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GPU vs CPU Peak Performance Trends 
 

 GPU peak performance has grown aggressively. 

 Hardware has kept up with Moore’s law  

 

Source : NVIDIA 

2010 
350 Million triangles/second 
3 Billion transistors GPU 

1995 
5,000 triangles/second 
800,000 transistors GPU 
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FASTRA at university of Antwerp 

Supercomputing for free 

Collection of 8 graphical cards in PC 

 

FASTRA 8 cards = 8x128 processors = 4000 

euro 

 

Similar performance as University’s 

supercomputer  (512 regular desktop PCs) 

that costed 3.5 million euro in 2005 

 http://fastra.ua.ac.be 

GPU Programming 
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Why are GPUs faster? 

8 cores 
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GPU Programming 

GPU architecture strategy 

Light-weight threads, supported by the hardware 
Thread processors, upto 96 threads per processor 

Context switch can happen in 1 cycle! 

No caching mechanism, branch prediction, … 
GPU does not try to be efficient for every program, does not spend 
transistors on optimization 

Simple straight-forward sequential programming should be 
abandoned… 

Less higher-level memory: 
GPU: 16KB shared memory per SIMD multiprocessor 

CPU: L2 cache contains several MB’s 

Massively floating-point computation power 

Transparent system organization 
 Modern (sequential) CPUs based on simple Von Neumann 
architecture 
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GP-GPUs: Graphics Processing Units 
for General-Purpose programming 

So… 

GPU Programming 
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Usage 

Copy data from CPU to GPU 

Start kernel within CPU-program (C, java, 
Matlab, python, …) 

Several kernels can be launched (pipelined) 

Handled on the GPU one by one or in parallel 

Figure 

GPU Programming 
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Host (CPU) – Device (GPU) 

GPU Programming 

Device/GPU 

Global 

Memory 

Processors 

Host/CPU 

R 

A 

M 

Processor  

Hypertransport and 
Intel’s Quickpath 

currently 25.6 GB/s 

PCIe x16 
4 GB/s 

 
PCIe x16 Gen2 

8 GB/s peak 

Kernel launches 

GPU bus 
Nvidia Tesla C2050: 

1030.4 GB/s 
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GPU Architecture  

• In the GTX 280, there are 10 Thread Processing Clusters  

– Each has 3 Streaming Multiprocessors (SMs), which we will 
refer to as multiprocessors (MPs) 

– Each MP has 8 Streaming Processors (SPs) or Thread 
Processors (TPs). We will refer to these as processors. 

– 240 processors and 30 MPs in all! 

• One double-precision FP unit per SM  

 

 

 

Source : NVIDIA 



GPU vs CPU: 
NVIDIA 280 vs Intel i7 860 

GPU CPU1 

Registers 16,384 (32-bit) / 

multi-processor3 

128 reservation stations 

Peak memory bandwidth 141.7 Gb/sec 21 Gb/sec 

Peak GFLOPs 562 (float)/ 

77 (double) 

50 (double) 

Cores  240 (scalar 

processors) 

4/8 (hyperthreaded) 

Processor Clock (MHz) 1296 2800 

Memory 1Gb 16Gb 

Local/shared memory 16Kb/TPC2 N/A 

Virtual memory None 

12 

1http://ark.intel.com/Product.aspx?id=41316 
2TPC = Thread Processing Cluster (24 cores) 
330 multi-processors in a 280 
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Performance: GFlops? 

GPUs consist of MultiProcessors (MPs) grouping a 
number of Scalar Processors (SPs) 

Nvidia GTX 280: 
30MPs x 8 SPs/MP x 2FLOPs/instr/SP x 1 instr/clock x 1.3 GHz 

= 624 GFlops 

Nvidia Tesla C2050:  
14 MPs x 32 SPs/MP x 2FLOPs/instr/SP x 1 instr/clock x 1.15 GHz 
(clocks per second)  

= 1030 GFlops 

GPU Programming 
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Other limit: bandwidth 

Nvidia GTX 280:  
1.1 GHz memory clock   

141 GB/s 

Nvidia Tesla C2050:  
1.5 GHz memory clock   

144 GB/s 

 

