
Parallel Systems: Performance Analysis of Parallel

Processing

Jan Lemeire

November 6, 2007



Chapter 1

Performance Analysis of
Parallel Processing

PARALLEL processing is the only answer to the ever-increasing demand
for more computational power. Nowadays, the big giants in hardware

and software, like Intel and Microsoft, are increasingly aware of it and have
pounced onto the market. But unlike sequential programs running on the
Van Neumann computer, the parallelization of programs is not trivial. It
depends quite heavily on the underlying parallel system architecture. Auto-
matic parallelization of programs is a 50-year old dream in which a program
is efficiently matched with the available computing resources. This has be-
come possible, but only for a very limited number of applications, the class of
trivially parallelizable programs. For those, the computational work can be
divided into parts which can be processed completely independently. Other
programs, on the other hand, need manual adaptation to the available re-
sources. This cannot be achieved without a detailed understanding of the
algorithm. Intelligent reasoning is necessary to engineer the matching of the
patterns of the concurrently operating entities to the pattern of the proces-
sors and the network resources, in order to obtain an efficient interplay of
computation and communication. The aim of a performance analysis is to
provide support for the developer of parallel programs.

1



CHAPTER 1. PERFORMANCE ANALYSIS OF PARALLEL PROCESSING2

The goals of a performance analysis are multifold:

• An understanding of the computational process in terms of the un-
derlying processes: instructions performed, processor cycles spent,
cache misses, memory hierarchy utilization, communication, re-
source utilization per program section, number of iterations, and
so on.

• An identification of inefficient patterns, the bottlenecks that un-
necessarily slow down the execution process. In particular, per-
formance values that are, given the context, ‘abnormally’ low and
which can be considered for optimization and improvements. They
indicate up to which points tuning efforts are most effective.

• A prediction of the performance for a new program or system con-
figurations. A performance model should provide an expectation of
the achievable performance with a reasonable fidelity, as a function
of program and system parameters.

• The definition of program and system properties that fully charac-
terize their performance, i.e. which allow the quantification of their
performance for a wide range of systems and system configurations.

Various tools exist nowadays for automated diagnosis and control. Con-
siderably more effort is needed to improve current work to present the user
a simple, comprehensible and reasonably accurate performance evaluation
[Pancake, 1999]. Current challenges are further automation, tackling com-
plex situations (e.g. GRID environments [Zsolt Nemeth, 2004]) and provid-
ing the software developer with understandable results with a minimum of
learning overhead. To sketch the difficulty of the task, consider the study
of network performance. Communication delays should be attributed to
the different steps of the communication process, such as machine latency,
transfer time, network contention, flight time, etc [Badia, 2003]. A correct
understanding of the origins of the delays is indispensable. The task of iden-
tifying them becomes even more difficult when implementation-specific low
level issues come into play, such as specific protocol behavior, window delays
or chatter [NetPredict, 2003]. These are not always fully understood and
can often not be measured directly.

This chapter discusses the parallel performance metrics which where
employed to build our performance analysis tool, EPPA. These metrics are
based on the lost cycle approach. Overhead ratios are defined to quantify the



CHAPTER 1. PERFORMANCE ANALYSIS OF PARALLEL PROCESSING3

impact of each type of lost cycle, or overhead, on the overall performance,
the speedup. The second section explains which information is recorded by
EPPA and compares the tool with related work.

1.1 Parallel Performance Metrics

Parallel processing is the simultaneous execution of a program by multiple
processors. Parallelization is the rewriting of a sequential program into
a program that can be processed in parallel and that gives the same result
as the sequential program. The advantage is that the combined computing
and memory resources of the processor group can be utilized. Calculation or
memory intensive programs can fruitfully exploit the aggregated resources
to finish the job in less time.



CHAPTER 1. PERFORMANCE ANALYSIS OF PARALLEL PROCESSING4

Example 1.1 (Parallel processing I: Protein folding).

