Parallel Systems Course: Chapter IV Advanced Computer Architecture

GPU Programming

Jan Lemeire Dept. ETRO September 28th 2012

Vrije Universiteit Brussel

GPU vs CPU Peak Performance Trends and CPU Performance Trends and CPU Performance Trends and CPU Performance T **GPU peak performance of the design of the second of the second se** Hardware has kept up with Moore's law **2010 3 Billion transistors GPU**

1995

5,000 triangles/second 800,000 transistors GPU

Jan Lemeire 4

G

Source : NVIDIA

Supercomputing for free

◆ FASTRA at university of Antwerp

http://fastra.ua.ac.be

Collection of 8 graphical cards in PC

FASTRA 8 cards = 8x128 processors = 4000 euro

Similar performance as University's supercomputer (512 regular desktop PCs) that costed 3.5 million euro in 2005

Why are GPUs faster?

GPU specialized for math-intensive highly parallel computation

So, more transistors can be devoted to data processing rather than data caching and flow control

Jan Lemeire

GPU architecture strategy

◆ Light-weight threads, supported by the hardware

- Thread processors, upto 96 threads per processor
- Context switch can happen in 1 cycle!

◆ No caching mechanism, branch prediction, ...

- GPU does not try to be efficient for every program, does not spend transistors on optimization
- Simple straight-forward sequential programming should be abandoned…

◆ Less higher-level memory:

- GPU: 16KB shared memory per SIMD multiprocessor
- CPU: L2 cache contains several MB's
- Massively floating-point computation power
- **Transparent system organization**

◆ Modern (sequential) CPUs based on simple Von Neumann architecture

GP-GPUs: Graphics Processing Units for General-Purpose programming

◆ Copy data from CPU to GPU

◆ Start kernel within CPU-program (C, java, Matlab, python, …)

Several kernels can be launched (pipelined)

◆ Handled on the GPU one by one or in parallel

← Figure

Host (CPU) – Device (GPU)

GPU Architecture

- In the GTX 280, there are 10 Thread Processing Clusters
	- Each has 3 Streaming Multiprocessors (SMs), which we will refer to as *multiprocessors* (MPs)
	- Each MP has 8 Streaming Processors (SPs) or Thread Processors (TPs). We will refer to these as *processors.*
	- **240 processors and 30 MPs in all!**
- One double-precision FP unit per SM

SN

GPU vs CPU: NVIDIA 280 vs Intel i7 860

¹http://ark.intel.com/Product.aspx?id=41316 ²TPC = Thread Processing Cluster (24 cores) 330 multi-processors in a 280

Performance: GFlops?

◆ GPUs consist of MultiProcessors (MPs) grouping a number of Scalar Processors (SPs)

◆ Nvidia GTX 280:

- 30MPs x 8 SPs/MP x 2FLOPs/instr/SP x 1 instr/clock x 1.3 GHz
- $= 624$ GFlops
- ◆ Nvidia Tesla C2050:
	- ◆ 14 MPs x 32 SPs/MP x 2FLOPs/instr/SP x 1 instr/clock x 1.15 GHz (clocks per second)
	- $= 1030$ GFlops

Other limit: bandwidth

◆ Nvidia GTX 280:

- ◆ 1.1 GHz memory clock
- $+ 141$ GB/s

◆ Nvidia Tesla C2050:

◆ 1.5 GHz memory clock $+ 144$ GB/s

Example: pixel transformation

```
usgn_8 transform(usgn_8 in, sgn_16 gain, sgn_16 gain_divide, 
sgn_8 offset)
{
   sgn_32 x;
```

```
x = (in * gain / gain\_divide) + offset;
```

```
if (x < 0) x = 0;
  if (x > 255) x = 255;
   return x;
}
```
Pixel transformation

- ◆ Performance on Tesla C2050
- 1 pixel is represented by 1 byte [0-255]
- Integer operations: performance is half of floating point operations
- **Two different implementations**:
	- FPN1: 1 pixel per thread
	- FPN4: 4 pixels per thread (treat 4 bytes as 1 'word')

Roofline model

Roofline model applied kernel only

Roofline model applied PCI Express included

But… nothing is for free

◆ Harder to program!

