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Hilbert to the Rescue

Source: Lecture material is based on The Universal Computer by Martin Davis



Basic bio David Hilbert

• Born: Königsberg, Prussia, Jan 1862.

• Died: Göttingen, Germany, Feb 1943.



David Hilbert: Education and Employment

• Education:

? University of Königsberg, 1880–1885

? Awarded PhD in Mathematics in 1885

• Employment:

? Privatdozent, University of Königsberg,
1886–1892

? Professor, University of Königsberg,
1892–1895

? Chairman of Mathematics, University of
Göttingen, Germany, 1895–1943



David Hilbert: Major Research Achievements

• Discovered and developed a broad range
of fundamental ideas in many areas

? invariant theory

? the axiomatization of geometry

? theory of Hilbert spaces – one of the foundations

of functional analysis.

• Defined direction of mathematical
research with his list of 23 problem
Hilbert’s problems published in 1900.

• One of the founders of proof theory and
mathematical logic.

• Among the first to distinguish between
mathematics and metamathematics.



David Hilbert: Fame & fortune during lifetime

• Recognized as one of the leading mathematicians of his
generation.

• Was a leader in the field and set the agenda for much of the
research completed.

• Made “honorary citizen” of Köningsberg in recognition of his
achievements.

• Head of the Mathematics Dept. of University of Göttingen
during its glory days.

• But, saw this Department decimated by the Nazis and World
War II.



Early Triumphs: Proving Gordan’s conjecture

• 1888: Hilbert published an existence proof of Gordan’s
Conjecture – a major mathematical problem of the day.

• Approach: Supposing Gordan’s Conjecture is false lead to a
contradiction.

• Gordan’s reaction
“ This is not mathematics. This is Theology”

(Quote highlights the divide in mathematics at the time.)

• His existence proof −→ Hilbert to a constructive proof.



Two Views of Existence in Mathematics

View 1:

• Kronecker - mathematical proofs of existence must be
constructive.

• ...that is provide a method to construct the ideas in question.

• Brouwer maintained and advanced these thoughts:

“to exist in mathematics means to be constructed by

intuition and the question whether a certain language is

consistent, is not only unimportant in itself, it is also not

a test for mathematical existence.”

• Due to these ideas opposed to
? general notion of irrational numbers

? using the logical law of the excluded middle for inference

? Cantor’s transfinite numbers

? using the theorem that an infinite set of natural numbers always

contains a least



Two Views of Existence in Mathematics

View 2

• Hilbert believed existence proofs were fine.

• ...prove the existence of a mathematical entity required

a proof that assuming the existence of such an entity would not lead

to contradictions.

• One could rely on all the mathematical methods, tools and
concepts that had developed over the years.



Early Triumphs: Axiomatization of Geometry

• 1898: Hilbert published his Axiomatization of Euclidean
Geometry.

• Hilbert’s approach signaled his interest in the foundations of
mathematics.

• Theorems deduced from the axioms using pure logic.

? Emphasized the abstract nature of the subject.

? Avoided the corrupting influence of diagrams!

• Provided proof his axioms of geometry consistent ⇐⇒
arithmetic of real numbers consistent.



Toward a new century

• Venue: International Congress of Mathematicians in Paris,
August 1900

• Hilbert presents, as a challenge to his colleagues, 23 problems
that seemed utterly inaccessible by the methods available at
the time.

• These included

? Deciding the truth of Cantor’s Continuum Hypothesis.

? Establishing the consistency of the axioms for the arithmetic of real

numbers.

? ....

Note this presentation was before the announcement of Russell’s paradox in

1902.



Foundations of Maths in Crisis

• At the International Congress of Mathematicians of 1904

• Foundations of mathematics is in crisis

? Russell’s paradox has thwarted Frege’s aim to deduce mathematics

from logic.

? Cantor’s transfinite numbers make many uneasy

• Hilbert outlines the form a consistency proof for arithmetic
may take.

• However, Hilbert is guilty of circular reasoning.

tools used for proof are the tools he wants to justify

• Hilbert abandons his pursuit of consistency until the 1920’s.



