Parallel Systems Course: Chapter IV
Advanced Computer Architecture

GPU Programming

Jan Lemeire ¥ Vrije Universiteit Brussel
Dept. ETRO

September 28th 2012

— Overview

1. GPUs for general purpose

2. GPU ‘threads’ executing kern?

3. Starting kernels from host
ghet g (

i —

4.

. , S AP :
xecution motel & GPU-archit

N
1] .
| R // pr" \ ?;,J%H"

— Overview

1. GPUs for general purpose

2. GPU ‘threads’ executing kerne

3. ﬁztmg kernels from host (

e%on nﬁael.& GEB fG.I‘ChIt

\

- e
o

es/second
tors GPU

Supercomputing for free

¢ FASTRA at university of Antwerp

Collection of 8 graphical cards in PC

FASTRA 8 cards = 8x128 processors = 4000
euro

Similar performance as University’s
supercomputer (512 regular desktop PCs)
that costed 3.5 million euro in 2005

http://fastra.ua.ac.be

GPU Programming
Jan Lemeire

Why are GPUs faster?

SEEEEEEE EEEEEEEE
EEEENENE EEEEEEEE

S12ccores::

EEEEEEEE EEEEEEEE
EEEEEEEN EEEEEEEN
EEEEEEEE EEEEEEEE
EEEEEEEN REEEEEEN
EEEEEEEE EEEEEEEN
EEEENEEN REEEEEEE

GPU specialized for math-intensive highly parallel
computation

So, more transistors can be devoted to data
processing rather than data caching and flow control

Control

GPU architecture strategy

¢ Light-weight threads, supported by the hardware

+ Thread processors, upto 96 threads per processor
+ Context switch can happen in 1 cycle!

¢ No caching mechanism, branch prediction, ...

+ GPU does not try to be efficient for every program, does not spend
transistors on optimization

+ Simple straight-forward sequential programming should be
abandoned...

¢ Less higher-level memory:
+ GPU: 16KB shared memory per SIMD multiprocessor
4+ CPU: L2 cache contains several MB’s

» Massively floating-point computation power

» Transparent system organization

®¥ Modern (sequential) CPUs based on simple Von Neumann
architecture

GPU Programming
Jan Lemeire

GP-GPUs: Graphics Processing Units
for General-Purpose programming

'
-(é)-

g

GPU Programming

Jan Lemeire

Usage

¢ Copy data from CPU to GPU

¢ Start kernel within CPU-program (C, java,
Matlab, python, ...)

+ Several kernels can be launched (pipelined)
+ Handled on the GPU one by one or in parallel

¢ Figure

GPU Programming
Jan Lemeire

Host (CPU) - Device (GPU)

Host/CPU

Processor

Kernel launches

V'S

Hypertransport and
Intel’s Quickpath
currently 25.6 GB/s

PCle x16
4 GB/s

Device/GPU
» Processors
V'S
Nvidi
1

PCle x16 Gen2
8 GB/s peak

GPU bus
a Tesla C2050:
030.4 GB/s

GPU Programming
Jan Lemeire

GPU Architecture
* Inthe GTX 280, there are 10 Thread Processing Clusters

— Each has 3 Streaming Multiprocessors (SMs), which we will
refer to as multiprocessors (MPs)

— Each MP has 8 Streaming Processors (SPs) or Thread
Processors (TPs). We will refer to these as processors.

— 240 processors and 30 MPs in all!
* One double-precision FP unit per SM

ReLl

HIE
&
i
1l
-1
i
Bl
I
&
EIF
i
HIE
i
7

11

GPU vs CPU:
NVIDIA 280 vs Intel i7 860

GPU CPU!?
Registers 16,384 (32-bit) / | 128 reservation stations
multi-processor?
Peak memory bandwidth 141.7 Gb/sec 21 Gb/sec
Peak GFLOPs 562 (float)/ 50 (double)
77 (double)
Cores 240 (scalar 4/8 (hyperthreaded)
pProcessors)
Processor Clock (MHZz) 1296 2800
Memory 1Gb 16Gb
Local/shared memory 16Kb/TPC? N/A

thttp://ark.intel.com/Product.aspx?id=41316
°TPC = Thread Processing Cluster (24 cores)

330 multi-processors in a 280
12

Performance: GFlops?

¢ GPUs consist of MultiProcessors (MPs) grouping a
number of Scalar Processors (SPs)

¢ Nvidia GTX 280:
4+ 30MPs x 8 SPs/MP x 2FLOPs/instr/SP x 1 instr/clock x 1.3 GHz
= 624 GFlops

¢ Nvidia Tesla C2050:

+ 14 MPs x 32 SPs/MP x 2FLOPs/instr/SP x 1 instr/clock x 1.15 GHz
(clocks per second)

= 1030 GFlops

GPU Programming
Jan Lemeire

Other limit: bandwidth

¢ Nvidia GTX 280:

+ 1.1 GHz memory clock
+ 141 GB/s

¢ Nvidia Tesla C2050:

+ 1.5 GHz memory clock
+ 144 GB/s

GPU Programming
Jan Lemeire

Example: pixel transformation

usgn_8 transform(usgn_8 in, sgn_16 gain, sgn_16 gain_divide,
sgn_8 offset)

{
sgn_32 X;

X = (in * gain / gain_divide) + offset;

if (x < 0)x=0;
if (x > 255) x = 255;
return x;

»

GPU Programming
Jan Lemeire

Pixel transformation

¢ Performance on Tesla C2050

¢ 1 pixel is represented by 1 byte [0-255]

¢ Integer operations: performance is half of floating point
operations

¢ Two different implementations:

o FPN1: 1 pixel per thread
o FPN4: 4 pixels per thread (treat 4 bytes as 1 ‘word’)

Pmem (Dytes/s) 115 GB/s Pops (0PS/S) 500 Gops/s
CI (bytes/pix) 1/5 Ops/pix 5+4 (FPN1)
5+1 (FPN4)

P..emXCI (pix/s) 23 Gpix/s Pops/ (Ops/pix) 56 Gpix/s (FPN1)
83 Gpix/s (FPN4)

GPU Programming
Jan Lemeire

Roofline model

Peak

performance memory

bandwidth

algorithm

Computational intensity
(#computations/#bytes communicates)

GPU Programming
Jan Lemeire

Roofline model applied

only

FPNI roofline
t FPN4 roofline
100 k- measured +

i
- FPH4: 10.5

O A FRNLLAZS

Ferformance [(3lga plzel operationsds)

0.001 e | SN

0,001 0.01 0.1 1 10
Compute Intenslty [plxel operationsibyte]

GPU Programming

Jan Lemeire

Roofline model applied

PCI Express included

FPH4 rocfline
measured +

10

'”.4”fPﬁﬁ£”DTE.”“?”'””'”“'“.”“.”“.”.