- ◆ Hardware architecture should be taken into account
- **← Optimization is important**
- Additional complexity in code
- ◆ Harder to debug, maintain, ...

Algorithms should be inherently massivelyparallel

- Massively parallel programs are usually written so that each thread computes one part of a problem
	- For vector addition, we will add corresponding elements from two arrays, so each thread will perform one addition
	- \triangle If we think about the thread structure visually, the threads will usually be arranged in the same shape as the data

◆ Consider a simple vector addition of 16 elements

2 input buffers (A, B) and 1 output buffer (C) are required

◆ Create thread structure to match the problem

◆ Each thread is responsible for adding the indices corresponding to its ID

OpenCL Kernel code

```
__kernel void vectorAdd(__global const float * a, 
 __global const float * b, __global float * c) 
{ 
   // Vector element index 
  int nIndex = get_global_id(0);
   // addition 
  c[nnIndex] = a[nnIndex] + b[nIndex];}
```
- ◆ OpenCL kernel functions are declared using kernel".
- ◆ global refers to global memory
- \bullet get global $id(0)$ returns the ID of the thread in execution

Kernel launch

- **← Execution environment**
- Grid
- ◆ Work groups/thread blocks in 2 or 3 dimensions
- ◆ Specify at launch time: grid of work groups of work items (threads)
- ◆ Query in kernel at run time
- ◆ Impact on performance!

The host issues a succession of kernel invocations to the device. Each kernel is executed as a batch of threads organized as a grid of thread blocks

Work items/threads

- ◆ API calls allow threads to identify themselves and their data
- **Threads can determine their global ID in** each dimension
	- \leftarrow get_global_id(dim)
	- get_global_size(dim)
- ◆ Or they can determine their work-group ID and ID within the workgroup
	- **←** get_group_id(dim)
	- get_num_groups(dim)
	- get_local_id(dim)
	- get_local_size(dim)
- \triangleleft get_global_id(0) = column, get_global_id(1) = row
- $get_num_groups(0) * get_local_size(0) ==$ get_global_size(0)

Runtime (ns) i.f.o. #threads

Occupancy

◆ Keep all processing units busy! **← Enough threads**

- ◆ All Multiprocessors (MPs)
- All Scalar Processors (SPs)
- ◆ Full pipeline of scalar processor
	- Pipeline of 24 stages (*see later*)

So: Power is within reach?

Unfortunately…

- ◆ It's not that simple...
- ◆ It's not what we are used in the CPU-world CPU: multicores also requires us to program differently ◆ If you want the speed, you have to pay for it…

OpenCL Working Group

• Diverse industry participation

- Processor vendors, system OEMs, middleware vendors, application developers
- Many industry-leading experts involved in OpenCL's design
	- A healthy diversity of industry perspectives
- Apple initially proposed and is very active in the working group
	- Serving as specification editor
- . Here are some of the other companies in the OpenCL working group

CUDA Working Group

OpenCL Keywords & functions

◆ Address space qualifiers:

__global, __local, __constant and __private

◆ Function qualifiers:

__kernel

- ◆ Access qualifiers for images:
	- __read_only, __write_only, and __read_write

OpenCL functions: start with *cl* prefix

OpenCL Kernel code

```
__kernel void vectorAdd(__global const float * a, 
 __global const float * b, __global float * c) 
{ 
   // Vector element index 
  int nIndex = get_global_id(0);
   // addition 
  c[nnIndex] = a[nnIndex] + b[nIndex];}
```
- ◆ OpenCL kernel functions are declared using kernel".
- ◆ global refers to global memory
- \bullet get global $id(0)$ returns the ID of the thread in execution
Architecture – Computing elements

OpenCL Software Stack

Host program

Shows the steps to develop an OpenCL program

On Host: platform layer

Creating the basic OpenCL run-time environment

- **Select Platform:** collection of devices managed by the OpenCL framework that allow an application to share resources and execute kernels on devices in the platform
	- **OpenCL framework ≈ OpenCL implementation: NIVDIA, AMD, Intel, ...**
- **Device:** hardware such as GPU, multicore, cell processor
- **Context:** defines the entire environment, including kernels, devices, memory management, command-queues, etc.
- **Command-Queue:** object where OpenCL commands are enqueued to be executed by the device.