Proteins are long chains of thousands of amino acids. After cre-
ation, the sequence ‘folds’ into a unique 3-dimensional struc-
ture that determines the protein’s properties. The shape into
which a protein naturally folds is known as its native state.
Fig. 1.1 shows an antibody against cholera, unfolded and in
its native state. Understanding the structure of a protein is
critical in understanding its biological function. The structure
of (synthetic) proteins can be determined by running detailed
simulations of the folding process. Because of the complexity
and multitude of interactions, these computations require ‘zil-
lions’ of processor cycles. It takes with today’s computers about
10000 days to simulate a particular folding of an average pro-
tein. Folding@Home is a distributed computing project from
Stanford university to tackle this performance problem (http:
//folding.stanford.edu/). People from throughout the world
run the software and make one of the largest supercomputers in
the world in the form of a computational grid. The participa-
tion in this project throughout the world is depicted in Fig. 1.2.
Every computer runs a section of the simulation for one of the
many protein foldings that need to be calculated in research on
Alzheimer’s Disease, Cancer, Parkinson’s Disease, etc. To con-
tribute, you simply install a small program on your computer
which runs in the background only consuming processor time
when there is no other work.

The runtime of a sequential program is defined as Tseq. The parallel
version, whose runtime is denoted as Tpar, will hopefully finish faster. The
profit of switching from one to multiple processors is characterized by the
speedup:

Speedup =
Tseq

Tpar
(1.1)

It expresses how much faster the parallel version runs relative to the se-
quential one. Note that in the context of parallel processing I denote the
computation time of the sequential program as Tseq, whereas in context of
sequential computing I denote the computation time as Tcomp.

http://folding.stanford.edu/
http://folding.stanford.edu/


CHAPTER 1. PERFORMANCE ANALYSIS OF PARALLEL PROCESSING5

Figure 1.1: Protein folding, from amino acid sequence to a 3-dimensional
structure.

Figure 1.2: Folding@Home’s supercomputer. Distribution accross the world
of the computers participating in the project.



CHAPTER 1. PERFORMANCE ANALYSIS OF PARALLEL PROCESSING6

When the parallel program is run on p processors, the efficiency is
defined as:

Efficiency =
Speedup

p
=

Tseq

p.Tpar
(1.2)

Efficiency measures how well a processor is used during the parallel computa-
tion. It represents the effectivity of the set of cooperating parallel processes.
Efficiency quantifies the portion of the parallel runtime during which the
processors where doing useful work, i.e. when the parallel execution is per-
forming parts of the sequential execution. Ideally, the efficiency is 100%,
which is equivalent to a speedup of p. Each processor optimally executes
an equal part of the sequential program. In practice, the effectivity of the
parallel program is limited due to the inevitable parallel overhead, such as
communication of data between the processors. Hence, speedup will be
smaller than p. It can even become lower than 1, which indicates a slow
down instead of a speed up. On the other hand is it also possible to attain a
speedup higher than p, called superlinear speedup. It typically occurs when
the parallel program succeeds in a more efficient utilization of the mem-
ory hierarchies of the processors. This results in lower access times of the
memory hierarchies.

It must be noted that the here developed performance metrics focus on
the computation time of the process. Other performance metrics, such as
energy utilization, are, despite their increasing importance, not considered
here. On the other hand, a generic approach is pursued, one that applies
for a multivariate analysis in general.

1.1.1 Lost Cycle Approach

For the analysis of the parallel runtime and overhead, I adopt the lost cy-
cle approach, as conceived by Crovella and LeBlanc [1994]. It provides a
measure of the impact of the overhead on the speedup. Ideally, each proces-
sor computes its part of the total work. Thus without additional work, we
would have Tpar = Tseq/p. The work is divided among the processors of the
parallel system. The total useful computational work is characterized by the
sequential runtime. The Speedup then equals to p. In practice, however,
additional processor cycles are needed to manage the parallel execution,
Tpar > Tseq/p. Overhead is therefore defined as

overhead = p.Tpar − Tseq. (1.3)

Each process has Tpar time allocated to perform its part of the job. The
cycles during this period that are not employed for useful computation are



CHAPTER 1. PERFORMANCE ANALYSIS OF PARALLEL PROCESSING7

therefore considered lost processor cycles. Take the following example.

