Parallel Systems

Introduction

Principles of Parallel Programming, Calvin Lin & Lawrence Snyder,
Chapters 1 & 2

Jan Lemeire v Vrije Universiteit Brussel
Parallel Systems

September - December 2017










LIGO

The First Observation
of Gravitational Waves

LIGO Hanford

N
z
>
v
[ =
[
=
o
(]
o
(T

LIGO Livingston

0.7 0.8
Time (sec)
Mirror _ Mirror
y N
f o f A» ‘\
. y Detector Detector AL\ )
Y} { 1\
- W arm arm % /
\\ / A ,/ T\ \“\ J "E/
SN N 2\
Y, 150 NV 4, ’
f [ " )

Beam-splitter

Light
detector

Laser

source
IA



Superpositie van signalen

W [\/\/\/\ In faze

UPDATE: August 14, 2017
Detection of a gravitional wave by 3 detectors,

also by the European Virgo.
1.8 billion years ago, collision of black holes
of 25 and 31 times the mass of the sun




1

 THEORY

COMPUTATION




Jan Lemeire (jan.lemeire@vub.ac.be)

¢ Civil Engineer - elektronics, 1994, VUB
+ additional masters in computer sciences (1995)
¢ Worked for 4 year in the private sector, 2 IT-consultancy companies
¢ 2000-2007: did PhD at the VUB as assistant
+ Thaught practica informatics
¢ Since 2008: professor at VUB
4+ Course ‘Parallel systems’ in the masters
+ Since 2011: ‘Informatics’ first year bachelors engineer
¢ Since october 2013: teaching to engineers in industrial sciences
+ Computer architecture, electronics, informatics

¢ Research topics: parallel processing, gpu computing, processor
architectures & data mining/machine learning/probabilistic models

¢ http://parallel.vub.ac.be

Jan Lemeire Pag. 8 /72



dh
w

dh
w

dh
w

dh
w

dh
w

Goals of course

Understand architecture of modern parallel systems.
Employ software technologies for parallel programming.
Design efficient and two-fold generic parallel solutions.

+ For a wide variety of parallel systems & broad class of similar algorithms.

+ Sharpen your low-level and high-level IT skills.
Understand their performance.
Make successful technology. Understand economics.

50% Oral exam on theoretical part
50% Project: parallelize an algorithm with the 3 technologies

Parallel Systems: Introduction

Jan Lemeire



References

PPP

¢ "Principles of Parallel Programming” by

Calvin Lin and Larry Snyder
+ Chapters 1-6, 7 (partly)

KUMAR

¢ "Introduction to Parallel Computing" by

Grama, Gupta, Karypsis & Kumar.
+ Chapters 1-7, 8.2, 9, 11

¢ http://parallel.vub.ac.be/education/parsys

Parallel Systems: Introduction

Jan Lemeire Pag.


http://www.pearsonhighered.com/educator/academic/product/0,3110,0321487907,00.html
http://www-users.cs.umn.edu/~karypis/parbook/
http://parallel.vub.ac.be/education/parsys

Parallel computing is hot

1. Urgent need
2. New technologies

Parallel Systems: Introduction

Jan Lemeire Pag. 11/72



The Free Lunch

Transistors
(thousands)

Single-thread
Performance

"(ammmn

Frequency

 (MHz)

Typical Powe

 (Wais)

Mumber of

Parallel Systems: Introduction

Chuck Moore, "DATA PROCESSING IN EXASCALE-CLASS COMPUTER SYSTEMS", The
Salishan Conference on High Speed Computing, 2011.

1975 1980 1985 1990 1995 2000 2005 2010 2615

Pag. 12/72

Jan Lemeire



The Free Lunch is Over

Why You Don’t Have 10GHz Today?
» heat/surface is the problem (power wall)
* 12 nm would mean electric paths of 10 atoms wide!

Moreover:
* memory bottleneck
* instruction level parallelism (ILP) wall

What about Moore’s Law?

» increase of Clock speed: stopped
» increase of Transistors: ongoing

It’s now about the number of cores!

http://www.gotw.ca/publications/concurrency-ddj.htm

Parallel Systems: Introduction

Jan Lemeire Pag. 13/72



Multi- & manycores

Parallel Systems: Introduction
Jan Lemeire Pag. 14/72




Graphics Card Processors

Multiprocessor 2

ST Multiprocessor 1

TH. &
\;; ’i“

Instruction
Unit

Graphics card

Parallel Systems: Introduction
Jan Lemeire Pag. 15/72




Goals of this lesson

» What is a parallel system?
» Basics of parallel programming.