Setup

- Get the device(s) 1.
- 2. Create a context
- 3. Create command queue(s)

context = clCreateContext(0, 2, devices, NULL, NULL, &err); cl command queue queue gpu, queue cpu; queue gpu = clCreateCommandQueue(context, devices[0], 0, &err) ; queue cpu = clCreateCommandQueue(context, devices[1], 0, &err); CPU

Queue

GPU

Queue

Context

Within context

Data movement & kernel calls

Create **buffers** for this *context*.

 \triangle In global memory

◆ Data movement

- **← Host => device: clEnqueueWriteBuffer()**
- Device => host: clEnqueueReadBuffer()

Create **program** using *input file* for this *context*.

build this *program*.

Create **kernel** from *program*.

Executing Code

- Programs build executable code for multiple devices
- Execute the same code on different devices

Cleanup

// release kernel, program, and memory objects DeleteMemobjs (cmMemObjs, 3); free (cdDevices); clReleaseKernel (ckKernel); clReleaseProgram (cpProgram); clReleaseCommandQueue (cqCommandQue); clReleaseContext (cxMainContext);

Overview 1. GPUs for general purpose 2. GPU 'threads' executing kernels 3. Starting kernels from host (CPU) 4. Execution model & GPU architecture W a Γ ponts **6. Optimizing GPU programs 7. Analysis & Conclusions**

Execution Model

- \triangle Kernel = smallest unit of execution, like a C function, executed by each **work item** $(\approx$ thread)
- ◆ Data parallelism: kernel is run by a grid of work groups
- **Work group** consist of instances of same kernel: work items
- ◆ Different data elements are fed into the work items of the work groups
	- Also called *stream computing*

Architecture – Execution Model

Kernel execution

◆ Simple scheduler

GPU met 2 MPs

- Assigns work groups to available streaming MultiProcessors (MPs)
- \triangle Basically, a waiting queue for work groups
- Work groups (WGs) execute independently
	- Global Synchronization among work groups is not possible! \ddotmark

Multiple WGs per MP

- ◆ One MP can execute work groups concurrently
- ◆ Determined by available resources (hardware limits):
	- *Max. work groups simultaneously on MP: 8*
	- *Private memory per MP: 16/48KB*
	- *Local memory per MP: 16/32KB*

Architecture – Memory Model

OpenCL Memory Model on NVIDIA

Hardware

• Each hardware thread has a dedicated private region for stack

global constant

- Each multiprocessor has dedicated storage for local memory and constant caches
- Work-items running on a multiprocessor can communicate through __ local memory

- All work-groups on the device can access global memory
- Atomic operations allow powerful forms of global communication

Example

 \div # local variables per thread (registers)

- \div # work items per work group
- \bullet => memory per

Work group execution

- Work items can synchronize within a work group barrier(CLK_LOCAL_MEM_FENCE); // barrier synchronization
- ◆ Work items can share on-chip local memory
	- Local memory is on MultiProcessor (MP)
	- ◆ Visible to work group only

__local int shr[NUMBER_OF_ROWS][NUMBER_OF_COLS];

GPU Programming Concepts

Executed in warps/wavefronts of 32/64 work items Max work groups simultaneously on MP: 8 Max active warps on MP: 24/48 **(get_local_id(0), get_local_id(1))**

OpenCL terminology

GPU Threads v/s CPU Threads

GPU work items or *threads*:

- **Lightweight,** small creation and scheduling overhead, extremely **fast switching between threads**
	- No context switch is required

◆ **Need to issue 1000s of GPU threads** to hide global memory latencies (600-800 cycles)

– GPU=Thread processor, upto 96 threads per processor

♦ CPU threads:

◆ Heavyweight, large scheduling overhead, **slow context switching** (processor state has to be saved)