Example 1.2 (Parallel processing II: Parallel Matrix Multiplication).

Consider the multiplication of 2 square matrices with size n×n:
C = A×B. The elements of the product matrix C are calculated
according to the formula

Ci,j =
n∑

k=1

Ai,k.Bk,j , (1.4)

with i and j indicating respectively the row and column of the
element. The computation involves n3 multiplications and n2 ×
(n−1) additions. The runtime rapidly increases for higher values
of n, what makes it worth for being computed in parallel for high
values of n. There exist many ways to calculate the product in
parallel. A simple version is illustrated by Fig. 1.3. The A
matrix is striped into p blocks n/p of contiguous rows, the B
matrix into p blocks of n/p columns. They are distributed among
the p processors. Each processor stores a submatrix of A and one
of B, labeled in Fig. 1.3, in which p is 3. A master processor
does the partitioning and sends the submatrices to the slave
processors. The algorithm then alternates p computation and
communication steps. In each computation step, each processor
multiplies its A submatrix with its B submatrix, resulting in a
submatrix of C. The black circles in Fig. 1.3 indicate the step
in which each submatrix is computed. After the multiplication,
each processor sends it B submatrix to the next processor and
receives one from the preceding processor, in such way that the
communication forms a circular shift operation. When finished,
the slaves send their part of C to the master computer. The
timeline of the execution on our cluster of Pentium II processors
connected by a 100MBs switch is shown in Fig. 1.4. Two types
of overhead can be identified: communication and idling. The
speedup for the computation of a 100 × 100 matrix is 2.55 and
the efficiency is 85%.

The parallel runtime on processor i consists of its part of the useful work,
T i

work, and the cycles spent on the overheads. The impact of the different



CHAPTER 1. PERFORMANCE ANALYSIS OF PARALLEL PROCESSING8

Figure 1.3: Parallel Matrix Multiplication on 3 processors: partitioning,
computation and communication in 3 steps. At each step, 3 submatrices are
calculated, indicated with black circles.

Figure 1.4: Execution profile of a Parallel Matrix Multiplication of two
100x100 matrices.



CHAPTER 1. PERFORMANCE ANALYSIS OF PARALLEL PROCESSING9

types of overhead will be analyzed separately. Each overhead type is labeled
with an index j. The number of overhead types is denoted with O. T i,j

ovh

then denotes the time of overhead j on processor i. The runtime on every
processor can then be written as:

T i
par = T i

work +
O∑
j

T i,j
ovh with i = 1 . . . p (1.5)

Tseq + Tanomaly =
p∑
i

T i
work (1.6)

where Tanomaly is the difference between the sum of all cycles spent on useful
work by the different processors and the sequential runtime. In most cases it
is very close to zero. If positive, the execution of the useful work takes more
time in parallel. If negative, the parallel execution is faster, for example by
a more efficient use of the memory hierarchy. The parallel runtime is the
same on all processors:

Tpar = T 1
par = . . . = T p

par. (1.7)

Hence, we may write:

Tpar =

p∑
i

T i
par

p
(1.8)

Together with 1.5 it follows that

Tpar =

p∑
i

T i
work +

p∑
i

O∑
j

T i,j
ovh

p
(1.9)

=

Tseq + Tanomaly +
O∑
j

T j
ovh

p
(1.10)

with T j
ovh =

p∑
i

T i,j
ovh, the total time of overhead j. Parallel anomaly is also

regarded as overhead, although that it might be negative. It is therefore



CHAPTER 1. PERFORMANCE ANALYSIS OF PARALLEL PROCESSING10

added to the overheads, TO+1
ovh The speedup can then be rewritten as

Speedup =
Tseq

Tseq+

O+1∑
j

T j
ovh

p

=
p

Tseq

Tseq
+

O+1∑
j

T j
ovh

Tseq

(1.11)

Hence [Kumar and Gupta, 1994]:

Speedup =
p

1 +
∑

j

T j
ovh

Tseq

. (1.12)

The equation expresses how the overheads influence the speedup. The
lost processor cycles must be considered relative to the sequential runtime.
Without any overhead, the speedup equals to p.