0.01

FPerformance [Glga plxel cperatlons/s]

: : n.2 :
0,001 —— e ——— —_——
0,001 0.01 0.1 1 10

Compute Intensity [plxel operatlons/hyte]

GPU Programming
Jan Lemeire

But... nothing is for free

¢ Harder to program!
+ Hardware architecture should be taken into account
+ Optimization is important
+ Additional complexity in code
+ Harder to debug, maintain, ...

¢ Algorithms should be inherently massively-
parallel

GPU Programming
Jan Lemeire

— Overview

1. GPUs for general purpose

2. GPU ‘threads’ executing kerne

3. $.rting kernels from host (

e@g_on n@gL& GE fG.I‘ChIt

*"// ;')}J 'ﬁ nts

o

' , l

\/wJ" fﬁu ‘&f

»
| J'W A
Y TN - ':5\ Talp,e. u NS ;e
: Bl ‘t“‘_ - 2R = 3 et)
— =

Thread Structure

¢ Massively parallel programs are usually
written so that each thread computes one

part of a problem

+ For vector addition, we will add corresponding elements
from two arrays, so each thread will perform one addition

+ If we think about the thread structure visually, the threads
will usually be arranged in the same shape as the data

GPU Programming
Jan Lemeire

Thread Structure

¢ Consider a simple vector addition of 16
elements

+ 2 input buffers (A, B) and 1 output buffer (C) are
required

Array Indices \

Vector Addition: ~ © 1234567809 111111
A | | | | | | | [
+
B | | | | | | | [
C

GPU Programming
Jan Lemeire

Thread Structure

¢ Create thread structure to match the

problem
+ 1-dimensional problem in this case Thread IDs
1 1 1 1 1 1
A s s e s s s I s e
VectorAdd|t|on: 01 23 456 7 8 91 11111
0 1 2 3 4 5
'j‘_ AR
B AR
C

GPU Programming
Jan Lemeire

Thread Structure

¢ Each thread is responsible for adding the
indices corresponding to its ID

111111

Vector Addition: t F1T111%1
v ki
s dddidididididididddd
C ddddddddlddldidldld

OpenCL Kernel code

Ta

__kernel void vectorAdd(__global const float * a,
__global const float * b, __global float * c)
{

// Vector element index

int nIndex = get_global_1d(0);

// addition

c[nIndex] = a[nIndex] + b[nIndex];

}

¢ OpenCL kernel functions are declared using
Y kernel”.

¢ __ global refers to global memory

¢ get_global_id(0) returns the ID of the thread in
execution

GPU Programming
Jan Lemeire

Kernel launch

¢ Execution environment

¢ Grid s

¢ Work groups/thread - > |[&8 || &®
blocks in 2 or 3 L
dimensions ez

¢ Specify at launch time: — Tl i
grid of work groups of R e~ el
work items (threads)

¢ Query in kernel at run

ti
The host issues a succession of kermel invocations to the device. Each kemnel is executed as a batch

¢ Impact on performance! — s

Jan Lemeire

Work items/threads

¢ API calls allow threads to identify
themselves and their data

¢ Threads can determine their global ID in
each dimension
+ get_global_id(dim)
+ get_global_size(dim)

¢ Or they can determine their work-group ID
and ID within the workgroup
+ get_group_id(dim)
+ get_num_groups(dim)
+ get_local_id(dim)
+ get_local_size(dim)
¢ get_global_id(0) = column, get_global_id(1) = row

¢ get_num_groups(0) * get_local_size(0) ==
get_global_size(0)

Jan Lemeire

Runtime (ns) i.f.o. #threads

100000

90000

80000

70000

60000

50000

40000

30000 P

20000

10000

0 10000 20000 30000 40000 50000 60000 70000

GPU Programming

Jan Lemeire

Occupancy

¢ Keep all processing units busy!
+ Enough threads

¢ All Multiprocessors (MPs)
¢ All Scalar Processors (SPs)

¢ Full pipeline of scalar processor
+ Pipeline of 24 stages (see later)

GPU Programming
Jan Lemeire

So: Power is within reach?

Unfortunately...
¢ It's not that simple...

¢ It's not what we are used in the CPU-world
+ CPU: multicores also requires us to program differently

¢ If you want the speed, you have to pay for
it...

GPU Programming
Jan Lemeire

— Overview

1. GPUs for general purpose

2. GPU ‘threads’ executing kerne

.
|

|

3. fo_a;tmg kernels from host (

e@g_on n@gL& GE fG.I‘ChIt

*"// ;')}J 'ﬁ nts

o

J'W ' ' \/(uf' ff’U hf
/". = - (;L:' g - ':I > < A vj 2

OpenCL Working Group

* Diverse industry participation
- Processor vendors, system OEMs, middieware vendors, application developers

+ Many industry-leading experts involved in OpenCL’s design
- A healthy diversity of industry perspectives

« Apple initially proposed and is very active in the working group
- Serving as specification editor

* Here are some of the other companies in the OpenCL working group

LABS aawmon BZI) AMDZU ARM smobbeon @
reescale /... intel)
S8 N @ = noka @ EROS

\

%mde?iky“ ERICSSON 2

MK SOFTWARE SYSTEMS
............. NVIDIA.
¢ -:;;.; TV,
-~
TEXAS ~
RAPID TAKUMI-— INSTRUMENTS) -

CUDA Working Group

NWVIDIA.