Convolution of images

Input image

Convolution of a 8x8 image with a 3x3 filter to yield a 6x6 output image

Examples of convolution

Speedup

Convolution on GPU

Convolution Kernel

```
__kernel void bad_shared(
      __global int *in, __global int *out, __local int *in_local, __constant int *filter)
```

```
uint row = get_group_id(1) * get_local_size(1) + get_local_id(1);
uint col = get_group_id(0) * get_local_size(0) + get_local_id(0);
```

```
in\_local[get\_local\_id(1) * get\_local\_size(0) + get\_local\_id(0)] =
  in[row * get_global_size(0) + col];
 … // copy 9 pixels to local
```

```
barrier(CLK_LOCAL_MEM_FENCE);
 int sum=0;
for (int i = 0; i< filter_width; ++i)
   for (int j = 0; j < filter_height; ++j)
       sum += filter[...] * in local[...];
```

```
out[row * get_global_size(0) + col] = sum;
```
{

}

Global and Local Dimensions

• Choose the dimensions that are "best" for your algorithm

Scalar Processor: Pipelined design

◆ Typically (CPU): five tasks in instruction execution

- \triangle IF: instruction fetch
- **← ID: instruction decode**
- **← OF: operand fetch**
- **← EX: instruction execution**
- OS: operand store, often called write-back WB

← GPU: 24 stages

Pipelining Principle

◆ Long operations

◆ Combination of short operations

time

Pipelining

◆ On GPU: 24 stages

◆ Multiple instructions simultaneously in flight

- **← Higher throughput, except if dependencies** between threads
	- E.g.: If instruction 2 depends on the outcome of instruction 1, then instruction 2 can only proceed in pipeline after the termination of instruction 1

Pipeline stall

GPU: instructions of *different* threads in flight

Work group execution

- ◆ Work items are executed in NVIDIA-warps/AMDwavefronts, they are the scheduling units in the MP.
- ◆ Groups of 32/64 work items that execute in lockstep: they execute the same instruction.

Example: 3 work groups on MP, each group has 256 work items, how many Warps are there in the MP?

- \triangleright Each group is divided into $256/32 = 8$ Warps
- \triangleright There are 8 $*$ 3 = 24 Warps

Warp/wavefront execution

- Work items are sent into pipeline grouped in warp /wavefront
	- ALUs all execute the same instruction: Single Instruction, Multiple Threads (SIMT)
	- \div 32 work items / 8 SPs = > 4 cycles

Warp/wavefront execution

Kernels proceeds to next instruction if all warps are in the pipeline If 192 work items \Rightarrow 6 warps \Rightarrow 24 cycles needed \ddotmark

 \Rightarrow pipeline has independent instructions => no stalling

Why do we have to consider warps/wavefronts?

← Different branching of threads within a warp incurs 'lost cycles'

SIMT execution happens per warp/wavefront, in lockstep

Memory access pattern of a warp should be considered

- ← Memory access also happens per warp
- Not all access patterns can happen concurrently (*see further*)

GPU Computing Performance

A. Peak Performance

computations

branching ϵ

 $amdahl \leq$

non-concurrent memory access

[&]amp; model for latency hiding
General approach

◆ Estimate a performance bound for your kernel

- **Compute bound**: $t_1 = #$ operations / #operations per second
- *Data bound*: $t_2 = #$ memory accesses / # accesses per second
- t_{min} = min(t_1 , t_2) *expressed by roofline model*
- ◆ Measure the actual runtime

 \star t_{actual} = t_{min} + t_{delta}

 \bullet Try to account for and minimize t_{delta} ◆ Due to non-overlap of computation and communication Due to *anti-parallel patterns (APPs)* Consult remedies for APPs

Anti-parallel Patterns

- Definition: *Common parts of kernel code that work against the available parallelism*.
	- Can be inferred from the source code
	- \triangle Map parts of the source to parallel overhead
- ◆ Systematic way to categorize performance topics
- ◆ Systematic way to optimize kernels
- *PhD research of Jan G. Cornelis*