» Why are they harder to program than
sequential computers?

Parallel Systems: Introduction

Jan Lemeire Pag. 16/72



— Overview N

1. Definition
2. Why?

3. Paral piler?
4. Pa[ Chitectures | \

" essing Paradigms

Parallel Systems: Introduction
Jan Lemeire

Pag. 17/72



~— Overview N
1. Definition
2. Why?
3. Paral piler?
Mltectures | \
/P | P es\%ng Paradigms
A m e A
\ m’g. | ,'S.“““'
6,Enc;li;rf)ptes AN
o)

\S ~

Parallel Systems: Introduction
Jan Lemeire

Pag.



What is a Parallel System?

.....

o™ ., A Hi
y CPU 4 o=, eead!
‘oot s CPU
‘----.
: oeo@c o@=c =P~

"CPUs {CPUs JCPU,

Y

.....

» Memory
» Processors
» Interconnect

Parallel Systems: Introduction

Jan Lemeire Pag. 19/72



Biggest Parallel System?

Internet Brain

Frequency of brain waves: 10Hz
Number of neurons: 100 billion = 1011

Parallel Systems: Introduction

Jan Lemeire Pag. 20/ 72



A bit of a History

¢ 1980s, early 90s: a golden age for parallel
computing
+ special parallel computers: Connection Machine, MasPar,
Cray (VUB also!)

+ True supercomputers: incredibly exotic, powerful, expensive
+ Based on vectorization (see further)

But...impact of data-parallel computing limited
+ Thinking Machines sold 100s of systems in total
+ MasPar sold ~200 systems

-
-r

Parallel Systems: Introduction
Jan Lemeire

Pag. 22/72



History II: now

¢ Parallel computing steamrolled from behind
by the inexorable advance of commodity
technology

"‘1

4
-

4
-

Economy of scale rules!
Commodity technology outperforms special machines

Massively-parallel machines replaced by clusters of ever-
more powerful commodity microprocessors

+ Clusters: federates of standard pcs (MPI & OpenMP)

<~

> In this course we focus on widespread commodity parallel technology

Parallel Systems: Introduction

Jan Lemeire Pag. 23/72



Multicore

But also a single core...

Parallel Systems: Introduction

Jan Lemeire Pag. 24/72



Flynn's taxonomy of

architectures
Single Multiple

Instruction Instructions
S i n g I e SISD | Instruction Pool | MISD | Instruction Pool |
Data ) J ) J
93 —PU ?:_: PU PU
g 5
M u Iti p I e SIMD Instruction Pool MIMD | Instruction Pool |
Data _—. PU | __. PU ._—I_. PU |«
%—-Pu-— ;3—-PU<—_|—-PU<—
&l ——[pu]- &l ol L[pu]-
_—*PU‘— _—'PU‘——I—>PU‘—

Parallel Systems: Introduction

Jan Lemeire

Pag. 25/72



Floating-Point Operations per

Second for the CPU and GPU

Parallel Systems: Introduction

GFLOPS

1200

1000 |

800

600

400 -

&=® AMD (GPU)
=l NVIDIA (GPU)
¢=® [ntel (CPU)

Many-core GP

dual-core

Mu lti-core CPU

guad-core

2005
Year

2002

2003

2004

1
2006

1 1
2007 2008 2009

Coiuirtesv: John Owens

Jan Lemeire

Pag. 26/72



FASTRA at University of

Antwerp

http://fastra.ua.ac.be

Parallel Systems: Introduction
Jan Lemeire

Collection of graphical cards

FASTRA 8 cards = 8x128 processors = 4000
euro

Similar performance as University’s
supercomputer (512 regular desktop PCs)
that costed 3.5 million euro in 2005

Projection-only running times (secs)
FASTRA (overclocked)

FASTRA

Pag. 27/72



— Overview N

1. Definition

2. Why?

3. Paral piler?
ﬁltectures | \

es\%ng Paradlgms |

65 _Enc;l jnptes

\REO " DR i o)

Parallel Systems: Introduction
Jan Lemeire

Pag. 28/72



Why use parallel systems

¢ Complete computation faster
¢ More (local) memory available
But... not simple!

