… we also want performance!
More functions will be provided

Message-passing Parallel Processing



Jan Lemeire 62Pag. / 72
Parallel Systems: Introduction

Message-passing Counting 3s

int count3s_master(int[] array){

int length_per_slave=array.length/nbr_slaves;

for (slave: slaves)

send integer subarray of length length_per_slave to slave;

int sum=0;

for (slave: slaves)

sum+= receive integer from slave;

return sum;

}

int count3s_slave(){

int[] array = receive array from master;

count=0;

for (int i=0;i<array.length;i++)

if (array[i] == 3)

count++;

send count  to master;

}

pseudo code

= sequential program!



Jan Lemeire 63Pag. / 72

Focus on low-level approaches

MPI, multi-threading & OpenCL: low-level primitives

Higher-level alternatives exist, but have not proven 
to be successfull for a wide variety of parallelization
problems

Fail to hide low-level aspects

We’ll focus on the 3 main low-level approaches

You will be able to learn/use the other approaches 
yourself

Parallel Systems: Introduction



Parallel Systems

Message-
passing

MPI

Explicit 
multi-

threading

OpenCL/
CUDA

OpenMP

Vector
instructions

PROC

M

PROC

M

PROC

MN

PROC PROC

M

PROC

P P P P

M

P P P P

M

M

Distributed memory Shared memory

coarse-grain
parallelism

fine-grain
parallelism

SIMD
coarse-grain
parallelism

SIMT

Parallel Systems: Introduction

PPP 67



Course Overview

Philosophy and 

conclusions in 

first & last 

session!



Jan Lemeire 66Pag. / 72
Parallel Systems: Introduction

Overview

1. Definition

2. Why?

3. Parallel compiler? 

4. Parallel architectures

5. Parallel Processing Paradigms

Multi-threading.

Message-passing.

6. End notes



Jan Lemeire 67Pag. / 72
Parallel Systems: Introduction

The goals of this course

Learn to write good parallel programs, which

Are correct

Achieve good performance

Are scalable to large numbers of processors

Are portable across a wide variety of 
parallel platforms.

Are generic for a broad class of problems.

PPP 39-41



Jan Lemeire 68Pag. / 72
Parallel Systems: Introduction

To attain goals…

Master low-level and high-level IT skills
Low-level: hardware and system

High-level: Software engineering

Combine knowledge and inventivity

Approach: look at it as a user who wants to 
know as little as possible



Jan Lemeire 69Pag. / 72
Parallel Systems: Introduction

Instruction-level Parallelism (ILP): 
vector instructions

X86 architecture: MMX or SSE instructions will perform an 
instruction on 4/8/16 floats (special registers) at once (SIMD)

Example: compute difference between 2 images

Compute 8 pixels at once

Fine-grain parallelism like GPUs

New Intel Xeon Phi architecture also requires vector computation

Program: assembler instructions or special C-extensions

First move data to special registers

Not so easy!

In practice, an ILP of 4 seems the maximum



Jan Lemeire 71Pag. / 72
Parallel Systems: Introduction

Open questions...

Automatic parallelizing compiler?

Why is there no universal method to write 
parallel programs?

How much do we need about the hardware 
to write good parallel programs?

Knowledge yield significant performance improvements

For portability, machine details should be ignored…

How to make parallelism a success story?



Jan Lemeire 72Pag. / 72

Intelligence & Parallelism

A lot of researchers, philosophers think that
intelligence is caused by the highly parallel structure
of our brain.

Only parallelism can give intelligence?

I do not agree, every parallel program                  
can be executed sequentially, if necessary by adding
indeterminism

Parallelism Intelligence

An afterthought…



Jan Lemeire 73Pag. / 72

Intelligence & Parallelism II

On the other hand: intelligence makes 
efficient parallel processing possible.

Insight into all HW & SW aspects is necessary

Automated parallel processing only by an 
intelligent computer

ParallelismIntelligence

An afterthought…