Latency Hiding

◆ 1 warp, without latency hiding

Memory period

Computation period

◆ 2 warps running concurrently

Latency Hiding for Memory Accesses

◆ Latency Hiding

- ← During global to local memory copying
- ◆ During local memory reads
- ◆ Keep multiprocessors busy with a huge amount of threads
	- ◆ 1 multiprocessor can simultaneously execute multiple work group of maximal 512/1024 work items
	- ◆ Is limited by amount of local and register memory needed by each work item
	- *Maximize occupancy*= Number of warps running concurrently on a multiprocessor divided by maximum number of warps that can run concurrently

4 warps running concurrently

♦ But only 2 concurrent memory transactions

Keep occupancy high

◆ Maximal warps: 24, maximal Work Groups (WGs): 8

◆ Conclusion: in general, higher occupancy leads to a better performance

APP0: AMDAHL

Wavefront algorithm

512x512 image divided into work groups of 8x8, handled by 1 work group \Rightarrow 64 x 64 work

← 1 work group depends on results of 2 work groups => global synchronization necessary

73

91

103 109 115 121

- - => 30 multiprocessors

APP1:BRANCH

SIMT Conditional Processing

Unlike threads in a CPU-based program, **SIMT programs cannot follow different execution paths**

 \triangle All threads of a warp/wavefront are executing the same instruction

Ideal scenario:

- **All GPU threads of a work group follow the same execution path**
- **All processors continuously active**
- ◆ If divergent paths within a warp/wavefront, the *then-* and *else***instructions are scheduled executed** for all threads, but only executed for the correct threads, dependent on the condition
	- ◆ Program flow cannot actually diverge, a bit is used to enable/disable processors based on the thread being executed (*instruction predication*)

Parallelism is reduced, impacting performance... (see later)

APP1:BRANCH

SIMT Conditional Processing

Example: assume only one warp, one instruction in if-clause, one in then-clause

APP1:BRANCH

Branching

- ◆ Threads of the same warp/wavefront (32/64 threads) are run in lockstep
- ◆ For example:

if $(x < 5)$ $y = 5$; else $y = -5$;

← SIMD performs the 3 steps $\mathbf{y} = 5$; is only executed by threads for which $\mathbf{x} < 5$ $\mathbf{y} = -5$; is executed by all others

Warp branch divergence decreases performance: cycles are lost Solution: statically or dynamically reorder threads

◆ No latency hiding possible

Reduction operation (sum)

Thread IDs:

V2: group active threads

V3: Sequential addressing

APP2:MEM

Global memory

◆ Memory coalescing for half-warps

- Accessed elements belong to same aligned segment
- Older cards: sequential threads access sequential locations
- Newer cards: not necessary anymore

◆ Global memory is a collection of partitions

- 200 series and 10 series NVIDIA GPUs have 8 partitions of 256 bytes wide
- Partition camping when different thread Work groups access the same partition

Local/Shared memory **APP2:MEM**

- Local/Shared memory is divided into banks
- Each bank can service one address per cycle
- Multiple simultaneous accesses to a bank result in a bank conflict
	- Conflicting accesses are serialized
	- Cost = max # simultaneous accesses to a single ban
- ◆ No bank conflict:
	- \triangleleft all threads of a half-warp access different banks,
	- all threads of a half-warp access identical address, (broadcast)

APP2:MEM

Bank Addressing Examples

APP2:MEM

Bank Addressing Examples

APP3:SYN

Synchronization

- Barrier synchronization within a work group
	- ◆ barrier(CLK_LOCAL_MEM_FENCE);
	- Work items that reached the barrier must wait
- Global synchronization should happen across kernel calls Work groups that have completed
- Greater instruction dependency
	- \leftrightarrow less potential for latency hiding
- ◆ Thus: try to minimize synchronization

Lost cycles due to synchronization

APP4:DEP

Dependent Code

- Well-known fact: latency is hidden by launching other threads
- Less-known fact: one can also exploit *instruction level parallelism* in one thread.
	- ◆ Data level parallelism in one thread.
- ◆ Anti-parallel pattern?
	- Dependent instructions can not be parallelized.
	- ◆ Dependent memory accesses can not be parallelized.