GPU Programming

Jan Lemeire

OpenCL Keywords & functions

¢ Address space qualifiers:
+ _ global, _ _local, _ constant and __ private

¢ Function qualifiers:
+ _ kernel

¢ Access qualifiers for images:
+ __read_only, __ write_only, and __read_write

¢ OpenCL functions: start with ¢/ prefix

GPU Programming
Jan Lemeire

OpenCL Kernel code

Ta

__kernel void vectorAdd(__global const float * a,
__global const float * b, __global float * c)
{

// Vector element index

int nIndex = get_global_1d(0);

// addition

c[nIndex] = a[nIndex] + b[nIndex];

}

¢ OpenCL kernel functions are declared using
Y kernel”.

¢ __ global refers to global memory

¢ get_global_id(0) returns the ID of the thread in
execution

GPU Programming
Jan Lemeire

Architecture — Computing elements

Processing
Element \
(= scalar

N
processor) {I

Host
(mostly [CPU)

Compute Unit Compute Device
(also called multiprocessor) (GPU, CPU, cell processor, ...)

GPU Programming
Jan Lemeire

OpenCL Software Stack

+ Host program

- Query compute devices

- Create contexts

- Create memory objects associated to contexts
- Compile and create kernel program objects

- Issue commands to command-queue

- Synchronization of commands

- Clean up OpenCL resources

+ |Kernels
- C code with some restrictions and extensions

> Platform Layer

> Runtime

> Language

Shows the steps to develop an OpenCL

program

GPU Programming
Jan Lemeire

On Host: platform layer

¢ Creating the basic OpenCL run-time

environment

+ Select Platform: collection of devices managed by the
OpenCL framework that allow an application to share
resources and execute kernels on devices in the platform

- OpenCL framework = OpenCL implementation: NIVDIA, AMD,
Intel, ...

+ Device: hardware such as GPU, multicore, cell processor

+ Context: defines the entire environment, including kernels,
devices, memory management, command-queues, etc.

+ Command-Queue: object where OpenCL commands are
enqueued to be executed by the device.

GPU Programming
Jan Lemeire

Setup

1. Get the device(s)
2. Create a context
3. Create command queue(s)

platformis set to NULL

¢l uint num devices_returned;
¢l device id devices([2];

err = clGetDevicelDs (NULL, CL DEVICE TYPE GPU, 1,
&devices?ﬂ] ' nuﬁ_devi_ces_returned] E

err = clGetDevicelIDs (NULL, CL DEVICE TYPE CPU, 1,
&devices[1l], &num devices_returned);

cl context context;
context = clCreateContext(0, 2, devices, HULL, HULL, &err):;

cl command gqueuse queue gpu, queue cpu;
queue gpu clCreateCommandQueue (context, devices[0], 0, &err);
queue cpu = clCreateCommandQueue(context, devices([l], 0, &err);

& Copyright Khrones Group, 2009 - Page 16

Within context

OpenCL @

Context

v 4 & &

Kernels Command Queues |

: $

kernel vaid
dp_mulglobal const float *a, dp_mul In
global const fleat *b, CPU program bina
global float *c) Order
{ dp_mul
int id = get_global id{0); I GPU program hlmwl Queue
cfid] =afid] * bid];
} GPU

Compile code | /

& Copyright Khrancs Group, 2009 - Page 15

Data movement & kernel calls

¢ Create buffers for this context.
+ In global memory

¢ Data movement

+ Host => device: clEnqueueWriteBuffer()
+ Device => host: clEnqueueReadBuffer()

¢ Create program using input file for this

context.
+ build this program.

¢ Create kernel from program.

GPU Programming
Jan Lemeire

Executing Code

* Programs huild executable code for multiple devices
* Execute the same code on different devices

karnal woid
horizontal raflect({rsad only imagqe?d t =ara,
writa only image?d € dat)

{

int x = gat glahal id(0); // z-ccoxd

int vy = gat gloahal id(l); // y-ccoxd

int width = gat image width (=xra);

floatd ara wval = read imagaf{ara, sampler,

{int2) {width=1-2x,

¥)):
write imagef({dst, (int?)(x, y), ara walj;
}

‘ Compile for GPU -

‘ Compile for CPU I

& Copyright Khranes Group, 2000 - Pags 25

Cleanup

/| release kernel, program, and memory objects
DeleteMemobjs (cmMemObjs, 3);

free (cdDevices);

clReleaseKernel (ckKernel);

clReleaseProgram (cpProgram);
clReleaseCommandQueue (cqCommandQue);
clReleaseContext (cxMainContext);

— Overview

1. GPUs for general purpose

2. GPU ‘threads’ executing kerne

3. S .rting kernels from host (

emion n@ﬂ& GPU-archit

JJ,J 2V [nts

8 L 1 B

Execution Model

¢ Kernel = smallest unit of execution, like a C
function, executed by each work item (= thread)

¢ Data parallelism: kernel is run by a grid of work
groups

¢ Work group consist of instances of same kernel:
work items

¢ Different data elements are fed into the work items
of the work groups
+ Also called stream computing

GPU Programming
Jan Lemeire

Architecture - Execution Model

work-group size Sy

L =l
= -
’,' work-group (w,, wy) ¥
4
s
II
s
’
W work-item work-item

¥4 (W, S,+s,. wy, Sy¢s)) o (Wy S, #8,. wy Sy+sy/

s,

/s
P4 Sy s’) = (0, 0) (5y. sy) = (sx.y, 0)
,I
/s
s
s . .
- L#” . o : work-group size Sy
s _F > B '
/) b~
work-item work-item
NDRange size Gy (Wy Sy#8y. W, S#5) (Wy Sy#5,. W, Sy#s)
I =5 (& o o S (sx.syizto. Sy-l) " lsx.sy)=(sx-?, Sy-l)
T e .
| - od
| 1
NDRange size Gy

GPU Programming

Jan Lemeire

Kernel execution

¢ Simple scheduler

+ Assigns work groups to available streaming MultiProcessors (MPs)
4+ Basically, a waiting queue for work groups

¢ Work groups (WGs) execute independently

4+ Global Synchronization among work groups is not possible!