GPU Programming 
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Example: pixel transformation 

usgn_8  transform(usgn_8 in, sgn_16 gain, sgn_16 gain_divide, 
sgn_8 offset) 

{ 

    sgn_32 x; 

 

    x = (in * gain / gain_divide) + offset; 

 

    if (x < 0) x = 0; 

    if (x > 255) x = 255; 

    return x; 

 } 

GPU Programming 
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Performance on Tesla C2050 

1 pixel is represented by 1 byte [0-255] 

Integer operations: performance is half of floating point 
operations 

Two different implementations: 
◦ FPN1: 1 pixel per thread 

◦ FPN4: 4 pixels per thread (treat 4 bytes as 1 ‘word’) 

 
 

 

Pixel transformation 

Pmem (bytes/s) 115 GB/s Pops (ops/s) 500 Gops/s 

CI (bytes/pix) 1/5 Ops/pix 5+4 (FPN1) 
5+1 (FPN4) 

PmemxCI (pix/s) 23 Gpix/s Pops/(Ops/pix) 56 Gpix/s (FPN1) 
83 Gpix/s (FPN4) 

GPU Programming 
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Roofline model 

 

GPU Programming 

algorithm 
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Roofline model applied 
kernel only 

GPU Programming 
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Roofline model applied 
PCI Express included 
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Harder to program! 
Hardware architecture should be taken into account 

Optimization is important 

Additional complexity in code 

Harder to debug, maintain, … 

 

Algorithms should be inherently massively-
parallel 

But… nothing is for free 

GPU Programming 
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Thread Structure 

Massively parallel programs are usually 
written so that each thread computes one 
part of a problem 

For vector addition, we will add corresponding elements 
from two arrays, so each thread will perform one addition 

If we think about the thread structure visually, the threads 
will usually be arranged in the same shape as the data 

 

 

22 
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Thread Structure 

Consider a simple vector addition of 16 
elements 

2 input buffers (A, B) and 1 output buffer (C) are 
required 

 
0 1 2 3 4 5 6 7 8 9 1

0 
1
1 

1
2 

1
3 

1
4 

1
5 

A 

B 

C 

= 

+ 

Vector Addition: 

Array Indices 

23 
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Thread Structure 

Create thread structure to match the 
problem  

1-dimensional problem in this case 

Thread structure: 

0 1 2 3 4 5 6 7 8 9 1
0 

1
1 

1
2 

1
3 

1
4 

1
5 

A 

B 
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+ 

Vector Addition: 

1

4 

1

5 

1

2 

1

3 

1

0 

1

1 
8 9 6 7 4 5 2 3 0 1 

Thread IDs 

24 
GPU Programming 



Jan Lemeire 

Thread Structure 

Each thread is responsible for adding the 
indices corresponding to its ID 

Thread structure: 

0 1 2 3 4 5 6 7 8 9 1
0 

1
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1
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Vector Addition: 
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OpenCL Kernel code 

 

 

 

 

 

OpenCL kernel functions are declared using 
“__kernel”. 

__global refers to global memory 

get_global_id(0) returns the ID of the thread in 
execution  

 

__kernel void vectorAdd(__global const float * a,  
__global const float * b, __global float * c)  
{  
  // Vector element index  
  int nIndex = get_global_id(0); 
  // addition  
  c[nIndex] = a[nIndex] + b[nIndex];  
}  

GPU Programming 
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Kernel launch 

Execution environment 

Grid 

Work groups/thread 
blocks in 2 or 3 
dimensions 

Specify at launch time: 
grid of work groups of 
work items (threads) 

Query in kernel at run 
time 

Impact on performance! 
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Work items/threads 

API calls allow threads to identify 
themselves and their data 
Threads can determine their global ID in 
each dimension 

get_global_id(dim)  
get_global_size(dim) 

Or they can determine their work-group ID 
and ID within the workgroup 

get_group_id(dim) 
get_num_groups(dim) 
get_local_id(dim) 
get_local_size(dim) 

get_global_id(0) = column, get_global_id(1) = row 
get_num_groups(0) * get_local_size(0) == 
get_global_size(0) 

28 
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Runtime (ns) i.f.o. #threads 

GPU Programming 
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Occupancy 

Keep all processing units busy! 
Enough threads 

All Multiprocessors (MPs) 

All Scalar Processors (SPs) 

Full pipeline of scalar processor 
Pipeline of 24 stages (see later) 

GPU Programming 
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So: Power is within reach? 

