
GPU Programming with CUDAMessage-
passing Parallel Processing

Message-passing Parallel Processing

Introduction

Jan Lemeire

Dept. ETRO

September 23th 2014

Parallel Systems Course

Jan Lemeire

GPU Programming

Jan Lemeire

Jan Lemeire (jan.lemeire@vub.ac.be)

Graduated as Engineer in 1994 at VUB

Worked for 4 years for 2 IT-consultancy companies

2000-2007: PhD at the VUB while teaching as assistant

Subject: probabilistic models for the performance analysis of parallel
programs

Since 2008: postdoc en parttime professor at VUB, department of
electronics and informatics (ETRO)

Teaching ‘Informatics’ for first-year bachelors; ‘parallel systems’ and
‘advanced computer architecture’ to masters

Since October 2012: also teaching for engineers industrial sciences
(‘industrial engineers’)

Projects, papers, phd students in parallel processing (performance
analysis, GPU computing) & data mining/machine learning
(probabilistic models, causality, learning algorithms)

http://parallel.vub.ac.be

GPU Programming

Jan Lemeire

Parallel Systems: Introduction

Goals of course

Understand architecture of modern parallel systems.

Employ software technologies for parallel programming.

Design efficient and two-fold generic parallel solutions.

For a wide variety of parallel systems & broad class of similar algorithms.

Sharpen your low-level and high-level IT skills.

Understand their performance.

Make successful technology. Understand economics.

Jan Lemeire

Parallel Systems: Introduction

The Free Lunch is Over

Chuck Moore, "DATA PROCESSING IN EXASCALE-CLASS COMPUTER SYSTEMS", The

Salishan Conference on High Speed Computing, 2011.

Jan Lemeire

Parallel Systems: Introduction

The Free Lunch is Over

http://www.gotw.ca/publications/concurrency-ddj.htm

Why You Don’t Have 10GHz Today?
• heat/surface is the problem (power wall)
• 12 ns would mean electric paths of 10 atoms wide

Moreover:

• memory bottleneck
• instruction level parallelism (ILP) wall

What about Moore’s Law?
� increase of Clock speed: stopped
� increase of Transistors: ongoing
It’s now about the number of cores!

Jan Lemeire

Parallel Systems: Introduction

Floating-Point Operations per
Second for the CPU and GPU

Jan Lemeire

Parallel Systems: Introduction

FASTRA at University of
Antwerp

Collection of graphical cards

FASTRA 8 cards = 8x128 processors = 4000
euro

Similar performance as University’s
supercomputer (512 regular desktop PCs)
that costed 3.5 million euro in 2005

http://fastra.ua.ac.be

Jan Lemeire 9

GPU vs CPU Peak Performance Trends

� GPU peak performance has grown aggressively.

� Hardware has kept up with Moore’s law

Source : NVIDIA

2010
350 Million triangles/second
3 Billion transistors GPU

1995
5,000 triangles/second
800,000 transistors GPU

Jan Lemeire

Why are GPUs faster?

8 cores

Jan Lemeire

GPU Programming

GPU architecture strategy

Light-weight threads, supported by the hardware
Thread processors, upto 96 threads per processor

Context switch can happen in 1 cycle!

No caching mechanism, branch prediction, …
GPU does not try to be efficient for every program, does not spend
transistors on optimization

Simple straight-forward sequential programming should be
abandoned…

Less higher-level memory:
GPU: 16KB shared memory per SIMD multiprocessor

CPU: L2 cache contains several MB’s

Massively floating-point computation power

Transparent system organization
Modern (sequential) CPUs based on simple Von Neumann
architecture

Jan Lemeire

GP-GPUs: Graphics Processing Units
for General-Purpose programming

So…

GPU Programming

Jan Lemeire

Usage

Copy data from CPU to GPU

Start kernel within CPU-program (C, java,
Matlab, python, …)

Several kernels can be launched (pipelined)

Handled on the GPU one by one or in parallel

Figure

GPU Programming

Jan Lemeire

Host (CPU) – Device (GPU)

GPU Programming

Device/GPU

Global
Memory

Processors

Host/CPU

R
A
M

Processor

Hypertransport and
Intel’s Quickpath

currently 25.6 GB/s

PCIe x16
4 GB/s

PCIe x16 Gen2
8 GB/s peak

Kernel launches

GPU bus
Nvidia Tesla C2050:

1030.4 GB/s

Jan Lemeire 15

GPU Architecture

In the GTX 280, there are 10 Thread Processing Clusters

Each has 3 Streaming Multiprocessors, which we will refer to

as multiprocessors (MPs).