Why?? Since a parallelizing compiler
does not exist

Parallel Systems: Introduction

Jan Lemeire Pag. 29/72



Speedup

Tseq

par

Speedup =

¢ Ideally: speedup = number of
processors

Parallel Systems: Introduction

Jan Lemeire Pag. 30/72



Speedup i.f.0. processors

A Speedup 5 1) Ideal, linear speedup

° 2) Increasing, sub-linear
speedup

0 3) Speedup with an optimal
number of processors
r3) 4) No speedup
““‘m 5) Super-linear speedup
1 #processors

Performance Analysis

Jan Lemeire Pag. 31/72



Parallel vs Distributed

OUR FOCUS

N

¢ Parallel computing: provide performance.

+ In terms of processing power or memory

+ To solve a single problem
+ Typically: frequent, reliable interaction, fine grained, low
overhead, short execution time.

¢ Distributed computing: provide convenience.

+ In terms of availability, reliability and accessibility from
many different locations

+ Typically: interactions infrequent, with heavier weight and
assumed to be unreliable, coarse grained, much overhead

and long uptime.

Parallel Systems: Introduction
Pag. 32/72

Jan Lemeire



Example: Distributed 3rd

generation web application

g & i
€ > Firewall
Web server I

Web Component Services
Client

Component -

Component € >
Local Data
oca
Client  |€ > Component

Application Server

Parallel Systems: Introduction

Jan Lemeire Pag. 33/72



— Overview

1. Definition
2. Why?

3. Par .compiler?
4. Pa[ chitectures

es\%ng Paradlgms

Parallel Systems: Introduction
Jan Lemeire

Pag. 34/72



Sequential programming world

¢ Understand this to port it to the parallel world

¢ Write Once, Compile Everywhere
+ C, C++, Pascal, Modula-2, ...

¢ Compile Once, Run Everywhere
+ Java, C#

¢ Sequential programming is close to our algorithmic
thinking (> 2 GL).

¢ Von Neumann architecture provides useful
abstraction

Parallel Systems: Introduction

Jan Lemeire Pag. 35/72



The Random Access Machine

¢ Sequential computer = device with an instruction
execution unit and unbounded memory.

+ Memory stores program instructions and data.
+ Any memory location can be referenced in ‘unit’ time

4+ The instruction unit fetches and executes an instruction
every cycle and proceeds to the next instruction.

¢ Today’s computers depart from RAM, but function as
if they match this model.

¢ Model guides algorithm design.
+ Programs do not perform well on e.g. vector machines.

Parallel Systems: Introduction
Jan Lemeire

Pag. 36/72



Software success relies on

abstraction & user transparency

¢ A library offers a service and hides implementation
detalls fOr YOU. THE 7 LAYERS OF OSI
¢ Layered approaches such as the ™" o

. . . m & LSS EAR &
OSI model in telecommunication

L !l Application Iayer!l =8

N rd H : !IPMWM‘M‘W%I :
¢ 3" generation language => = ——

= ' - B o | el
assembler => machine code => =ﬁl mmil :

machine —— - e - -?
+ Language hides hardware details S

¢ Software engineering concepts

Parallel Systems: Introduction
Jan Lemeire

Pag. 37/72



Generic Compilation Process

. Abstract
Source Lexical and
program syntactic analyss || = | symiaxtree | =>
“en ifStmt
if(a==0) NG
x=x/2; expr assign

egTest lhs expr
a 0 =x div
X 2
2pend code = A =
optimization allocation
tl=a
t2=(tl==0)
ifzero t2 goto L1
t3=x
td=t3>>1
x=t4
Ll:

Parallel Systems: Introduction

Jan Lemeire

Linearize ,
Type Decorated Intermediate
= = - =
Check AST as 3-Address representation
Code
ifstmt L
/\\ tl=a
exfr /a’s/s:i‘fﬂ\ t§=0 ,
t3=(tl==t2)
egTest 1hs expr iizero t3 goto L1
td=x
4 t5=2
(int,local)(int,literal}) iﬁ:;&/tS
| =
X div L1:
(int,local}/\\
'3 2
(int,local) (int,literal)
Assembly Assemble Bina
code = and link = ¥
1ld 8,a_offset(fp) 00110000
bnez 8,Ll 11101001
1d 9,x_offsest(fp) 10110100
5”99'1 ffeot (£ 01000000
i;- 1¥_offset(fp) 00111010

Pag. 38/72




Algorithm

J

Implementation

J

Compiler

Automatic
optimization



Parallel compilers

¢ Goal: automatically compile sequential program into
an efficient parallel program that does the same
thing.

= Programmers would not have to learn special parallel constructs

¢ Is a dream that seems beyond reach...

+ Many user-defined algorithms contain data dependencies that
prevent efficient parallelization.