Unfortunately… 

It’s not that simple… 

It’s not what we are used in the CPU-world 
CPU: multicores also requires us to program differently 

If you want the speed, you have to pay for 
it… 

GPU Programming 
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CUDA Working Group 

GPU Programming 
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OpenCL Keywords & functions 

Address space qualifiers:  
__global, __local, __constant and __private 

Function qualifiers:  
__kernel 

Access qualifiers for images:  
__read_only, __write_only, and __read_write 

 

OpenCL functions: start with cl prefix 

 

GPU Programming 
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OpenCL Kernel code 

 

 

 

 

 

OpenCL kernel functions are declared using 
“__kernel”. 

__global refers to global memory 

get_global_id(0) returns the ID of the thread in 
execution  

 

__kernel void vectorAdd(__global const float * a,  
__global const float * b, __global float * c)  
{  
  // Vector element index  
  int nIndex = get_global_id(0); 
  // addition  
  c[nIndex] = a[nIndex] + b[nIndex];  
}  

GPU Programming 
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Architecture – Computing elements  

(GPU, CPU, cell processor, …) (also called multiprocessor) 

(≈ scalar  

processor) 

(mostly CPU) 

GPU Programming 
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OpenCL Software Stack 

 Shows the steps to develop an OpenCL 
program 

GPU Programming 
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On Host: platform layer 

Creating the basic OpenCL run-time 
environment 

Select Platform: collection of devices managed by the 
OpenCL framework that allow an application to share 
resources and execute kernels on devices in the platform 

– OpenCL framework ≈ OpenCL implementation: NIVDIA, AMD, 
Intel, ... 

Device: hardware such as GPU, multicore, cell processor 

Context: defines the entire environment, including kernels, 
devices, memory management, command-queues, etc.  

Command-Queue: object where OpenCL commands are 
enqueued to be executed by the device. 

GPU Programming 
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platform is set to NULL  
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Within context 
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Data movement & kernel calls 

Create  buffers for this context. 
In global memory 

Data movement 
Host => device: clEnqueueWriteBuffer() 

Device => host: clEnqueueReadBuffer() 

Create program using input file for this 
context. 

build this program. 

Create kernel from program. 

GPU Programming 
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Execution Model  

Kernel = smallest unit of execution, like a C 
function, executed by each work item (≈ thread) 

Data parallelism: kernel is run by a grid of work 
groups 

Work group consist of instances of same kernel: 
work items 

Different data elements are fed into the work items 
of the work groups 

Also called stream computing 

GPU Programming 



Jan Lemeire 

Architecture – Execution Model
  

GPU Programming 



Jan Lemeire 

Simple scheduler 
Assigns work groups to available streaming MultiProcessors (MPs) 

Basically, a waiting queue for work groups  

Work groups (WGs) execute independently 
Global Synchronization among work groups is not possible! 

Kernel execution 

Device 

WG 0 WG 1 

WG 2 WG 3 

WG 4 WG 5 

WG 6 

Kernel grid 

WG 0 WG 1 

WG 2 WG 3 

WG 4 WG 5 

WG 6 

Device 

WG 0 WG 1 WG 2 WG 3 

WG 4 WG 5 WG 6 

time 

GPU Programming 

GPU met 2 MPs 
GPU met 4 MPs 
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Multiple WGs per MP 

One MP can execute work groups concurrently 

Determined by available resources (hardware 
limits): 

Max. work groups simultaneously on MP: 8 

Private memory per MP: 16/48KB 

Local memory per MP: 16/32KB 

 

 

GPU Programming 

Kernel grid 

WG 0 WG 1 

WG 2 WG 3 

WG 4 WG 5 

WG 6 

Device 

WG 0 

time 

GPU met 4 MPs 

WG 1 WG 2 WG 3 WG 4 WG 5 WG 6 
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Architecture – Memory Model 

GPU Programming 



Jan Lemeire 

 