GPU met 2 MPs GPU met 4 MPs

Weo wel
g B

wee e | || R | R
(we4 | [wes [wes

v

GPU Programming
Jan Lemeire

Multiple WGs per MP

¢ One MP can execute work groups concurrently
¢ Determined by available resources (hardware

limits):

+ Max. work groups simultaneously on MP: 8
+ Private memory per MP: 16/48KB
+ Local memory per MP: 16/32KB

~
e

GPU met 4 MPs

GPU Programming
Jan Lemeire

Architecture - Memory Model

Private Private Private Private
Memory Memory Memory Memory

Work Item 1 Work ltem M Work I[tem 1 Work [tem M

Compute Unit 1 Compute Unit N

Local Memory Local Memory

Global / Constant Memory Data Cache

Compute Device

Global Memory

GPU Programming Compute Device Memory
Jan Lemeire

OpenCL Memory Model on NVIDIA

Software Hardware » Each hardware thread has a dedicated
2 ___private region for stack
L
_ Scalar
__private Processor

OO » Each multiprocessor has dedicated storage
22282228 =0 for _local memory and __constant caches
OO
E » Work-items running on a multiprocessor
local can communicate through __local memory
I Multiprocessor

« All work-groups on the device can
access __global memory

__global Device of global communication
_constant

» Atomic operations allow powerful forms

Example

¢ # local variables per thread (registers)
¢ # work items per work group
¢ => memory per

GPU Programming
Jan Lemeire

Work group execution

¢ Work items can synchronize within a work group
barrier(CLK_LOCAL_MEM_FENCE); // barrier synchronization

¢ Work items can share on-chip local memory
4+ Local memory is on MultiProcessor (MP)
+ Visible to work group only

__local int shrfNUMBER_OF_ROWS][NUMBER_OF_COLS];

GPU Programming
Jan Lemeire

GPU Programming Concepts

Device/GPU + 1TFLOPS :
Grid (1D, 2D or 3D)
. . &« kernel
Multiprocessor 1 Multiprocessor 2 - get local size(0)
- (ghn— e — SSRmnoorooomHmenRoom]
o
40GB/s 4-few cycles ml 0,0) (1,0) (2,0)
— A S
Host/ o Group,/ Group [\Group
CPU oy O @1 | R
— ' \ N
Scalar I S \ \
Processor Scalar Scalar Scalar 4&; ,) \\ -~
+ 1GHy Processor Processor || Processogy o R I, \ '
i \
1 100GB/s4 200 cycle \ ——
>
? |(get group id(0) ,get group id(1))
3 A | Work item | Work item | Work item
o (0, 0) (1, 0) (2,0)
Q, Work item | Work item | Work item
S 0.1 11 (2.1)
8 {| | Work item | Work item | Work item
4-8 GB/s oV ©.2) (1,2 (2 2
,ﬁ 4:‘. k > <
. ~ Wor roup size
Max #work items per work group: 1024 ;g° gEOEP *

Executed in warps/wavefronts of 32/64 work items (get_local _id(0), get_local_id(1))

Max work groups simultaneously on MP: 8
OpenCL terminology

Max active warps on MP: 24/48

GPU Threads v/s CPU Threads

< GPU work items or threads:

4 Lightweight, small creation and scheduling overhead, extremely fast
switching between threads
— No context switch is required

4 Need to issue 1000s of GPU threads to hide global memory latencies
(600-800 cycles)
— GPU=Thread processor, upto 96 threads per processor

¢ CPU threads:

4+ Heavyweight, large scheduling overhead, slow context switching
(processor state has to be saved)

GPU Programming
Jan Lemeire

Convolution of images

Input image

Mask

Convolution of a 8x8
image with a 3x3
filter to yield a 6x6
output image

QOutput image

Examples of convolution

[——— —

Bufferedimage BufferedimageOp Bufferedimage
The source The filter The destination

=)

Edge detection
~ with sobel filter

GPU Programming
Jan Lemeire

Speedup

times

120

100

80

60

40

20

seperable convolution speedup

.

pad

7

_..--"".

10 20 30

kernel radius (pixels)

40

=$=The maximum
speedup(without
communicationtime)

== The minimum
speedup(include
communicationtime)

GPU Programming

Jan Lemeire

Convolution on GPU

< DATA W >

«—TILE W—»
=16

H ¥IVd

GPU Progr
Jan Lemeij
k J

Convolution Kernel

__kernel void bad_shared(
__global int *in, __global int *out, __local int *in_local, __ constant int *filter)
{
uint row = get_group_id(1) * get_local size(1) + get_local id(1);
uint col = get_group_id(0) * get_local_size(0) + get_local id(0);

in_local[get_local id(1) * get_local _size(0) + get_local id(0)] =
in[row * get_global size(0) + col];
... Il copy 9 pixels to local

barrier(CLK_LOCAL_MEM_FENCE);
int sum=0;
for (int i = 0; i< filter_width; ++i)
for (int j = O; j< filter _height; ++))
sum += filter[...] * in_locall...];

out[row * get_global size(0) + col] = sum,

0
GPU Programming

Jan Lemeire

Global and Local Dimensions

* Global Dimensions: 1024 x 1024 (whole problem space)
* Local Dimensions: 128 x 128 (executed together) by a work group)

1024
Synchronization between work-items

possible only within workgroups:
barriers and memory fences

Cannot synchronize outside
of a workgroup

1024

* Choose the dimensions that are “best” for your algorithm

@ Copyright Khronos Group, 2000 - Page 10

— Overview

1. GPUs for general purpose

2. GPU ‘threads’ executing kerne

3. ﬁztmg kernels from host (

e%on nﬁael.& GEB fG.I‘ChIt

Scalar Processor: Pipelined design

¢ Typically (CPU): five tasks in instruction
execution '

