Parallel Systems Course: Chapter VI

Dense Matrix Algorithms

KUMAR Chapter 8

Jan Lemeire
Parallel Systems lab
November 2014
Overview

1. Matrix-vector Multiplication
2. Matrix-matrix Multiplication
3. Shared-memory
Utility of Matrix Algorithms

Applied in several numerical and non-numerical contexts:
- 3D image calculations
- Solving (linear) equations
- Simulations of physical systems

E.g.: makes the basis of LINPACK, a software library for performing numerical linear algebra, by using the BLAS (Basic Linear Algebra Subprograms) libraries for performing basic vector and matrix operations.
Dense versus Sparse Matrices

Dense matrices: have no or few known zero entries

Sparse matrices: are populated primarily with zeros
- often appear in science or engineering when solving partial differential equations
- easily compressed
- very large sparse matrices are impossible to manipulate with the standard algorithms, due to memory limitations
- special versions of the algorithms are necessary and are more efficient
Matrix – Vector Multiplication

\[C = A \times V \]

\[C_i = \sum_{k=1}^{n} A_{ik} \cdot V_k \quad (i: 1..n) \]

\[T_{seq} = \delta_{mm} \cdot n^2 \]

for (i=0; i<n; i++) {
 \[C[i] = 0; \]
 for (k=0; k<n; k++) {
 \[C[i] += A[i, k] \cdot V[k]; \]
 }
}
Matrix/Vector Partitioning?

- **Row-wise block striping**
 - p_1
 - p_2
 - p_3
 - p_4

- **Column-wise block striping**
 - p_1
 - p_2
 - p_3
 - p_4

- **Checkerboard partitioning**
 - p_1
 - p_2
 - p_3
 - p_4
 - p_5
 - p_6
 - p_7
 - p_8
 - p_9

- **Vector partitioning**
 - p_1
 - p_2
 - p_3
 - p_4
Data & results distributed

Now: *distributed memory solutions*

- In parallel applications, data remains distributed while operations (such as vector-matrix operations) are performed on them.

- In the following we assume that the data is already distributed among the processors.
Dense Matrix Algorithms

Parallel

Matrix A × Vector x

Processes

(a) Initial partitioning of the matrix and the starting vector x

Row-wise partitioning

(b) Distribution of the full vector among all the processes by all-to-all broadcast

(c) Entire vector distributed to each process after the broadcast

(d) Final distribution of the matrix and the result vector y

Figure 8.1 Multiplication of an $n \times n$ matrix with an $n \times 1$ vector using rowwise block 1-D partitioning. For the one-row-per-process case, $p = n$.

(n=p)
Parallel M x V Multiplication
Version 1 \(p < n \)

\(\frac{n}{p} \) rows of matrix and \(\frac{n}{p} \) elements of vector per processor
Parallel $M \times V$ Multiplication

Version 2

$(n^2 = p)$

Figure 8.2 Matrix-vector multiplication with block 2-D partitioning. For the one-element-per-process case, $p = n^2$ if the matrix size is $n \times n$.

(a) Initial data distribution and communication steps to align the vector along the diagonal

(b) One-to-all broadcast of portions of the vector along process columns

(c) All-to-one reduction of partial results

(d) Final distribution of the result vector
Parallel M x V Multiplication
Version 2 p < n^2

\[(n/\sqrt{p}) \times (n/\sqrt{p})\) blocks of matrix and
\[n/\sqrt{p}\) elements of vector per processor
Overview

1. Matrix-vector Multiplication
2. Matrix-matrix Multiplication
3. Shared-memory
Matrix Multiplication

\[C = A \times B \]

\[C_{ij} = \sum_{k=1}^{n} A_{ik} \cdot B_{kj} \quad (i, j: 1..n) \]

\[T_s = \delta_{mm} \cdot n^3 \]

for (i=0; i<n; i++){
 for (j=0; j<n; j++){
 C[i,j]=0;
 for (k=0; k<n; k++){
 C[i,j]+=A[i, k]*B[k,j];
 }
 }
}
MxM: one-step version

- B is sent to all processors
- Computation in 1 step
- Same amount of communication
Algorithm alternates computation and communication steps.

Computation step: each processor multiplies its A submatrix with its B submatrix, resulting in a submatrix of C. The black circles indicate the step in which each submatrix is computed.