_constant 

Add limits 
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Example 

# local variables per thread (registers) 

# work items per work group 

=> memory per  

GPU Programming 
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Work items can synchronize within a work group 
barrier(CLK_LOCAL_MEM_FENCE); // barrier synchronization 

 

Work items can share on-chip local memory 
Local memory is on MultiProcessor (MP) 

Visible to work group only 

 

__local int shr[NUMBER_OF_ROWS][NUMBER_OF_COLS]; 

Work group execution 

GPU Programming 



Device/GPU  ± 1TFLOPS 

Global Memory (1GB) 

Multiprocessor 1 

Local Memory (16/48KB) 

Scalar 

Processor  

± 1GHz 

Private 

16K/8 

Scalar 

Processor 

Private 

Multiprocessor 2 

Local Memory 

Scalar 

Processor 

Private 

Scalar 

Processor 

Private Host/

CPU 

Constant Memory (64KB) 

GPU Programming Concepts 

Texture Memory (in global memory) 

R 

A 

M 

  Grid  (1D, 2D or 3D) 
 

Group 

(0, 0) 

Group 

(1, 0) 

Group 

(0, 1) 

Group 

(1, 1) 

Group 

(2, 0) 

Group 

(2, 1) 

   Work group  

Work item 

(0, 0) 

Work item 

(1, 0) 

Work item 

(2, 0) 

Work item 

(0, 1) 

Work item 

(1, 1) 

Work item 

(2, 1) 

Work item 

(0, 2) 

Work item 

(1, 2) 

Work item 

(2, 2) 

kernel 

Max #work items per work group: 1024 
Executed in warps/wavefronts of 32/64 work items 
Max work groups simultaneously on MP: 8 
Max active warps on MP: 24/48 

get_local_size(0) 
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Work group size Sx 

(get_local_id(0), get_local_id(1)) 

(get_group_id(0),get_group_id(1)) 

100GB/s    200 cycles 

40GB/s     few cycles 

4-8 GB/s 

OpenCL terminology 
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GPU Threads v/s CPU Threads 

GPU work items or threads: 
Lightweight,  small creation and scheduling overhead, extremely fast 
switching between threads 

– No context switch is required 

 

Need to issue 1000s of GPU threads to hide global memory latencies 
(600-800 cycles) 

– GPU=Thread processor, upto 96 threads per processor 

 

CPU threads: 
Heavyweight, large scheduling overhead, slow context switching 
(processor state has to be saved) 

 

55 

GPU Programming 



Jan Lemeire 

Convolution of images 

GPU Programming with CUDA 

Convolution of a 8x8 
image with a 3x3 
filter to yield a 6x6 
output image 
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Examples of convolution 

Edge detection 

with sobel filter 

GPU Programming 
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Speedup 

 

GPU Programming 
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Convolution on GPU 

GPU Programming with CUDA 

get_group_id(0)=2 

get_group_id(1)=2 
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Convolution Kernel 

__kernel void bad_shared( 

        __global int *in, __global int *out, __local  int *in_local, __constant int *filter) 

{ 

    uint row = get_group_id(1) * get_local_size(1) + get_local_id(1); 

    uint col = get_group_id(0) * get_local_size(0) + get_local_id(0); 

 

    in_local[get_local_id(1) * get_local_size(0) + get_local_id(0)] = 

        in[row * get_global_size(0) + col]; 

    … // copy 9 pixels to local 

 

    barrier(CLK_LOCAL_MEM_FENCE); 

    int sum=0; 

    for (int i = 0; i< filter_width; ++i) 

         for (int j = 0; j< filter_height; ++j) 

 sum += filter[…] * in_local[…]; 

 

    out[row * get_global_size(0) + col] = sum; 

}  

float sum = 0; for (int r = 0; r < 

nFilterWidth; r++) { const int idxFtmp 

= r * nFilterWidth; const int yIn = 

yInTopLeft + r; const int idxIntmp = 

yIn * nInWidth + xInTopLeft; for (int c 

= 0; c < nFilterWidth; c++) { const int 

idxF = idxFtmp + c; const int idxIn = 

idxIntmp + c; sum += 

pFilter[idxF]*pInput[idxIn]; } } //for (int 

r = 0...  