Each MP has 8 Thread Processors. We will refer to these as

Scalar Processors (SP).

240 processor cores and 30 MPs in total!

One double-precision unit (DP) per MP

Source : NVIDIA
Jan Lemeire

GPU Architecture

streaming multiprocessor

global memory

Jan Lemeire

1 Streaming Multiprocessor

The Same Instruction is

executed on Multiple Data (SIMD)

width of pipeline: 8 - 32

Jan Lemeire

GPU vs CPU:

NVIDIA 280 vs Intel i7 860

GPU CPU1

Registers 16,384 (32-bit) /

multi-processor3

128 reservation stations

Peak memory bandwidth 141.7 Gb/sec 21 Gb/sec

Peak GFLOPs 562 (float)/

77 (double)

50 (double)

Cores 240 (scalar

processors)

4/8 (hyperthreaded)

Processor Clock (MHz) 1296 2800

Memory 1Gb 16Gb

Local/shared memory 16Kb/TPC2 N/A

Virtual memory None

18

1http://ark.intel.com/Product.aspx?id=41316
2TPC = Thread Processing Cluster (24 cores)
330 multi-processors in a 280

Jan Lemeire

Performance: GFlops?

GPUs consist of MultiProcessors (MPs) grouping a
number of Scalar Processors (SPs)

Nvidia GTX 280:
30MPs x 8 SPs/MP x 2FLOPs/instr/SP x 1 instr/clock x 1.3 GHz

= 624 GFlops

Nvidia Tesla C2050:
14 MPs x 32 SPs/MP x 2FLOPs/instr/SP x 1 instr/clock x 1.15 GHz
(clocks per second)

= 1030 GFlops

GPU Programming

Jan Lemeire

Other limit: bandwidth

Nvidia GTX 280:
1.1 GHz memory clock

141 GB/s

Nvidia Tesla C2050:
1.5 GHz memory clock

144 GB/s

GPU Programming

Pixel rescaling
lens correction pattern detection

Images of

20MegaPixels

Example: real-time image processing

CPU gives only 4 fps
next generation machines need 50 fps
GPUs deliver 70 fps

Jan Lemeire

Example: pixel transformation

usgn_8 transform(usgn_8 in, sgn_16 gain, sgn_16 gain_divide,
sgn_8 offset)

{

sgn_32 x;

x = (in * gain / gain_divide) + offset;

if (x < 0) x = 0;

if (x > 255) x = 255;

return x;

}

GPU Programming

Jan Lemeire

Performance on Tesla C2050

1 pixel is represented by 1 byte [0-255]

Integer operations: performance is half of floating point
operations

Two different implementations:

◦ FPN1: 1 pixel per thread

◦ FPN4: 4 pixels per thread (treat 4 bytes as 1 ‘word’)

Pixel transformation

Pmem (bytes/s) 115 GB/s Pops (ops/s) 500 Gops/s

CI (bytes/pix) 1/5 Ops/pix 5+4 (FPN1)
5+1 (FPN4)

PmemxCI (pix/s) 23 Gpix/s Pops/(Ops/pix) 56 Gpix/s (FPN1)
83 Gpix/s (FPN4)

GPU Programming

Jan Lemeire

Harder to program!
Hardware architecture should be taken into account

Optimization is important

Additional complexity in code

Harder to debug, maintain, …

Algorithms should contain inherently
massively fine-grained parallelism

But… nothing is for free

GPU Programming