1.1.2 Overhead Ratios

From Eq. 1.12 it follows that the impact of overhead on the speedup is
reflected by its ratio with the sequential runtime. I call these terms the
overhead ratios. They express the relative weight of the overhead term:

Ovhj =
T j

ovh

Tseq
. (1.13)

The speedup is then:

Speedup =
p

1 +
∑

j

Ovhj

, (1.14)

and the efficiency gives

Efficiency =
1

1 +
∑

j

Ovhj

. (1.15)

These definitions differ slightly from the normalized performance in-
dices used by the performance tool AIMS, defined as indexj = T j

ovh/Tpar

[Sarukkai et al., 1994]. They are always less than one, while the overhead
ratios become more than one if the runtime of the overhead surpasses the



CHAPTER 1. PERFORMANCE ANALYSIS OF PARALLEL PROCESSING11

Figure 1.5: Parallel Matrix Multiplication on 3 processors: overall perfor-
mance.

sequential runtime. The advantage of the overhead ratios is that they are
independent of the other overheads. This is not the case for the indices,
since Tpar incorporates all overheads. If one overhead increases, its index
increases and the indices of the others decrease, since their relative weight
decreases.

Example 1.3 (Overheads of Parallel Matrix Multiplication).

Fig. 1.5 shows the overall performance of the run of the previous
example. Two overheads are identified: the communication and
the idle time. Their ratio with the sequential time, Ovhj , is

given. The sum of the processor’s computation times,
p∑
i

T i
work,

divided by the sequential runtime is also given, but is not equal to
100%. A value of 100% means that the computation time of the
useful work is equal for a sequential as for a parallel execution.
It is 102.6% instead, which means that the overhead ratio of
the parallel anomaly is 2.6%. In parallel, 2.6% more cycles are
needed to do the same work. Additionally, Fig. 1.5 shows the
overhead ratios per processor individually.



CHAPTER 1. PERFORMANCE ANALYSIS OF PARALLEL PROCESSING12

Figure 1.6: Parallel Matrix Multiplication on 3 processors: overhead ratios
per process.

1.1.3 Overhead Classification

The different overheads of a parallel execution can be classified into the
following classes:

1. Control of parallelism (TctrlPar) identifies the extra functionality nec-
essary for parallelization. This additional work can be further sub-
divided into the different logical parts of the parallel algorithm, like
partitioning or synchronization, as done by several authors [Bull, 1996]
[Truong and Fahringer, 2002].

2. Communication (Tcomm) is the overhead due to the exchange of data
between processors. It is defined as the overhead time not overlapping
with computation: the computational overhead due to the exchange
of data between processes, in the sense of loss of processor cycles due
to a communication operation.

3. Idling (Tidle) is the processors idle time. It happens when a processor
has to wait for further information before it can continue. Reasons for
idling are for example load imbalances, when the work is unequally
distributed among the processes, or a bottleneck at the master, when
it has to serve all slaves.

4. Parallel anomaly (Tanomaly) is the difference between the sum of all
cycles spent on useful work by the different processors and the sequen-
tial runtime (Eq. 1.6). By the alternative speedup formula (Eq. 1.12),
Tanomaly was regarded as overhead. It influences the speedup, given
by its ratio with the sequential runtime.