AMD's static kernel analyzer

Compiler Statistics (Using CAL 11.7)

AMD's dynamic profiler

ma

Link 1: white paper

GPU Strategy

- ◆ Don't write explicitly threaded code
	- \triangle Compiler handles it => no chance of deadlocks or race conditions
- Think differently: analyze the **data** instead of the algorithm.
- In contrast with modern superscalar CPUs: programmer writes sequential code (single-threaded), processor tries to execute it in parallel, through pipelining etc. (instruction parallelism). But by the data and resource dependencies more speedup cannot be reached with > 4-way superscalar CPUs. *1.5 Instructions per cycles seems a maximum*.
- ◆ Programming models have to make a delicate balance between **opacity** (making an abstraction of the underlying architecture) and **visibility** (showing the elements influencing the performance). It's a trade-off between productivity and implementation efficiency.

Results

- ◆ Performance doubling every 6 months!
- ◆ 1000s of threads possible!
- ◆ High Bandwidth
	- PCI Express bus (connection GPU-CPU) is the bottleneck
- Enormous possibilities for latency hiding
- Matrix Multiplication 13 times faster on a standard GPU (GeForce 8500GT) compared to a state-of-the art CPU (Intel Dual Core)

200 times faster on a high-end GPU, 50 times if quadcore.

Low threshold (especially Nvidia's CUDA):

C, good documentation, many examples, easy-to-install, automatic card detection, easy-compilation

How to get maximal performance, or call it ... limitations

- ◆ Create many threads, make them 'aggressively' parallel
- ◆ Keep threads busy in a warp
- ◆ Align memory reads
	- Global memory <> Shared/local memory
	- Using shared memory
- ◆ Limited memory per thread
- ◆ Close to hardware architecture

 \triangleleft Hardware is made for exploiting data parallelism

Disadvantages

◆ Maintenance...

CUDA = NVIDIA

- Alternatives:
	- *OpenCL*: a standard language for writing code for GPUs and multicores. Supported by ATI, NVIDIA, Apple, …
	- RapidMind's Multicore Development, supports multiple architectures, less dependent on it
	- AMD, IBM, Intel, Microsoft and others are working on standard parallel-processing extensions to C/C++
	- Larrabee: combining processing power of GPUs with programmability of x86 processors **Links in Scientific Study section**
- ◆ CUDA/OpenCL promises an abstract, scalable hardware model, but will it remain true?

Link 1: white paper

Heterogeneous Chip Designs

- ◆ Augment standard CPU with attached processors performing the compute-intensive portions:
	- Graphics Processing Units (GPUs)
	- Field Programmable Gate Arrays (FPGAs)
	- Cell processors, designed for video games

Cell processor

- ◆ 8 Synergistic Processing Elements (SPEs)
	- \div 128-bit wide data paths
	- \leftarrow for vector instructions
	- 256K on-chip RAM
- \bullet No memory coherence
	- **Performance and simplicity**
	- Programmers should carefully \blacktriangledown manage data movement

Go parallel: take decisions now based on expectations of the future.

◆ But future is unclear...

← Parallel world is evolving.

What do Intel, NVIDIA & Riverside tell us?

Workshop in Ghent, May 16 2011: "Challenges Towards Exascale Computing"

◆ They agree on:

- \triangleleft Heterogeneous hardware is the future
- ◆ Data movement will determine the cost (power & cycles)
- ◆ Power consumption & Programmability are the challenges
- Commodity products & programming languages
- Hope for a programming model expressing *parallelism* and *locality*

The future… II

◆ They do not agree on:

- \triangle Intel sticks to x86 architecture
	- That's what programmers know & they won't change
	- Intel platforms have to support legacy code
	- New architecture: Knights Ferry & Knights Corner (cf Larrabee)
- GPU: stream processor with high throughput, latency is hidden by massively multithreading
- ← CPU: one-thread processor with low latencies
- Riverside sees reconfigurable hardware as the sole solution: no data movement necessary.
- ◆ NVIDIA envisages that the CPU will still be on board... in a corner of the chip ;-)