GPU Programming 
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Scalar Processor: Pipelined design 

Typically (CPU): five tasks in instruction 
execution 

IF: instruction fetch 

ID: instruction decode 

OF: operand fetch 

EX: instruction execution 

OS: operand store,  
often called write-back WB 

GPU: 24 stages 

GPU Programming 
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Pipelining Principle 

Long operations 
 

 

Combination of short operations 
 

 

Pipelining 

 

 

 
 

1 2 3 4 

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 

GPU Programming 
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Pipelining 

On GPU: 24 stages 

Multiple instructions simultaneously in flight 

Higher throughput, except if dependencies 
between threads 

E.g.: If instruction 2 depends on the outcome of instruction 
1, then instruction 2 can only proceed in pipeline after the 
termination of instruction 1 

Pipeline stall 

GPU: instructions of different threads in flight 

GPU Programming 
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Work group execution 

Work items are executed in 
NVIDIA-warps/AMD-
wavefronts, they are the 
scheduling units in the MP. 

Groups of 32/64 work items 
that execute in lockstep: they 
execute the same instruction. 

 

Example: 3 work groups on MP, 
each group has 256 work items, 
how many Warps are there in the 
MP? 

 Each group is divided into 
256/32 = 8 Warps 

 There are 8 * 3 = 24 Warps  

… 
t0 t1 t2 … t31 

… 

… 
t0 t1 t2 … t31 

… 
Block 1 Warps Block 2 Warps 

… 
t0 t1 t2 … t31 

… 
Block 1 Warps 

GPU Programming 

Multiprocessor  

Local Memory (16/48KB) 

Scalar 

Processor  

± 1GHz 

Private 

16K/8 

Scalar 

Processor 

Private 

40GB/s     few cycles 
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Add Add Add Add Add Add Add 32 

Add 

Warp/wavefront execution 

1 2 3 4 5 6 7 8 9 

Add Add Add Add Add Add Add 0 

Add Add Add Add Add Add Add Add 8 

Add Add Add Add Add Add Add Add 16 

Add Add Add Add Add Add Add Add 24 

Add 

… 

Wavefront 1 

… Cycle 

SIMD Width 

Work items are sent into pipeline grouped in warp /wavefront 

ALUs all execute the same instruction: Single Instruction, 
Multiple Threads (SIMT)  

32 work items / 8 SPs => 4 cycles 

GPU Programming 

Add Add Add Add Add Add Add 40 

Add Add Add Add Add Add Add Add 48 

Add Add Add Add Add Add Add Add 56 

Add 

Add Add Add Add Add Add Add 64 

Add 

Wavefront 2 Wavefront 3 

Thread ID 



Jan Lemeire 

Warp/wavefront execution 

Mul Mul Mul Mul Mul Mul Mul 0 

Mul Mul Mul Mul Mul Mul Mul Mul 8 

Mul Mul Mul Mul Mul Mul Mul Mul 16 

Mul Mul Mul Mul Mul Mul Mul Mul 24 

Mul 

GPU Programming 

Kernels proceeds to next instruction if all warps are in the pipeline 

If 192 work items => 6 warps => 24 cycles needed 

 pipeline has independent instructions => no stalling 

 

21 22 23 24 25 26 27 28 29 

Add Add Add Add Add Add Add 160 

Add Add Add Add Add Add Add Add 168 

Add Add Add Add Add Add Add Add 176 

Add Add Add Add Add Add Add Add 184 

Add 

… 

Wavefront 6 

… Cycle 

SIMD Width 
Wavefront 1 Wavefront 2 

Mul Mul Mul Mul Mul Mul Mul 32 

Mul 
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Why do we have to consider 
warps/wavefronts? 

Different branching of threads within a warp 
incurs ‘lost cycles’ 

SIMT execution happens per warp/wavefront, in lockstep 

 

Memory access pattern of a warp should 
be considered 

Memory access also happens per warp 

Not all access patterns can happen concurrently (see 
further) 

 

GPU Programming 
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Estimate a performance bound for your kernel 
Compute bound: t1 = #operations / #operations per 
second 

Data bound: t2 = # memory accesses / # accesses per 
second 

tmin = min(t1, t2)     expressed by roofline model 
 

Measure the actual runtime 
tactual = tmin + tdelta 

 

Try to account for and minimize tdelta 
Due to non-overlap of computation and communication 
Due to anti-parallel patterns (APPs) 
Consult remedies for APPs 

General approach 

GPU Programming 
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Definition: Common parts of kernel code that work 
against the available parallelism. 