CHAPTER 1. PERFORMANCE ANALYSIS OF PARALLEL PROCESSING13

1.1.4 Granularity

To illustrate how a performance analysis is performed, this section intro-
duces one of its most influential concepts: granularity. The key to the
execution of parallel algorithms is the communication pattern between con-
currently operating entities. By choosing speedup as the main goal of par-
allelization, Eq. 1.12 shows that overheads should be considered relatively.
Communication overhead Tcomm must be considered with respect to the
computation time. The inverse of the communication overhead ratio is called
the granularity [Stone, 1990]:

Granularity =
Tcomp

Tcomm
=

1
Ovhcomm

(1.16)

Granularity is a relative measure of the ratio of the amount of computation
to the amount of communication of a parallel algorithm implementation.
The bigger the granularity, the more the application spends time in compu-
tation relative to communication. Another interpretation is that it expresses
the size of the tasks. Since the communication is often the main overhead,
the granularity gives a good indication of the feasibility of parallelization.
With a granularity of one, the efficiency is 50%.

The communication time can be modeled as a simple linear function of
the transmitted data size and a constant additive factor representing link
startup overheads (latency). This is a conventional approach in analyzing
communications for most message-passing, distributed systems [Steed and
Clement, 1996]. The communication time can thus be split into a compo-
nent proportional to the communicated data size and a part proportional
to the latency of the communication links. For computing-intensive tasks
and large data chunks, the data-proportional part overwhelms the constant
part so that the latter can be neglected. Since parallelization is used for
computation-intensive tasks, the approximation is valid. The communica-
tion overhead time can then be written as β.qdata, with qdata the size in bytes
of the communicated data. Assume that we can approximate the computa-
tion time by τ.qoperations, with qoperations the number of basic operations of
the algorithm and τ the cycles per operation. The granularity can then be
rewritten as:

Granularity =
Tcomp

Tcomm
=
τ

β
.
qoperations

qdata
(1.17)

This ratio depends on hardware and software, so τ/β is called the hard-
ware granularity and qoperations/qdata the software granularity. The



CHAPTER 1. PERFORMANCE ANALYSIS OF PARALLEL PROCESSING14

Figure 1.7: Performance of Parallel Matrix Multiplication as a function of
number of processors (with n = 100).

performance is affected by the overall granularity, independent of how it is
spread over software and hardware.

1.1.5 Parameter Dependence

As can be expected, parallel performance heavily depends on program and
system configuration. Most numerical, computation-intensive algorithms
have a parameter that determines the size of the computational work. I call
it the work size parameter, which I denote with W . For parallel processing,
p, the number of processors participating, is the most important system
parameter. The following example gives a typical parameter dependency
analysis.

Example 1.4 (Parameter Dependence of Parallel Matrix Multiplication).

Let’s go back to the example of the multiplication of 2 n × n
matrices. Fig. 1.7 shows speedup and efficiency in function of
p. Although the speedup increases when more processors are
employed, the efficiency decreases.

Performance as a function of matrix size n gives a different pic-
ture. Experimental results are shown in Fig. 1.8. Communica-
tion increases with increasing n, but computation increases a lot



CHAPTER 1. PERFORMANCE ANALYSIS OF PARALLEL PROCESSING15

Figure 1.8: Performance of Parallel Matrix Multiplication in function of
worksize (with p = 3).

faster, as it is proportional to n3. The net result is that the im-
pact of the overhead decreases and, consequently, the efficiency
increases. With p = 3, the ideal speedup is 3. The results show
that with increasing p, the speedup asymptotically approaches
the ideal speedup. For large matrices, the communication over-
head can be neglected and an ideal speedup can be achieved.
Software granularity is proportional to n.

The performance results for matrix multiplication are typical for a lot
of parallel programs: overhead increases with p so that speedup decreases
and overhead relatively decreases with increasing work size W . Applications
with a computational part that increases faster than the communication as
a function of W are appropriate for parallelization.

The influence of other system parameters, such as clock frequency and
memory size, or application parameters, such as the datatype used for the
datastructure, can be studied similarly.

1.2 Tool

Between 2000 and 2004 a tool for the performance analysis of parallel ap-
plication was developed at the parallel lab of the VUB, by Jan Lemeire,
John Crijns and Andy Crijns [Lemeire et al., 2004][Lemeire, 2004]. The



CHAPTER 1. PERFORMANCE ANALYSIS OF PARALLEL PROCESSING16

Figure 1.9: The MPI profiling interface to intercept MPI calls (dashed lines).

tool is called EPPA, which stands for Experimental Parallel Performance
Analysis. Experimental data is gathered through the profiling of parallel
runs. The post-mortem analysis is based on the performance metrics devel-
oped in the previous section. The goal of EPPA is to support the developer
of parallel applications with an easy and clear analysis.