Principia Mathematica, Russell & Whitehead 1910-1913

• Publication shows with simple direct steps can go:

Frege’s pure logic −→ mathematics

• Avoids Russell’s paradox, but in a cumbersome way.

• X Complete formalization of mathematics in a symbolic logic
is feasible.

• Issue of consistency of the entire structure could not be
considered as system co-mingled language of logic and
mathematics.

• Poincaré noted that if one took Russell’s efforts seriously then it opened

up the possibility of reducing mathematics to mere computation.



How to approach the foundations of mathematics?

• Formalism

• Hilbert & co.

• They wanted to ground mathematics on a small basis of
a logical system proved sound by metamathematical
finitistic means – construction from the natural numbers in a finite number of steps

• Intuitionism

• Brouwer & co.

• An approach to mathematics as the constructive mental
activity of humans

• They discarded formalism as a meaningless game with
symbols.



Metamathematics

• In the 1920s Hilbert attacked the problem of the consistency
of arithmetic with gusto.

• Did so with help of student Ackermann, assistant Bernays and
John von Neumann.

• Hilbert’s idea was to introduce a brand-new kind of
mathematics called proof theory or metamathematics.

• The consistency proof was to be carried within
metamathematics.

• This goal led to Hilbert’s program...



Hilbert’s Program

Providing a secure foundations for mathematics for Hilbert required

• Formalization: all mathematical statements should be written in a
precise formal language, and manipulated according to well defined
rules and have finite set of axioms.

• Completeness: a proof that all true mathematical statements can
be proved in the formalism.

• Consistency: a proof that no contradiction can be obtained in the
formalism of mathematics. This consistency proof should preferably
use only “finitistic” reasoning about finite mathematical objects.

• Conservation: a proof that any result about “real objects”
obtained using reasoning about “ideal objects” (such as
uncountable sets) can be proved without using ideal objects.

• Decidability: there should be an algorithm for deciding the truth or
falsity of any mathematical statement.



Hilbert’s Challenge & Catastrophe

• At the International Conference of Mathematicians in Bologna
1928 set the challenge

? Given a formal system where Frege’s first-order logic is applied

to a system of axioms for the natural numbers – Peano

arithmetic (PA).

? Prove that PA is complete.

• Two years later Kurt Gödel solved this problem and his
resolution was not what Hilbert expected.

• Announced his results at conference in Köningsberg in honour
of Hilbert’s retirement !



Hilbert’s Challenge & Catastrophe

• At the International Conference of Mathematicians in Bologna
1928 set the challenge

? Given a formal system where Frege’s first-order logic is applied

to a system of axioms for the natural numbers – Peano

arithmetic (PA).

? Prove that PA is complete.

• Two years later Kurt Gödel solved this problem and his
resolution was not what Hilbert expected.

• Announced his results at conference in Köningsberg in honour
of Hilbert’s retirement !

Hilbert’s program could not succeed.



Gödel upsets the applecart



Basic bio Kurt Gödel

• Born: Brno, Austria–Hungary, April
1906.

• Died: Princeton, USA, Jan 1978.

• Father: Manager of a textile factory.



Basic bio Kurt Gödel

• Born: Brno, Austria–Hungary, April
1906.

• Died: Princeton, USA, Jan 1978.

• Father: Manager of a textile factory.



Kurt Gödel: Education and Employment

• Education:

? University of Vienna, 1924–1930

? Participated in the Vienna Circle, 1926–

? Awarded PhD in Mathematics in 1930

• Employment:

? Privatdozent, University of Vienna, 1933–38

? Institute of Advanced Study, Princeton

? Visitor during, 1933, 1934, 1937

? Member, 1940–1946

? Permanent member, 1946–1953

? Professor, 1953–1976

? Professor Emeritus, 1976–1978



Kurt Gödel: Major Research Achievements

• Gödel’s incompleteness theorems.

For any self-consistent recursive axiomatic system

powerful enough to describe the arithmetic of the

natural numbers, there are true propositions

about the natural numbers that cannot be proved

from the axioms.

• Showed that neither the axiom of choice nor
the continuum hypothesis can be disproved
from the accepted axioms of set theory,
assuming these axioms are consistent.