+ Automatic dependency analysis and algorithm transformation: still
in their infancy, far from optimal. Real breakthrough not expected
in the near future.

+ For efficient parallel programs, a simple hardware model such as
the RAM model does not work.

Parallel Systems: Introduction
Jan Lemeire

Pag. 40/ 72



Example: Iterative Sum

PPP 23
n data values X, ..., X, in array x
sum=—0;
for (int i=0;i<n;i++)
sum+=x[i];

¢ Parallelism? Independent computations needed.

76

68 7 = | / \

£ 48 2 35 41
= = o = PN PN
By associativity 10 25 31 10
25 P NN A N
10 of sum 7 3 15 10 13 18 6 4
Array elements

7 3 1101318 6 4 Can this be done
Array elements by a Compiler??

Parallel Systems: Introduction

Jan Lemeire Pag. 41/72



— Overview

1. Definition
2. Why?

piler?

3. Paral ler:
. Pq rchltectures

es\%ng Paradlgms

Parallel Systems: Introduction
Jan Lemeire

Pag. 42/72



PRAM: Parallel Random Access Machine

¢ Global memory of unbounded size that is
uniformly accessible to all processors

¢ It fails by misrepresenting memory behavior.

+ Impossible to realize the unit-time single memory
iImage

¢ Cf: memory is now the bottleneck, also in
sequential computers

Parallel Systems: Introduction

Jan Lemeire Pag. 43/72



Memory has become the main

bottleneck...

100,000 e crerrerme et e
10,000 F-cemr &< ..
§ 1000 o g Pentium Chlp
E Proce ssor devoted about 10%
% 100 4 BT Of Chlp area to
B o b e o e cache,
Pentium 4 devotes
Ls - - - - - - about 50%

1980 1985 1990 1995 2000 2005 2010

Year

Memory speed lags behind processor speed...

Parallel Systems: Introduction
Jan Lemeire

Pag. 44/72



Memory Latency A

¢ Memory Latency = delay required to make a
memory reference.

¢ Relative to processor’s local memory latency,
~ unit time = one word per instruction
+ Variable, due to cache mechanisms etc

¢+ Locality Rule: Fast programs maximize

number of local memory references.

+ Sometimes it is better to recalculate globals locally (e.qg.
random number)

Parallel Systems: Introduction

Jan Lemeire Pag. 45/72



1. Shared Memory

Natural extension of sequential computer: all memory
can be referenced (single address space). Hardware
ensures memory coherence.

B Easier to use
« Through multi-threading

El Easier to create faulty programs
« Race conditions

El More difficult to debug

« Intertwining of threads is implicit

El Easier to create inefficient programs
« Easy to make non-local references

Parallel Systems: Introduction

Jan Lemeire Pag. 46/72



2. Distributed Memory

Processors can only access their own memory
and communicate through messages.

B Requires the least hardware support.
B Easier to debug.

« Interactions happens in well-defined program parts
« The process is in control of its memory!

Bl Cumbersome communication protocol is

needed
« Remote data cannot be accessed directly, only via request.

Parallel Systems: Introduction
Jan Lemeire

Pag. 47/72



3. Fine-grain parallelism

Needs many small pieces that can be processed in
parallel.

B Enormous processing power: vector processors,
GPUs

El No single programming model
 OpenCL versus vectorization

El Harder to program

El Independence & locality & high computational
intensity needed to reach peak performance.

Parallel Systems: Introduction

Jan Lemeire Pag. 48/72



— Overview N

1. Definition
2. Why?

3. Paral piler?

4. Par | hltectures | \

Séaral" c%ssmg Paradigms
Py o5 _,~\

G M m ot "

< .‘\ N Q“’

Parallel Systems: Introduction
Jan Lemeire

Pag. 51/72



1. Multithreading

¢ One process is split into separate threads,

+ executing a different sequence of instructions
+ having access to the same memory

¢ = Shared address space approach

| I |
[N NA III
° '-IQ Xs

l Bad
'cPUs 'cPus !cpPus

[ L} ¥ ’

Parallel Systems: Introduction

Jan Lemeire Pag. 52/72



Multi-threading primitives

Master process

¢ Fork & join TaskB

(nesw thread)

o
-

Fork TaskB

Join TaskB

Parallelism: 2 programs running at the same time

Jan Lemeire Pag. 53/72



The Java Thread Class

public synchronized void start()

m Starts this Thread and returns immediately after invoking the
run( ) method.