+ IF: instruction fetch Ervi-a IF
4+ ID: instruction decode |
4+ OF: operand fetch - (',';Sc‘;:';‘“’" ID
+ EX: instruction execution
+ 0OS: operand store, 3. Operand OF
often called write-back WB
¢ GPU: 24 stages “oeane x|

5. Operand
store

GPU Programming
Jan Lemeire

Pipelining Principle

¢ Long operations

1] 2 J 3] 4
¢ Combination of short operations

- HH HHA BBH2 §$n

time
>

GPU Programming
Jan Lemeire

Pipelining

¢ On GPU: 24 stages
¢ Multiple instructions simultaneously in flight

¢ Higher throughput, except if dependencies
between threads

+ E.g.: If instruction 2 depends on the outcome of instruction

1, then instruction 2 can only proceed in pipeline after the
termination of instruction 1

+ Pipeline stall

¢ GPU: instructions of different threads in flight

GPU Programming
Jan Lemeire

Work group execution

¢ Work items are executed in

— Block 1 Warps —— Block 2 Warps — Block 1 Warps
NVIDIA-warps/AMD- T ;1 T ; e ;
tot1t2 ...t tot1t2 ... 31 t0ot1t2 ... 131
wavefronts, they are the PSSR IS SO
scheduling units in the MP. || | %2222 ||| |22 | || | a2
¢ Groups of 32/64 work items

that execute in lockstep: they
execute the same instruction.

Multiprocessor

Example: 3 work groups on MP,

each group has 256 work items, 40GB/s 4-few cycles
how many Warps are there in the ’ ’
MP?

lar
Sl Scalar

» Each group is divided into e | Processor
256/32 = 8 Warps

» There are 8 * 3 = 24 Warps

GPU Programming
Jan Lemeire

Warp/wavefront execution

© Work items are sent into pipeline grouped in warp /wavefront

+ ALUs all execute the same instruction: Single Instruction,
Multiple Threads (SIMT)

+ 32 work items / 8 SPs => 4 cycles

Wavefront 1 Wavefront 2 Wavefront 3
SIMD Width
0 > | 32 11— 5| 64
Add == Add
Thread ID 8 > | 40 |||||lE >
Add Add [
16 > | 48 g —>
Add Add |
24 ﬂ_— > | 56 1
Add [P Add
Cycle 1 2 3 4 5 6 7 8 9 ...

GPU Programming
Jan Lemeire

Warp/wavefront execution

© Kernels proceeds to next instruction if all warps are in the pipeline
+ If 192 work items => 6 warps => 24 cycles needed
— pipeline has independent instructions => no stalling

Wavefront 6

SIMD Width

Wavefront 1

Wavefront 2

Cycle 21 22 23

GPU Programming
Jan Lemeire

160 | O s | 32
Add Mul Mul
168 >| 8 >
Add Mul
176 s | 16 >
Add Mul |}
184 ﬂ I > | 24 ﬂ I
Add [Mul [
24 25 26 27 28 29 ---

Why do we have to consider

warps/wavefronts?

¢ Different branching of threads within a warp

incurs ‘lost cycles’
+ SIMT execution happens per warp/wavefront, in lockstep

¢ Memory access pattern of a warp should

be considered

+ Memory access also happens per warp

+ Not all access patterns can happen concurrently (see
further)

GPU Programming
Jan Lemeire

— Overview

1. GPUs for general purpose
2. GPU ‘threads’ executing kerne

3. $.rting kernels from host (

e@g_on n@gL& GE fG.I‘ChIt

*"// ;')}J Juﬁ nts

o

: "‘w' }f;-; f' ff’) !& S
AR ",

. . '
f"".
J,w“ [
" 0/ | et
~ , : J’u = . o
Ve s ﬁ. : o

- A

- > > -
‘/-_ * Y . ',:

GPU Computing Performance

/7
/ \ .--
Problem/ o \
function Problem
APPs...

Inefficiency of codg in
the serial sense s

Algorithm/
implementatio

[} #

nsufficient parah‘efg‘s'm

.
L]

Branching of threads

Anti-parallel patterns
°" inherent to the problem

architecture

,

resource-

bound

\ Thread block sizes, work
\ " per thread, ...

L]

L]
' Concurrent memory access
H
L]
L]

. Synchronization of threads

«. Dependence of instructions
" within a thread

APP= Anti-Parallel Pattern

Compute-bound versus

,». memory-bound

Peak
erformance

Performancra

overhead

\, Interms of idle or lost
" processor cycles

A. Peak Performance

oo | 15 o/

' : Roofline model
| |
computations : 1 TeraFlops
| | '
B. Non-overlap
< -
I I Non-overlap factors
' >
| |
| |
: ' computations r : »
lwaiting point '
synchraonization point ‘
C. Anti-parallel interactions
< T

Anti-parallel patterns
> & model for latency hiding

computations >

branching e/

non-concurrent mem ory Qccess

1
amdahl é}

General approach

s
W

Estimate a performance bound for your kernel
+ Compute bound: t, = #operations / #operations per

second

+ Data bound: t, = # memory accesses / # accesses per
second

+ t., = min(ty, t) expressed by roofline model

¢ Measure the actual runtime
+ tactual - tmin + tdelta

¢ Try to account for and minimize t g,
+ Due to non-overlap of computation and communication
+ Due to anti-parallel patterns (APPs)
4+ Consult remedies for APPs

GPU Programming
Jan Lemeire

Anti-parallel Patterns

'S
w

Definition: Common parts of kernel code that work
against the available parallelism.