• Made important contributions to proof theory
by clarifying the connections between
classical, intuitionistic, and modal logic.



Kurt Gödel: Fame & fortune during lifetime

• Considered one of the most significant logicians in human
history.

“Kurt Godel’s achievement in modern logic is singular

and monumental - indeed it is more than a monument, it

is a landmark which will remain visible far in space and

time. . . . The subject of logic has certainly completely

changed its nature and possibilities with Godel’s

achievement.” – John von Neumann

• Escaped with wife from Nazi Austria made possible because of
mathematical talents.



Works of Gödel especially relevant to CS

• Completeness of first-order logic (1930)

• Incompleteness of formal number theory (1931)

• Papers on decision problems (1932-33)

• Definition of the notion of general recursive function. (IAS
lectures, 1934; first published 1965)



The 1930 Completeness Paper

• In doctoral dissertation stated the completeness of first-order
logic in the form:

“Every valid formula of first-order logic is provable from the logical

axioms.”

(Logical axioms refer to those of Frege-Russell-Hilbert.)

• Some definitions:

? Logicians call a mathematical universe that satisfies the axioms a

“model” of the axioms.

? a valid formula is a proposition which is true for all models of the

axioms.

Example: The statement S = ”∃ a with a ∗ a = 2” is true for R but

false for N =⇒ S is not a valid formula if both R and N satisfy the

axioms of the system.



The Strong Completeness Theorem

• The main focus of Gödels 1930 paper is

a formula of first-order logic is valid
m

it is derivable using the rules of inference given earlier by Hilbert

and Ackermann.

• But he actually proved more:

Strong Completeness

For any set Σ of first-order axioms

φ holds in every model of Σ ⇐⇒ φ is provable from Σ



Significance for Computer Science

• Strong completeness theorem =⇒

the rules of inference developed prior to Gödel’s work are
adequate for deriving all logical consequences of a set of

axioms.

• A computer incorporating just those rules will be able to carry
out all such derivations.



Completeness Vs Incompleteness

• Completeness theorem implies

Statements provable in any first-order axiomatization of
number theory are those that are true in all models of the
axioms.

• But for no recursive axiomatization will those statements
coincide with the statements that are true of the natural
numbers:

The Gödel-Rosser Theorem

Any recursive axiomatization A of arithmetic must either be incon-
sistent or else fail to prove both some statement φ and its negation.

Hence if A is consistent, it must fail to prove some statement that

is true of the natural numbers.



Peano’s axioms: A recursive axiomatization of arithmetic



Sketch of the proof

• Part 1

? Each formula of the theory is assigned a number – Gödel number –

ensuring the formula can be recovered from the number.

Example: Consider the premise: “Anyone in love is happy” and its

symbolic representation

(∀x) ((∃y) L(x, y) ⊃ H(x))

Can use a simple coding scheme in which each symbol is replaced by

Replacing the symbols get

846988579186079328699

? Numbering extends to cover finite sequences of formulas.



Sketch of the proof

• Part 2

? Formula PF(x, y) is constructed such that

for any two numbers n and m, PF(n,m) holds

m
n represents a sequence of formulas that constitutes a

proof of the formula that m represents



Sketch of the proof

• Part 3

? Construct a self-referential formula

“statement S is provable in the system”

? Prove that this sentence is neither provable nor
disprovable within the theory.



Larger significance of Gödel’s incompleteness paper

• For computer science, Gödel’s proof of his incompleteness
results more important than the theorems themselves.

• Three aspects of the proof were of particular significance:

? His precise definition of the class of primitive recursive

functions.

? His distinction between object language and meta-language

? His idea of representing one data type (sequences of strings) by

another type (numbers), thereby coding meta-theoretical

notions as number-theoretic predicates.



Gödel a computer programmer?

• Martin Davis remarked, the overall structure of Gödel’s proof

“looks very much like a computer program”

to anyone acquainted with modern programming languages

• Unsurprisingly, since though “an actual . . . general-purpose
. . . programmable computer was still decades in the future,”
Gödel faced “many of the same issues that those designing
programming languages and . . . writing programs in those
languages” face today.