® Throws IllegalThreadStateException if the thread was already
started.

public wvoid run()

® The body of this Thread, which is invoked after the thread is started.

public final synchronized void join(long millis)
throws InterruptedException

® Waits for this Thread to die. A timeout in milliseconds can be specified, with a timeout of 0
milliseconds indicating that the thread will wait forever.

public static void yield()

® Causes the currently executing Thread object to yield the processor so that some other
runnable Thread can be scheduled.

public final int getPriority()
B Returns the thread’s priority.
public final void setPriority(int newPriority)

® Sets the thread’s priority.




Thread creation

class PrimeThread extends Thread
{
Tong minPrime;
PrimeThread(long minPrime) {
this.minPrime = minPrime;
}
public void run() {
// compute primes larger
// than minPrime

}

class PrimeRun implements Runnable
{

Tong minPrime;

PrimeRun(long minPrime) {
this.minPrime = minPrime;

}

public void run() {

// compute primes larger

// than minPrime

)

—

} ¥

PrimeThread p = new PrimeThread(143);

p.start();

PrimeRun p = new PrimeRun(143);
new Thread(p).start();

Parallel Systems: Multi-threading

9/28/2017 Pag.55




Example: Counting 3s

n data val X count=0;
) ata values Xo, ..., X, for (int i=0;i<array.length;i++)
In array array if (array[i] — 3)

count++;

¢ Parallelism? Yes.

¢ Multithreaded solution: divide counting

Parallel Systems: Introduction

Jan Lemeire Pag. 56/72



Multithreaded Counting 3s

count=0;

Thread[] threads = new Thread[nbrThreads]; Note: this program is faulty

for(int t=0;t<nbrThreads;t++){ Will be discussed
finalint T =t;

threads[t] = new Thread(){
public void run(){
int length_per_thread=array.length/ nbrThreads;
int start=T*length_per_thread,;
for(int i=start;i<start+length_per_thread; i++)
if (array[i] == 3)
count++;
}
I3
threadsit].start();
}
/[ wait until all threads have finished
for(int t=0;t<nbrThreads;t++)
try {
threads]t].join();
} catch (InterruptedException e) {}

Parallel Systems: Introduction

Jan Lemeire

Pag. 57/72



Some advanced java...

Inner class

class OuterClass{

class InnerClass{
(_ Definition inside a class )

}

non-static method() {
InnerClass a = new InnerClass();

} Object instantiation only in outer class
=> you have to create an outer object

|

( Invisible outside of class )

OuterClass object
int x;

InnerClass obiect\

Access fo all elements
X=5; of outer object
] |

Use qualifier OuterClass
when necessary, e.g.
OuterClass.this (# this)

N

RUVINGIVERI A XX (/s also an inner class )

final int I = i;
A a = new A(“parameter”) {

( No specific constructor

@0Override
void methodl () {

. Override methods or
} add new methods

void method2 () {
int x = I;

}

Only access to final
local variables of

enclosing method

Create object of new
subclass which is not
given a separate nhame




Counting 3s: experiments

On a dual core processor

Counting 3s in an array of 1000 elements and 4 threads:
* Seq : counted 100 3s 1n 234us

* Par 1: counted 100 3s in 3ms 6©6l5us

Counting 3s in an array of 40000000 elements and 4 threads:
* Seq : counted 4000894 3s in 147ms
* Par 1: counted 3371515 3s in 109ms

Parallel Systems: Introduction

Jan Lemeire Pag. 59/72



2. Message-passing

¢ Different processes

+ Communicate through messages

+ Got their own dedicated memory (and got full control over
it)

¢ =Message-passing approach

Parallel Systems: Introduction
Jan Lemeire Pag. 60/72




Messages...

¢ The ability to send and receive messages is
all we need

4+ void Send(message, destination)
+ char[] Receive(source)
< boolean IsMessage(source)

¢ But... we also want performance!
= More functions will be provided

Message-passing Parallel Processing

Jan Lemeire Pag. 61/72



Message-passing Counting 3s

int count3s_master(int[] array){
int length_per_slave=array.length/nbr_slaves;
for (slave: slaves)

send integer subarray of length length_per_slave t0 Slave; pseudo code

int sum=0;
for (slave: slaves)

sum+= receive integer from slave;
return sum;

}

int count3s_slave(){
int[] array = receive array from master;

count=0;
for (int i=0;i<array.length;i++) :
if (array[i] == 3) = seqguential program!
count++;

send count to master;