Can be inferred from the source code 

Map parts of the source to parallel overhead 

 

Systematic way to categorize performance topics 

 

Systematic way to optimize kernels 

 

PhD research of Jan G. Cornelis 

 

 

 

 

 

 

Anti-parallel Patterns 

GPU Programming 
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Latency Hiding 

1 warp, without latency hiding 

 

 

 

 

2 warps running concurrently 

GPU Programming 



Jan Lemeire 

Latency Hiding for Memory 
Accesses 

Latency Hiding 
During global to local memory copying 

During local memory reads 

Keep multiprocessors busy with a huge amount of 
threads 

1 multiprocessor can simultaneously execute multiple work 
group of maximal 512/1024 work items 

Is limited by amount of local and register memory needed 
by each work item 

Maximize occupancy= Number of warps running 
concurrently on a multiprocessor divided by maximum 
number of warps that can run concurrently 

GPU Programming 
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4 warps running concurrently 

GPU Programming 

But only 2 concurrent memory transactions 
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Keep occupancy high  

Conclusion: in general, higher occupancy leads to a 
better performance 

GPU Programming 

Maximal warps: 24, maximal Work Groups (WGs): 8 

Threads per work group Threads per work group 

8 WGs x 1 warps 

8 x 2 warps 

1 WG, 12 warps 

8 WGs x 3 warps 

5 WGs x 4 warps 
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Wavefront algorithm 

GPU Programming 

 512x512 image divided into work groups of 

8x8, handled by 1 work group => 64 x 64 work 

groups 

 1 work group depends on results of 2 work 

groups => global synchronization necessary 

=> a kernel call per wave 

 On GTX280: 240 cores  

 => 30 multiprocessors 

30 

60 

APP0: AMDAHL 
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SIMT Conditional Processing 
 

Unlike threads in a CPU-based program, SIMT programs cannot 
follow different execution paths 

All threads of a warp/wavefront are executing the same instruction 

Ideal scenario: 
All GPU threads of a work group follow the same execution path 

All processors continuously active  

If divergent paths within a warp/wavefront, the then- and else- 

instructions are scheduled executed for all threads, but only executed for the 
correct threads, dependent on the condition 

Program flow cannot actually diverge, a bit is used to enable/disable 
processors based on the thread being executed (instruction predication) 

Parallelism is reduced, impacting performance… (see later) 

 
GPU Programming 

APP1:BRANCH 
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Add Add Add Add Add Add Add 0 

then 

1 2 3 4 5 6 7 8 9 10 11 12 

Add Add Add Add Add Add Add 0 

If Add Add Add Add Add Add Add 8 

If Add Add Add Add Add Add Add 16 

If Add Add Add Add Add Add Add 24 

If 

… 

… 

Cycle 

GPU Programming 

Add Add Add Add Add Add Add 8 

then Add Add Add Add Add Add Add 16 

then Add Add Add Add Add Add Add 24 

then 

Add Add Add Add Add Add Add 0 

else Add Add Add Add Add Add Add 8 

else Add Add Add Add Add Add Add 16 

else Add Add Add Add Add Add Add 0 

else 

SIMT Conditional Processing 
APP1:BRANCH 

Example: assume only one warp, one instruction in if-clause, one in 
then-clause 

12 cyles in which 64 instructions are executed, 32 lost cycles 
(66% usage) 

 
Desactivated 
instructions (red) 

Desac-

tivated 
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Threads of the same warp/wavefront (32/64 threads) are run 
in lockstep 

For example:  

 if (x < 5)  y = 5; else y = -5; 
 

SIMD performs the 3 steps 

y = 5; is only executed by threads for which x < 5 

y = -5; is executed by all others 

 
Warp branch divergence decreases performance: cycles are lost 

Solution: statically or dynamically reorder threads 

No latency hiding possible 

Branching 
APP1:BRANCH 

GPU Programming 
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Reduction operation (sum) 