+ Can be inferred from the source code

4+ Map parts of the source to parallel overhead

'S
w

Systematic way to categorize performance topics

'S
w

Systematic way to optimize kernels

'S
w

PhD research of Jan G. Cornelis

GPU Programming
Jan Lemeire

Latency Hiding

¢ 1 warp, without latency hiding
)))) T O

8 Computation + 8 Memory

D Memory period . Computation period

¢ 2 warps running concurrently

1 1 1 1
2 2 2

< 5 Computation + 4 Memory >

GPU Programming
Jan Lemeire

2

Latency Hiding for Memory

Accesses

¢ Latency Hiding
+ During global to local memory copying
+ During local memory reads

¢ Keep multiprocessors busy with a huge amount of

threads

+ 1 multiprocessor can simultaneously execute multiple work
group of maximal 512/1024 work items

+ Is limited by amount of local and register memory needed
by each work item

+ Maximize occupancy= Number of warps running
concurrently on a multiprocessor divided by maximum

number of warps that can run concurrently

GPU Programming
Jan Lemeire

4 warps running concurrently

¢ But only 2 concurrent memory transactions

Idle cycles

2 Computation + 4 Memory

1st Memory period . 1st Computation period

L_ _ _] 2"d Memory period .| 2nd Computation period
GPU Programming
Jan Lemeire

Keep occupancy high

¢ Maximal warps: 24, maximal Work Groups (WGs): 8

8 WGs x 3 warps

1 -

09

1200
08 - 4

_ 07 WGs x 4 warps 1000

L2

E 06 - &2 800 -

S 05 8 x 2 warps A

j5)

O 04

03 -

K 400 - —-SVM_Ver_1
02 8 WGs x 1 warps

w
E
@
E
1 WG, 12 warps ' 6%
=4
5
Q
g
w

-#-SVM_Ver 1

g

0.1 -

4 16 36 64 100 144 196 256 324 400 484 4 16 36 64 100 144 196 256 324 400 484
Threads per work group Threads per work group

¢ Conclusion: in general, higher occupancy leads to a
better performance

GPU Programming
Jan Lemeire

APPO: AMDAHL

Wavefront algorithm

4+ 512x512 image divided into work groups of

; z j : i 8x8, handled by 1 work group => 64 x 64 work
groups

S i + 1 work group depends on results of 2 work

40 d groups => global synchronization necessary

5 Xz +=y - X => a kernel call per wave

+ 0n GTX280: 240 cores
= => 30 multiprocessors

1

60

T =3 matrixMultiplicationWaveFront_B
30 3 memcpyDtoH
B8 memcpyHtoD

G 35

GPU Programming ™
Jan Lemeire _—

APP1:BRANCH

SIMT Conditional Processing

Ak
W

Ak
W

Ak
W

Ak
W

Unlike threads in a CPU-based program, SIMT programs cannot
follow different execution paths
4+ All threads of a warp/wavefront are executing the same instruction

Ideal scenario:
<+ All GPU threads of a work group follow the same execution path
<+ All processors continuously active
If divergent paths within a warp/wavefront, the then- and else-

instructions are scheduled executed for all threads, but only executed for the
correct threads, dependent on the condition

4+ Program flow cannot actually diverge, a bit is used to enable/disable
processors based on the thread being executed (instruction predication)

Parallelism is reduced, impacting performance... (see later)

GPU Programming
Jan Lemeire

APP1:BRANCH

SIMT Conditional Processing

¢ Example: assume only one warp, one instruction in if-clause, one in
then-clause

+ 12 cyles in which 64 instructions are executed, 32 lost cycles

(66% usage)
Desactivated
instructions\(kred)

0
If
8
If
16
If
Cycle
1 2 3 4 5 6 7 8 9 10 11 12

GPU Programming

Jan Lemeire

APP1:BRANCH

Branching

¢ Threads of the same warp/wavefront (32/64 threads) are run
in lockstep

¢ For example:

if (x < 5) y =5; else y = -5;

+ SIMD performs the 3 steps
4+ y = 5; is only executed by threads for which x < 5
+y = -5; is executed by all others

dh

¢ Warp branch divergence decreases performance: cycles are lost
4+ Solution: statically or dynamically reorder threads
¢ No latency hiding possible

GPU Programming
Jan Lemeire

Reduction operation (sum)

(10| 1

Thread IDs:
11| 1

|4117-16-28517-397131122

GPU Programming
Jan Lemeire

V2: group active threads

Thread IDs:

“1(1|7|1|6 (28 |5 |17|-3(9 |7 |13|11]| 2| 2

GPU Programming
Jan Lemeire

V3: Sequential addressing

Thread IDs:

41(20({13 (13| 0 (9 |3 |7 |=2|-3(2 |7 |0 |11|0]| 2

GPU Programming
Jan Lemeire

APP2:MEM

Global memory

¢ Memory coalescing for half-warps

+ Accessed elements belong to same aligned segment
+ Older cards: sequential threads access sequential locations
+ Newer cards: not necessary anymore

¢ Global memory is a collection of partitions

+ 200 series and 10 series NVIDIA GPUs have 8 partitions of
256 bytes wide

+ Partition camping when different thread Work groups access
the same partition

GPU Programming
Jan Lemeire

APP2:MEM

Local/Shared memory

i
w

i
w

Ak
W

i
w

Local/Shared memory is divided into banks
Each bank can service one address per cycle
Multiple simultaneous accesses to a bank

result in a bank conflict

Conflicting accesses are serialized

'II-
4

'II-
4

Cost = max # simultaneous accesses to a single ba

No bank conflict:

all threads of a half-warp access different banks,

'II-
4

'II-
4

all threads of a half-warp access identical address,

(broadcast)

GPU Programming
Jan Lemeire

APP2:MEM

Bank Addressing Examples

No Bank Conflicts No Bank Conflicts
Linear addressing Random 1:1
stride of 1 Permutation

Thread O > Thread O

Thread 1 > Thread 1

Thread 2 > Thread 2 v >

Thread 3 > Thread 3 ‘

Thread 4 > Thread 4

Thread 5 > Thread 5

Thread 6 > Thread 6 >

Thread 7 > Thread 7
o o
o o
L A

Thread 15 > Thread 15

GPU Programming
Jan Lemeire

APP2:MEM

Bank Addressing Examples

2-way Bank Conflicts 8-way Bank Conflicts

Linear addressing
stride of 2

Thread O
Thread 1

Thread 2 ~
Thread 3 ~
Thread 4 '