Gödel a computer programmer?



Killer blow to Hilbert’s Program

• In Sept 1930 there was a conference in Königsberg and the
key logicians were present.

• The conference also included Hilbert’s retirement address
from the University of Göttingen.

• Gödel announced his incompleteness theorem at a round-table
discussion session on the day 3 of the conference.

• Announcement drew little attention except from von Neumann
who instantly grasped the importance of Gödel’s theorem.

• Following from the incompleteness, von Neumann realised
consistency itself is unprovable and concluded that was the
end of Hilbert’s program.



Second incompleteness theorem

• After the conference Gödel published

Second Incompleteness Theorem

No reasonable, consistent mathematical system can prove its own

consistency.



Philosophical significance of the incompleteness theorems

• Much later, in his Gibbs Lecture to the American
Mathematical Society (1951)

• Gödel would suggest that the incompleteness theorems are
relevant to the questions

? whether the powers of the human mind exceed those of any

machine,

? and whether there are mathematical problems that are undecidable

for the human mind.



Turing conceives of
the all-purpose computer



Basic bio Alan Turing

• Born: London, England, June 1912.

• Died: Wilmslow, England, June 1954.

• Father: Worked for the Indian Civil

Service.



Alan Turing: Education and Employment

• Education:

? University of Cambridge, 1931–1934

? BA in mathematics 1934

? Princeton University, 1936–1938

? Awarded PhD 1938

• Employment:

? Fellow of King’s College, Cambridge, 1935–39

? Government Code and Cypher School, Bletchley

Park, 1939 – 1945

? National Physical Laboratory, London,

1945-1947

? Reader in Mathematics, University of

Manchester, 1948–1954



Alan Turing: Major Research Achievements

• Proved there is no solution to the
Entscheidungsproblem.

• Formalized the concept of algorithm and
computation with the Turing machine.

• Created one of the first designs for a
stored-program computer (ACE).

• Father of computer science and artificial
intelligence.

• Turing test.

• Invented LU matrix decomposition method !



Alan Turing: Fame & Fortune

• Fellow of the Royal Society

• Awarded OBE (Officer of the Order of the British Empire) for
his wartime efforts.

• His wartime work was subject to the Official Secrets Act
during his lifetime, so was not common knowledge.

• Criminally prosecuted for homosexual acts near the end of his
life and had to accept treatment with female hormones as an
alternative to prison



Hilbert’s Entscheidungsproblem

• Leibniz’s dream

? human reason reduced to calculation and

? of powerful computers to carry out these calculations.

• Frege provided system of rules to account for human
deductive reasoning.

• Gödel had proved Frege’s rules were complete.

• Time to attack Hilbert’s Entscheidungsproblem

Can it always be determined, by a process, whether a stated

conclusion can be derived from a set of premises using Frege’s rules

of logic?

• An algorithm for Hilbert’s Entscheidungsproblem would reduce all human

deductive reasoning to brute calculation and fulfil of Leibniz’s Dream.



Turing’s exposure to the Entscheidungsproblem

• Spring of 1935 Turing attended Max Newman’s Part III course on
the foundations of mathematics.

• Turing learned of the Entscheidungsproblem.

• Convinced its solution depended on the formalisation of the notion
of “process”

“Oh I knew [Turing] very well. . . .I believe it all started because

he attended a lecture of mine on foundations of mathematics and

logic in which I had mentioned in the lecture the importance of

having such a definition and I think I said, in the course of this

lecture, that what is meant by saying that the process is

constructive is that it’s purely a mechanical machine and I may even

have said a machine can do it. But he took the notion and really

tried to follow it right up and did produce this extraordinary

definition of a perfectly general, what he called, computable

function. Thus, giving the first idea really of a perfectly general

computing machine.”– Max Newman, 1975



Turing’s Analysis of the Computation Process

Turing’s solution combined the physical and the abstract.