GPU Programming 

Thread IDs: 

2 4 

4 

6 
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V2: group active threads 

Thread IDs: 

GPU Programming 
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V3: Sequential addressing 

Thread IDs: 

GPU Programming 
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Memory coalescing for half-warps 
Accessed elements belong to same aligned segment 

Older cards: sequential threads access sequential locations 

Newer cards: not necessary anymore 

 

Global memory is a collection of partitions 
200 series and 10 series NVIDIA GPUs have 8 partitions of 
256 bytes wide 

Partition camping when different thread Work groups access 
the same partition 

 

Global memory 
APP2:MEM 

GPU Programming 
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Local/Shared memory 

Local/Shared memory is divided into banks 

Each bank can service one address per cycle 

Multiple simultaneous accesses to a bank 
result in a bank conflict  

Conflicting accesses are serialized 

Cost = max # simultaneous accesses to a single bank 

No bank conflict: 

all threads of a half-warp access different banks,  

all threads of a half-warp access identical address,  

      (broadcast) 

 
Bank 15 

Bank 7 

Bank 6 
Bank 5 

Bank 4 

Bank 3 
Bank 2 

Bank 1 
Bank 0 

APP2:MEM 

GPU Programming 
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Bank Addressing Examples 

 No Bank Conflicts 
◦ Linear addressing  

stride of 1 

 No Bank Conflicts 
◦ Random 1:1 

Permutation 

Bank 15 

Bank 7 

Bank 6 
Bank 5 

Bank 4 

Bank 3 
Bank 2 

Bank 1 
Bank 0 

Thread 15 

Thread 7 

Thread 6 
Thread 5 

Thread 4 

Thread 3 
Thread 2 

Thread 1 
Thread 0 

Bank 15 

Bank 7 

Bank 6 
Bank 5 

Bank 4 

Bank 3 
Bank 2 

Bank 1 
Bank 0 

Thread 15 

Thread 7 

Thread 6 
Thread 5 

Thread 4 

Thread 3 
Thread 2 

Thread 1 
Thread 0 

APP2:MEM 
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Jan Lemeire 

Bank Addressing Examples 

 2-way Bank Conflicts 
◦ Linear addressing  

stride of 2 

 8-way Bank Conflicts 
◦ Linear addressing  

stride of 8 

Thread 11 

Thread 10 

Thread 9 
Thread 8 

Thread 4 

Thread 3 
Thread 2 

Thread 1 
Thread 0 

Bank 15 

Bank 7 

Bank 6 
Bank 5 

Bank 4 

Bank 3 
Bank 2 

Bank 1 
Bank 0 

Thread 15 

Thread 7 

Thread 6 
Thread 5 

Thread 4 

Thread 3 
Thread 2 

Thread 1 
Thread 0 

Bank 9 
Bank 8 

Bank 15 

Bank 7 

Bank 2 

Bank 1 
Bank 0 

x8 

x8 

APP2:MEM 
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Barrier synchronization within a work group 
barrier(CLK_LOCAL_MEM_FENCE);  

Work items that reached the barrier must wait 

 

Global synchronization should happen across kernel calls 
Work groups that have completed 

 

Greater instruction dependency  
 less potential for latency hiding 

 

Thus: try to minimize synchronization 

 

Synchronization 
APP3:SYN 

GPU Programming 
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Lost cycles due to 
synchronization 

GPU Programming 
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Well-known fact: latency is hidden by launching other 
threads 

 

Less-known fact: one can also exploit instruction level 
parallelism in one thread. 

Data level parallelism in one thread. 

 

Anti-parallel pattern? 
Dependent instructions can not be parallelized. 

Dependent memory accesses can not be parallelized. 

 

 

Dependent Code 
APP4:DEP 

GPU Programming 
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AMD’s static kernel analyzer 

23 september 2010 
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AMD’s dynamic profiler 

GPU Programming 
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GPU Programming with CUDA Message-passing Parallel Processing 

Overview

1. GPUs for general purpose 

2. GPU ‘threads’ executing kernels 

3. Starting kernels from host (CPU) 

4. Execution model & GPU architecture 

5. Warps/wavefronts  

6. Optimizing GPU programs 

7. Analysis & Conclusions 
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GPU Strategy 

Don't write explicitly threaded code 
Compiler handles it => no chance of deadlocks or race conditions 

Think differently: analyze the data instead of the algorithm. 