1.2.1 EPPA

The EPPA analysis is based on traces of the execution of a parallel program:
every phase is identified together with the important characteristics of each
phase. The tracing is performed automatically when the program uses MPI
[Snir et al., 1996]. MPI, the Message Passing Interface, defines the standard
for writing parallel programs based on message passing. Parallel processes
communicate by exchanging messages. The other approach is shared mem-
ory, according to which memory may be simultaneously accessed by the
different parallel processes.

The MPI profiling interface makes it easy to intercept the MPI calls
made by a parallel program. How this works is shown in Fig. 1.9. After
linking an MPI program with the EPPA library, each MPI call, before going
the MPI library, is intercepted by the library. The information about the
MPI operations and their durations are stored in the EPPA database. By
this, EPPA collects information about the communication operations: when
messages are send, at what times they arrive, when and how long a process
is waiting for an incoming message, etcetera. The time between successive
MPI calls is stored as computation phases. Four phases are identified au-
tomatically: computation, sending, receiving and idling. The user program



CHAPTER 1. PERFORMANCE ANALYSIS OF PARALLEL PROCESSING17

Figure 1.10: Scheme of the EPPA tool.

has only to be linked with the EPPA instrumentation library to activate the
tracing of all communication activity. This is shown in Fig. 1.10. Programs
using the older PVM library for message-passing should be instrumented
manually by adding an EPPA function call after each call to PVM.

The EPPA Tool presents the performance analysis in different views:

• The timeline shows the program execution of each process (Fig. 1.4).

• The overall performance gives speedup, efficiency and global overhead
ratios (Fig. 1.5).

• The overhead ratios per process (Fig. 1.6).

• The performance variables in function of number of processors p or
work size W (Fig. 1.7 and 1.8). Besides the visualization, a regression
analysis can be applied on the displayed functions, returning the curve
that best fits the data.

Besides the information about the program’s communication that is col-
lected automatically, the user is given the possibility to specify additional
information. The data collected in this way facilitates the refinement of the
analysis. EPPA provides the following options:



CHAPTER 1. PERFORMANCE ANALYSIS OF PARALLEL PROCESSING18

• The user can differentiate computational phases. EPPA automatically
traces computation phases, as the cycles between two successive MPI
calls. But it can not know whether these computations are part of use-
ful work or overhead (control of parallelism). To make this difference,
the user can add EPPA calls to specify the role of each computational
phase.

• System parameter p and the program’s work size parameter W are
added for each experiment. Besides these, the user can add other
system or program parameters. The performance variables can then
be studied as a function of these parameters.

• The size of each message in bytes is automatically recorded by EPPA.
The communication performance can be studied as a function of mes-
sage size. Additionally, the user can specify the number of quantums
that are processed and communicated in each phase. The definition of
a quantum depends on the specific program. For a matrix operation,
a quantum is an element of the matrix. EPPA provides the function-
ality to visualize performance metrics in function of the number of
quantums.

• Finally, the main part of an algorithm usually is the repetitive execu-
tion of a basic operation. For matrix multiplication, the main compu-
tations consist of a multiplication and addition. The number of basic
operations can also be passed to EPPA and studied in detail.

1.3 Summary of Chapter

For optimizing performance, the lost processor cycles of a parallel execution
should be minimized. The impact of an overhead (a source of lost cycles)
on the speedup is quantified by its ratio with the sequential runtime. When
considering the main phases of a parallel execution, overheads can be clas-
sified according to 4 types: control of parallelism, communication, idling
and parallel anomaly. The tool EPPA can be used to automatically trace
these phases during a run of a parallel program. The execution is visualized
together with the different performance metrics. The user can augment the
analysis by providing additional information about the parallel program.