“We may compare a man in the process of computing a real number to a machine which is only capable of a finite

number of conditions q1, q2, . . . , qR which will be called “m-configurations”. The machine is supplied with a

“tape”, (the analogue of paper) running through it, and divided into sections (called “squares”) each capable of

bearing a “symbol”. At any moment there is just one square, say the r-th, bearing the symbol S(r) which is “in

the machine”. We may call this square the “scanned square”. The symbol on the scanned square may be called the

“scanned symbol”. The “scanned symbol” is the only one of which the machine is, so to speak, “directly aware”.

However, by altering its m-configuration the machine can effectively remember some of the symbols which it has

“seen” (scanned) previously. The possible behaviour of the machine at any moment is determined by the

m-configuration qn and the scanned symbol S(r). This pair qn, S(r) will be called the “configuration”: thus

the configuration determines the possible behaviour of the machine. In some of the configurations in which the

scanned square is blank (i.e. bears no symbol) the machine writes down a new symbol on the scanned square: in

other configurations it erases the scanned symbol. The machine may also change the square which is being

scanned, but only by shifting it one place to right or left. In addition to any of these operations the

m-configuration may be changed. Some of the symbols written down will form the sequence of figures which is the

decimal of the real number which is being computed. The others are just rough notes to “assist the memory”. It

will only be these rough notes which will be liable to erasure” – (A. M. Turing, 1936 pp.231-2)



Truing Machines in Action

• Elements of a Turing machine:

? A list of all possible states

? A list of all symbols

? For each state it must be stated what action to perform when a

particular symbol is encountered on the tape.

• An action consists of possibly

? changing the symbol on the square being scanned,

? moving one square to the left or to the right,

? a change of state.



Truing Machines in Action

• The formula R a : b→ S symbolizes the action:
When the machine is in state R scanning the symbol a on the tape, it will

? replace a by b,

? move one square to the right and

? then shift into state S.

• The formula R a : b← S symbolizes the action:
When the machine is in state R scanning the symbol a on the tape, it will

? replace a by b,

? move one square to the left and

? then shift into state S.

• The formula R a : b ? S symbolizes the action:
When the machine is in state R scanning the symbol a on the tape, it will

? replace a by b,

? then shift into state S.



Truing Machines in Action

Consider this Turing Machine

and applying it to this input



Truing Machines in Action

Consider this Turing Machine

and applying it to this input

What output will it produce?



Truing Machines in Action



Truing Machines have no physical limitations

Turing machine consisting of

Q � : �→ Q

when started on a blank tape will keep on moving right “forever”



Truing Machines may not halt

Turing machine

Q 1 : 1→ Q and Q 2 : 1← Q

Input 12 it will bounce back and forth while on input 13 it will halt



Coding a Turing machine as a natural number

Probably inspired by Gödel Turing encoded a machine as a natural
number.
Example:

• Machine for distinguishing between even and odd numbers

• List the instructions one after another separated by a
semi-colon

Q 0 : �→ E ; Q 1 : �→ O ; Q 2 : �→ E ; . . .

• Replace each symbol by a string of decimal digits.



Coding a Turing machine as a natural number

Say Q,E,O, F are coded by 99, 919, 929 and 939 and other symbols by

The Turing machine is then coded by the number (easy to decode number)



The Halting Set of a Turing Machine

• When a Turing machine is applied to a number it may or may
not halt.

• The halting set S of a machine is the set of natural numbers
s.t.

if n ∈ S then the machine will halt when applied to n

• List all Turing machines and their halting set

S1 be the halting set of Turing machine coded by n1 ∈ N
S2 be the halting set of Turing machine coded by n2 ∈ N
S3 be the halting set of Turing machine coded by n3 ∈ N

...

• Can apply the diagonal method to generate a new set S which
is different from all the Si’s in the list



Turing applies Cantor’s Diagonal Method

• The diagonal method works so that

ni ∈ S if ni /∈ Si
while

ni /∈ S if ni ∈ Si

• Therefore

? S is different from each halting set in the original list

? S is not the halting set for any of the Turing machines in the

list

• Thus S is not the halting set of any Turing machine



Turing applies Cantor’s Diagonal Method

• The diagonal method works so that

ni ∈ S if ni /∈ Si
while

ni /∈ S if ni ∈ Si

• Therefore

? S is different from each halting set in the original list

? S is not the halting set for any of the Turing machines in the

list

• Thus S is not the halting set of any Turing machine

So what??