Thread 8 /

Thread 9
Thread 10
Thread 11

Thread O
Thread 1

Thread 2 ‘.
Thread 3 \ ‘

Thread 4 '
Thread 5 ,\

Thread 6
Thread 7

Thread 15

Linear addressing
stride of 8

X8

GPU Programming
Jan Lemeire

APP3:SYN

Synchronization

¢ Barrier synchronization within a work group
+ barrier(CLK_LOCAL_MEM_FENCE);
+ Work items that reached the barrier must wait

s

¢ Global synchronization should happen across kernel calls
+ Work groups that have completed

¢ Greater instruction dependency
+ => less potential for latency hiding

¢ Thus: try to minimize synchronization

GPU Programming
Jan Lemeire

Lost cycles due to

synchronization

Additional delay

Synchronization Synchronization
(a) (b)
E 1st Memory period . 15t Computation period
) 2nd Memory period () 2nd Computation period

GPU Programming
Jan Lemeire

APP4:DEP

Dependent Code

¢ Well-known fact: latency is hidden by launching other
threads

¢ Less-known fact: one can also exploit instruction level
parallelism in one thread.
+ Data level parallelism in one thread.

¢ Anti-parallel pattern?
+ Dependent instructions can not be parallelized.
+ Dependent memory accesses can not be parallelized.

GPU Programming
Jan Lemeire

AMD’s static kernel analyzer

it Helo

File Edit Help

—Source Code —Object Code B
Function ain ;I | Compile I Format |Radeon HD 5870 (Cypress) Assembly ;I
1l inline void waveReduce(locel wvolatile ELD & Source type IDpenCL ;I 1; ——- Disassembly -———————————————— -
2 gif WGESIZE »= 128 il 200 ALU: ADDR(32Z) CNT(17) ECRCHEOQ (CBO:O0-15[|
3 if (1lid < &4) { =] 0 w: LSHL . RO.x, 4 =
1 shared v[lid] += shared v[lid + &4 - OpenCL Compiler 4 t: BADD_INT BO.w, Rl.x, ECO
3 fendif) - - 5 1 y: ADD_INT no.y, ECL[1].x,
& = BT I'ﬂ""":"md" 6 t: MULLO_INT , ®Rl.x, ECO
7 gif WEESIZE == &4 = 7 2 y: ADD INT Bl10.¥v, BEVl_ vy, 4
8 if (lid = 22) | 8 z: ADD_INT . mo.x, DSl
3 gendif 3 w: RDD INT Rl0.w, PFVli.y, 1
10 10 t: ADD_INT Bo.z, DVli.y, &
11 shared w[lid] += shared v[lid + 3Z 11 3 =z ADD INT ., EVZ.z, EC
2 shared_v[lid] += shared w([lid + 18— 12 4 y: LSHL , Eva.m, 4
13 shared v[1lid] += shared vw([lid + &1 13 5 =z: ADD INT RZ.z, ECL[O].=x,
14 shared v[lid] += shared v[lid + 4] alt] & =x: LEHR Bl.x, PFVs.z, 4
15 shared v[lid] += shared w([lid + Z] 15 01 TEX: RDDR(Z33) CNT(1)
18 shared_v[1lid] += shared w[lid + 1] ig 7 WEETCH R1, Rl.x, £eol175 FORMAT (2
17 1 17 FETCH_TYPE (NO_INDEX_OFFSET)
18} 18 02 ALU: ADDR(43) CNT(3)
13 —Macro Definitions 13 8 x: LDS_WRITE REL (cffset: 1) _
- 1 2 D —— z0 5 x: LDS WRITE REL (offset: 1) _
Z1 // - lead and directly sum elements from g Symbol | Value 21 10 =x: GROUP_BRRRIER
22 /7 local memory (balances ALU:Fetch) WGSIZE 2560 22 03 RALU: RDDR(5Z) CNT(ZT)
23 // - reduce in loczl memory SUMOMLOAD 8u Z3 11 =x: LDS_RERDZ RET Q&B, Rlo.y, R
24 // - write back to host memory ELTYPE uint4 24 y: ADD_INT RZ.=z, 409
25 // | requires a warp/wavefront size of at . 25 z: ADD INT , Ri_z, B13
28 /7 synchronization for work items within Z8 w: RDD INT , RZ.=z, 1lg&s
27 _ kxernel _ sttribute_ ((reqd work_group_si: 27 t: RDD INT To.y, RZ.=z, 1ZIz
28 void main{_ globzl ELIYPE* source, _ loczl 28 12 =: LDS_READZ RET QRB, Rl0.w, R
23 const size_t gid = get_global_id{0); = 25 ¥: LSHR Rl.y, DBvil.y, 4 _
O om ’ e ° o R T - TeTm e = mwraa o ;

—Compiler Statistics (Using CAL 11.7) -

Mame | GPR | ScratchReg | Min | Max | Avg | ALU | Fetch | Write | Est Cydes | ALU:Fetch | BoteMedk | Thread\Clodk | Throughput |
Radeon HD 5870 11 o0 320 1110 FA05 111 g 1 7.05 2,20 ALU Ops 4,54 3853 M Threads\Sec
Radeon HD 5770 11 o0 320 1110 FA05 111 g 1 7.05 2,20 ALUOps 2,27 1929 M Threads\Sec
Radeon HD 5670 11 0 68,00 2220 1410 111 g 1 14,10 441 ALUOps 0,57 440 M Threads\Sec
Radeon HD 5450 11 0 1500 5550 3525 111 3 1 35,25 3.81 ALUOps 0.11 74 M Threads\Sec
RadeonHD 6970 12 0 275 9.5 617 115 8 1 6.17 2,31 ALUOps 5.19 4566 M Threads\Sec
Radeon HD 6370 11 0 457 15856 10.07 111 3 1 10,07 2,20 ALU Ops 3.18 2860 M Threads\Sec
Radeon HD 6670 11 0 500 1850 11.75 111 3 1 11,75 441 ALUOps 1.36 1089 M Threads\Sec
Radeon HD 6450 11 0 1500 5550 3525 111 3 1 35.25 3.81 ALUOps 0.45 340 M Threads\Sec