After multiplication: processor sends its B submatrix to the next processor and receives one from the preceding processor. The communication forms a circular shift operation.
Parallel MxM: Execution Profile

Speedup = 2.55 Efficiency = 85%
Theoretical Analysis of Matrix Multiplication

- Computation time (slave) \(T_{\text{work}}^i = \frac{n^3}{p} \cdot \delta_{nm} \)

- Communication time (slave) – including data distribution
 \[
 T_{\text{comm}}^i = (p+1) \cdot t_s + \left(1 + \frac{2}{p}\right) \cdot n^2 \cdot t_w
 \]

- Overhead ratio = overhead/computation = \(O(n^2)/O(n^3/p) = O(p/n) \)

- **Scalable** since efficiency remains constant if we increase both \(p \) and \(n \)
Parameter Dependence of Matrix Multiplication

n: work size, here: matrix size
V3: Cannon’s algorithm

Checkerboard partitioning
Cannon’s parallel MxM Communication steps on 16 processes
Initially, blocks Need to Be Aligned

Each triangle represents a matrix block

Only same-color triangles should be multiplied
Rearrange Blocks

Block A_{ij} cycles left i positions

Block B_{ij} cycles up j positions
Consider Process $P_{1,2}$

Step 1: Computation & shift
Consider Process $P_{1,2}$
Consider Process $P_{1,2}$

Step 3
Consider Process $P_{1,2}$

Step 4
Elements of A and B Needed to Compute the process’s portion of C

Algorithm 1 & 2

Cannon’s Algorithm

Why faster? Granularity = \(\text{comp/comm} \)
~ \((\text{breadth} \times \text{width}) / (\text{breadth} + \text{width}) \)
~ \(\text{surface/circumference} \Rightarrow \text{highest for a sphere!} \)
=> Square better than rectangle
Complexity Analysis

- Algorithm has \sqrt{p} iterations
- During each iteration process multiplies two $(n / \sqrt{p}) \times (n / \sqrt{p})$ matrices: $\Theta(n^3 / p^{3/2})$
- **Computational complexity:** $\Theta(n^3 / p)$ [the same]
- During each iteration process sends and receives two blocks of size $(n / \sqrt{p}) \times (n / \sqrt{p})$
- **Communication complexity:** $\Theta(n^2 / \sqrt{p})$ [lower!]

\Rightarrow Overhead ratio $= O(n^2 / \sqrt{p})/O(n^3/p) = O(\sqrt{p})$

\Rightarrow **Super-scalable** since efficiency drops if we increase both p and n
Efficient Interconnection Networks for Cannon’s $M \times M$?
Memory need of each processor

As a function of n, p and b (the number of bytes per element)

- Sequential algorithm:

- One-step algorithm:

- Alternate algorithm:

- Cannon’s algorithm:
Special MPI functions

- **MxV version 2**: Reduce operation
- **Cannon**: Shift operation through a `SendRecv_replace` call

Submatrix sending:
- Consist of equally spaced blocks
- `DataType.Vector(int count, int blocklength, int stride, Datatype oldtype)`
Overview

1. Matrix-vector Multiplication
2. Matrix-matrix Multiplication
3. Shared-memory
Shared-memory systems

• Computation of each element is independent of the others
 • Can be done by a thread without the need of synchronization (see chapter of shared memory)
• Data is accessible by all threads
• However...
MxM on GPU

- Initially, matrices are copied to GPU
 - If they are not still in memory from previous matrix operations, keep pointers in CPU to the data on the GPU
- Every thread computes 1 element of C.
- Not enough memory to put all data in shared memory (16K)
- On one multiprocessor, 1 block of threads computes 1 block of the C matrix
- Iteratively copy A row blocks and B column blocks to shared memory.
- Result: 200x speedup, 50x if compared to quadcore

Example: GPUmat toolbox in Matlab
MxM on GPU

Each multiprocessor computes 1 block

If rows and columns do not fit in local memory: compute block-by-block
Cache efficiency?

- Multicores or GPUs with cache can directly access RAM/global memory
- Data is cached automatically
- However: *is the data in cache reused optimally?*
- Better is to organize the computations as with the GPU implementation
 - Multicores: each thread calculates the multiplication of 2 submatrices of A and B
Cache efficiency

- Row of A is reused in computing row of C
- Column of B is reused in computing column of C

To maximize cache usage, compute block by block (cf Cannon which minimizes communication)

If A rows and B columns do not fit in cache: alternate over A and B blocks like GPU version