}

Parallel Systems: Introduction

Jan Lemeire Pag. 62/72



Focus on low-level approaches

¢ MPI, multi-threading & OpenCL: low-level primitives

¢ Higher-level alternatives exist, but have not proven
to be successfull for a wide variety of parallelization
problems
+ Fail to hide low-level aspects

= We’'ll focus on the 3 main low-level approaches

= You will be able to learn/use the other approaches
yourself

Parallel Systems: Introduction
Jan Lemeire

Pag. 63/72



Parallel Systems

."2". coarse-grain
+PROC . ;
% -, parallelism '
.'- - e
Fro—C B T S N
'S — tPROC# 4PROCS ¢PROCH
ROC Explicit Veeoa? Meeod! to.olt

multi-

OpenMP

< OpenCL/ > < Vector >
coarse-grain
parallelism Sl S

fine-grain

Message-
passing

parallelism



Course Overview

i"i’arallel paradigms

Multi-threaded : : Message-passing

- architectures: PRAM & cache coherence - architectures:

- synchronization: - communication networks :
- critical sections - communication. MPI
- conditional wait - specific functions for specific structures!
- composite constructs

 eee=eessssssccssscsssssssscssssscssssssssssssssssssscssssssssssssssssssssnananannan, .

" ranaparent
: - transparent, powerful, dedicated Matrix Algorithms :
hardware - structured mathematical operations:

- optimize for memory
- structured communication and

- write efficient programs taking
structure into account
e mmmemmememmmemmmmmmmmmmemmemememmmmememememmememeenn ; computation

Performance Analysis

- understand overheads _ advanced techniques:

- predict perf
) g;z,:;iﬂi ormance - dyna_mic_ load bala_ncing
- termination detection
Philosophy and Sort Algorithms

conclusions in
first & last
session!

- specific solutions are necessary
- inherent parallelism in sequential :
algorithm is not enough :

L eemeSssEEsMcsssssssescssssesssesesesssssssssssssssssssesessssssbsssssesssses

...................................................................................



— Overview N

1. Definition
2. Why?

3. Paral piler?
| chitectures | \

es\%ng Paradigms

| l.. - o A
‘I . “-', " . ‘
. ! \ °
m’g. - wd®

6 End n\otes

N " DR i o)

Parallel Systems: Introduction
Jan Lemeire

Pag. 66/72



The goals of this course

Learn to write good parallel programs, which
v Are correct

¢+ Achieve good performance

<+ Are scalable to large numbers of processors

<+ Are portable across a wide variety of
parallel platforms.

+ Are generic for a broad class of problems.

Parallel Systems: Introduction

Jan Lemeire Pag. 67/72



To attain goals...

¢ Master low-level and high-level IT skills

+ Low-level: hardware and system
+ High-level: Software engineering

¢ Combine knowledge and inventivity

¢ Approach: look at it as a user who wants to
know as little as possible

Parallel Systems: Introduction
Jan Lemeire

Pag. 68/72



Instruction-level Parallelism (ILP):

vector instructions

¢ X86 architecture: MMX or SSE instructions will perform an
instruction on 4/8/16 floats (special registers) at once (SIMD)

¢ Example: compute difference between 2 images
+ Compute 8 pixels at once

¢ Fine-grain parallelism like GPUs
+ New Intel Xeon Phi architecture also requires vector computation

¢ Program: assembler instructions or special C-extensions
+ First move data to special registers
+ Not so easy!

In practice, an ILP of 4 seems the maximum

Parallel Systems: Introduction

Jan Lemeire Pag. 69/72



Open questions...

¢ Automatic parallelizing compiler?

¢ Why is there no universal method to write
parallel programs?

¢ How much do we need about the hardware

to write good parallel programs?

+ Knowledge yield significant performance improvements
+ For portability, machine details should be ignored...

¢ How to make parallelism a success story?

Parallel Systems: Introduction

Jan Lemeire Pag. 71/72



An afterthought...

Intelligence & Parallelism

¢ A lot of researchers, philosophers think that
intelligence is caused by the highly parallel structure
of our brain.
+ Only parallelism can give intelligence?

¢ I do not agree, every parallel program
can be executed sequentially, if necessary by adding
indeterminism

Parallelism x Intelligence

Pag. 72/72

Jan Lemeire



An afterthought...

Intelligence & Parallelism II

¢ On the other hand: intelligence makes
efficient parallel processing possible.
+ Insight into all HW & SW aspects is necessary

+ Automated parallel processing only by an
intelligent computer

Intelligence * Parallelism

Jan Lemeire Pag. 73/72