L] _

AMD’s dynamic profiler

5 EaX lllllllllllllllllll Illlllllllllll LR G T T 17T IIIIIll3|71I°3l31llIIIIIIIIIIIIIIllllllllllllllllllllll
Ie;oﬁno: 31,486 82871 94,457 125943 157428 188914 220400 251,886 283371 314857 346342 3778 409314 440799 472285 503771 535258 566742 596.025 629713

| P

(Y

1

|| =

| =

9FD70)

View Options

[¥] Show Kernel Dispatch [¥] Show Data Transfer Show Zero Column
} Method ExecutionOrder ThreadlD Callindex GlobalWorkSize GroupWorkSize Time LocalMemSize DataTransferSize ScratchRegs FCStacks Wavefronts ALUlnsts Fetchlr
\WriteBufferAsynch | 1 3492 80 31,87611 65536,00
main_kl Cypressl | 2 3432 89 (524288 1 1} {256 1 1} 0,23722 4096 0 1 8192,00 51,25 8,0
ReadBuffer 3 3492 a5 016278 0,06
main_i_Cypresst | 4 L 6 1 1) (26 1 1) ool057 %5 . - 400 N
| ReadBuffer) 3492 102 | 0,22911 [0,06 ’

GPU Programming

Lemeire

Jan

N
1] .
| R // pr" \ ?;,J%H"

— Overview

1. GPUs for general purpose

2. GPU ‘threads’ executing kerne

3. ﬁztmg kernels from host (

e%on nﬁael.& GEB fG.I‘ChIt

\

. -
o

(A W
-

(A § .- S h » ‘
. Y L o : > N
: rr“ & (‘\ 7// 1 r ('..] " (. [—f
I 3 (8 nizing] Ugs 29 ! gns

.3‘ 4

\) ’
q 4 y - g - - - C
(N, g . ’y’f .
5 -~ - .) N .
> = d < '..'

Link 1: white paper

GPU Strategy

¢ Don't write explicitly threaded code
4+ Compiler handles it => no chance of deadlocks or race conditions

¢ Think differently: analyze the data instead of the algorithm.

¢ In contrast with modern superscalar CPUs: programmer writes
sequential code (single-threaded), processor tries to execute it
in parallel, through pipelining etc. (instruction parallelism). But
by the data and resource dependencies more speedup cannot
be reached with > 4-way superscalar CPUs. 1.5 Instructions
per cycles seems a maximum.

¢ Programming models have to make a delicate balance between
opacity (making an abstraction of the underlying architecture)
and visibility (showing the elements influencing the
performance). It's a trade-off between productivity and
implementation efficiency.

GPU Programming
Jan Lemeire

F
W

F
W

F
W

F
W

F
W

F
W

Results

Performance doubling every 6 months!
1000s of threads possible!

High Bandwidth
+ PCI Express bus (connection GPU-CPU) is the bottleneck

Enormous possibilities for latency hiding

Matrix Multiplication 13 times faster on a standard
GPU (GeForce 8500GT) compared to a state-of-the

art CPU (Intel Dual Core)
+ 200 times faster on a high-end GPU, 50 times if quadcore.

Low threshold (especially Nvidia’s CUDA):

+ C, good documentation, many examples, easy-to-install,
automatic card detection, easy-compilation

GPU Programming
Jan Lemeire

How to get maximal performance,

or call it ... limitations

¢ Create many threads, make them
‘aggressively’ parallel

¢ Keep threads busy in a warp

¢ Align memory reads
+ Global memory <> Shared/local memory
+ Using shared memory

¢ Limited memory per thread

¢ Close to hardware architecture
+ Hardware is made for exploiting data parallelism

GPU Programming
Jan Lemeire

Disadvantages

¢ Maintenance...
¢ CUDA = NVIDIA

4+ Alternatives:

- OpenCL: a standard language for writing code for GPUs and
multicores. Supported by ATI, NVIDIA, Apple, ...

— RapidMind’s Multicore Development, supports multiple
architectures, less dependent on it

- AMD, IBM, Intel, Microsoft and others are working on standard
parallel-processing extensions to C/C++

— Larrabee: combining processing power of GPUs with
programmability of x86 processors Links in Scientific Study section
¢ CUDA/OpenCL promises an abstract, scalable

hardware model, but will it remain true?
Link 1: white paper

GPU Programming

Jan Lemeire

Heterogeneous Chip Designs

¢ Augment standard CPU with attached

processors performing the compute-intensive
portions:

+ Graphics Processing Units (GPUs)
+ Field Programmable Gate Arrays (FPGAs)
+ Cell processors, designed for video games

GPU Programming
Jan Lemeire

Cell processor

— ¢ 8 Synergistic Processing

il g Elements (SPEs)

T e [LT + 128-bit wide data paths

il e R e I + for vector instructions

SPE3 SPE7 4+ 256K on-chip RAM
+ } { gl ¢ No memory coherence
1| contraer contrller [~ RAM B Performance and simplicity

Bl Programmers should carefully

manage data movement

GPU Programming
Jan Lemeire

Go parallel: take decisions now based

on expectations of the future.

¢ But future is unclear...
+ Parallel world is evolving.

¢ What do Intel, NVIDIA & Riverside tell us?

+ Workshop in Ghent, May 16 2011: “Challenges Towards

Exascale Computing”

¢ They agree on:
- Heterogeneous hardware is the future
Data movement will determine the cost (power & cycles)
Power consumption & Programmability are the challenges
- Commodity products & programming languages

- Hope for a programming model expressing parallelism and
locality

GPU Programming
Jan Lemeire

S H S b b

The future... I1I

¢ They do not agree on:

+ Intel sticks to x86 architecture
— That’s what programmers know & they won’t change
- Intel platforms have to support legacy code
— New architecture: Knights Ferry & Knights Corner (cf Larrabee)

- GPU: stream processor with high throughput, latency is
hidden by massively multithreading

- CPU: one-thread processor with low latencies

Riverside sees reconfigurable hardware as the sole solution:
no data movement necessary.

- NVIDIA envisages that the CPU will still be on board... in a
corner of the chip ;-)

GPU Programming
Jan Lemeire

.

. .

.