In contrast with modern superscalar CPUs: programmer writes 
sequential code (single-threaded), processor tries to execute it 
in parallel, through pipelining etc. (instruction parallelism). But 
by the data and resource dependencies more speedup cannot 
be reached with > 4-way superscalar CPUs. 1.5 Instructions 
per cycles seems a maximum. 

Programming models have to make a delicate balance between 
opacity (making an abstraction of the underlying architecture) 
and visibility (showing the elements influencing the 
performance). It's a trade-off between productivity and 
implementation efficiency. 

GPU Programming 

Link 1: white paper 
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GPU Programming 

Results 

Performance doubling every 6 months! 

1000s of threads possible! 

High Bandwidth 

PCI Express bus (connection GPU-CPU) is the bottleneck 

Enormous possibilities for latency hiding 

Matrix Multiplication 13 times faster on a standard 
GPU (GeForce 8500GT) compared to a state-of-the 
art CPU (Intel Dual Core) 

200 times faster on a high-end GPU, 50 times if quadcore. 

Low threshold (especially Nvidia’s CUDA):  

C, good documentation, many examples, easy-to-install, 
automatic card detection, easy-compilation 
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GPU Programming 

How to get maximal performance,  
or  call it ... limitations 

Create many threads, make them 
‘aggressively’ parallel 

Keep threads busy in a warp 

Align memory reads 
Global memory <> Shared/local memory 

Using shared memory 

Limited memory per thread  

Close to hardware architecture 
Hardware is made for exploiting data parallelism 
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Disadvantages 

Maintenance… 

CUDA = NVIDIA 

Alternatives:  

– OpenCL: a standard language for writing code for GPUs and 
multicores. Supported by ATI, NVIDIA, Apple, … 

– RapidMind’s Multicore Development, supports multiple 
architectures, less dependent on it 

– AMD, IBM, Intel, Microsoft and others are working on standard 
parallel-processing extensions to C/C++ 

– Larrabee: combining processing power of GPUs with 
programmability of x86 processors 

CUDA/OpenCL promises an abstract, scalable 
hardware model, but will it remain true? 

GPU Programming 

Link 1: white paper 

Links in Scientific Study section 
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Heterogeneous Chip Designs 

Augment standard CPU with attached 
processors performing the compute-intensive 
portions : 

Graphics Processing Units (GPUs) 

Field Programmable Gate Arrays (FPGAs) 

Cell processors, designed for video games 

 

GPU Programming 



Jan Lemeire 

Cell processor 

8 Synergistic Processing 
Elements (SPEs) 

128-bit wide data paths 

for vector instructions 

256K on-chip RAM 

No memory coherence 
Performance and simplicity 

Programmers should carefully 
manage data movement 

GPU Programming 



Jan Lemeire 

But future is unclear… 

Parallel world is evolving. 

What do Intel, NVIDIA & Riverside tell us? 

Workshop in Ghent, May 16 2011: “Challenges Towards 
Exascale Computing” 

They agree on: 

Heterogeneous hardware is the future 

Data movement will determine the cost (power & cycles) 

Power consumption & Programmability are the challenges 

Commodity products & programming languages 

Hope for a programming model expressing parallelism and 
locality 

   Go parallel: take decisions now based  
on expectations of the future. 

GPU Programming 
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They do not agree on: 

Intel sticks to x86 architecture 

– That’s what programmers know & they won’t change 

– Intel platforms have to support legacy code 

– New architecture: Knights Ferry & Knights Corner (cf Larrabee) 

GPU: stream processor with high throughput, latency is 
hidden by massively multithreading 

CPU: one-thread processor with low latencies 

Riverside sees reconfigurable hardware as the sole solution: 
no data movement necessary. 

NVIDIA envisages that the CPU will still be on board… in a 
corner of the chip ;-) 

 

 

The future… II 

GPU Programming 
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GPU Programming with CUDA 