Bibliography

Rosa M. et all. Badia. Dimemas: Predicting mpi applications behavior in
grid environments. In Workshop on Grid Applications and Programming
Tools (GGF8), 2003.

J. Mark Bull. A hierarchical classification of overheads in parallel programs.
In Innes Jelly, Ian Gorton, and Peter R. Croll, editors, Software Engineer-
ing for Parallel and Distributed Systems, volume 50 of IFIP Conference
Proceedings, pages 208–219. Chapman & Hall, 1996. ISBN 0-412-75740-0.

Mark Crovella and Thomas J. LeBlanc. Parallel performance using lost
cycles analysis. In SC, pages 600–609, 1994.

Vipin Kumar and Anshul Gupta. Analyzing scalability of parallel algorithms
and architectures. Journal of Parallel and Distributed Computing (special
issue on scalability), 22(3):379–391, 1994.

Jan Lemeire. Documentation of eppa tool (experimental parallel perfor-
mance analysis). http://parallel.vub.ac.be/eppa, 2004.

Jan Lemeire, Andy Crijns, John Crijns, and Erik F. Dirkx. A refinement
strategy for a user-oriented performance analysis. In Dieter Kranzlmüller,
Péter Kacsuk, and Jack Dongarra, editors, PVM/MPI, volume 3241 of
Lecture Notes in Computer Science, pages 388–396. Springer, 2004. ISBN
3-540-23163-3.

Inc NetPredict. Common mistakes in performance analysis, white paper.
NetPredict Inc, 2003.

Cherri M. Pancake. Applying human factors to the design of performance
tools. In Patrick Amestoy, Philippe Berger, Michel J. Daydé, Iain S. Duff,
Valérie Frayssé, Luc Giraud, and Daniel Ruiz, editors, Euro-Par, volume
1685 of Lecture Notes in Computer Science, pages 44–60. Springer, 1999.
ISBN 3-540-66443-2.

19

http://parallel.vub.ac.be/eppa


BIBLIOGRAPHY 20

Sekhar R. Sarukkai, Jerry Yan, and Jacob K. Gotwals. Normalized perfor-
mance indices for message passing parallel programs. In ICS ’94: Proceed-
ings of the 8th international conference on Supercomputing, pages 323–
332, New York, NY, USA, 1994. ACM Press. ISBN 0-89791-665-4. doi:
http://doi.acm.org/10.1145/181181.181548.

Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack
Dongarra. MPI: The Complete Reference. MIT Press, 1996.

Michael R. Steed and Mark J. Clement. Performance prediction of pvm pro-
grams. In IPPS ’96: Proceedings of the 10th International Parallel Pro-
cessing Symposium, pages 803–807, Washington, DC, USA, 1996. IEEE
Computer Society. ISBN 0-8186-7255-2.

Harold S. Stone. High-performance computer architecture (2nd ed.).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1990.
ISBN 0-201-51377-3.

Hong Linh Truong and Thomas Fahringer. SCALEA: A performance anal-
ysis tool for distributed and parallel programs. In Burkhard Monien and
Rainer Feldmann, editors, Euro-Par, volume 2400 of Lecture Notes in
Computer Science, pages 75–85. Springer, 2002. ISBN 3-540-44049-6.

Zoltan Balaton Zsolt Nemeth, Gabor Gombas. Performance evaluation on
grids: Directions issues and open problems. In 12th Euromicro Conference
on Parallel, Distributed and Network-Based Processing (PDP’04) Febru-
ary 11 - 13, 2004, A Coruna, Spain, 2004. URL citeseer.ist.psu.edu/
nemeth04performance.html.

citeseer.ist.psu.edu/nemeth04performance.html
citeseer.ist.psu.edu/nemeth04performance.html

	Performance Analysis of Parallel Processing
	Parallel Performance Metrics
	Lost Cycle Approach
	Overhead Ratios
	Overhead Classification
	Granularity
	Parameter Dependence

	Tool
	EPPA

	Summary of Chapter