Unsolvable problems and Entscheidungsproblem

• Solution of the Entscheidungsproblem would provide an
algorithm to settle all mathematical questions.

• If there is any mathematical problem which is shown to be
algorithmically unsolvable then the Entscheidungsproblem is
unsolvable.



An unsolvable problem

Consider this problem (an example of an unsolvable problem)

Find an algorithm to determine for a given natural number whether it

belongs to S

• If problem solvable =⇒ ∃ a Turing machine able to
accomplish task.

• Machine should halt with a blank tape except for one digit

? 1 if the input number belongs to S
? 0 if the input number does not belong to S

• Also say the machine halts in state F and has no instructions
for state F .

• Now add two instructions to the machine

F 0 : �→ F and F � : �→ F



An unsolvable problem

• How does this new machine differ from the original one?

? X It halts on input numbers from S
? 7 It does not halt on input numbers not from S

• This new machine has halting set S

• Contradiction as S is not the halting set of any Turing
machine.

• Therefore the premise that the problem

Find an algorithm to determine for a given natural number

whether it belongs to S

is solvable is false.

Therefore ∃ a problem not algorithmically solvable =⇒
Entscheidungsproblem is unsolvable.



Turing’s Universal Machine

• No Turing machine could solve the Entscheidungsproblem
problem.

• But perhaps maybe other types of computations were
possible?

• Turing showed that a variety of complicated calculations could
be done on a Turing machine.

• While testing the validity of what he had done he came up
with the idea of the Universal Turing Machine



Turing’s Universal Machine

• Imagine two natural numbers on a Turing machine M tape
separated by a blank space.

? First number is the code of some Turing machine.

? Second is the input to that machine.

• Say M is able to decipher and implement the instructions of
the machine coded via by the first number via its own
instructions.

• =⇒ this one single machine M can perform the calculations
of any Turing machine.

• This is the Universal Turing Machine and it anticipates
modern day computer software software and programming.



Turing & Church and publication

• In April 1936 Turing gave Newman a draft of his answer to
the Entscheidungsproblem.

• Soon after Newman had convinced himself of the correctness
of Turing’s reasoning, he received a copy of Alonzo Church’s
“An Unsolvable Problem of Elementary Number Theory”.
Church had also proved the undecidability of the Entscheidungsproblem

but in a less intuitive and accessible fashion.

• Turing’s paper was submitted to the Proceedings of the
London Mathematical Society in May 1936 and was refereed
by Church.

• Newman made arrangements for Turing to attend Princeton
with the purpose of working towards a doctoral degree under
Church’s supervision.



Turing in Princeton

• September 1936 to July 1938 studied under Alonzo Church at
Princeton University.

• Obtained PhD from Princeton in June 1938.

• Thesis: Hierarchy of systems s.t.

System 1’s axioms ⊂ System 2’s axioms ⊂ System 3’s axioms ⊂ · · ·

and propositions undecidable in System i− 1 are decidable in
System i.

• Considered Turing machines augmented by oracles to help
categorize the level of unsolvability of problems.

• Familiarized himself with available technology – built a device,

using electromechanical relays, that multiplied numbers in binary

notation.



Turing in Princeton

• At this time Princeton had a high concentration of
mathematical talent – Weyl, Einstein, von Neumann, Church, ....

• Turing would have meet John von Neumann. Did they have

discussions?

• At this period von Neumann was not working on the
foundations of mathematics and logic.

• After Gödel’s results von Neumann claimed he never again
read a paper in logic.

• However, Turing’s work definitely influenced von Neumann’s
thinking about computers during and after WW II.

• When did von Neumann become aware of Turing’s work ???



Turing’s War

• Turing returned to Cambridge in 1938.

• Recruited almost immediately to help break the German
military codes.

• Arrived in Bletchley Park on Sept 4th 1939.

• Worked on deciphering messages encoded by Enigma machine

This required finding the Enigma’s settings for each day.



The Bombe

• Designed an electro-mechanical machine Bombe to crack Enigma

• Bombe searched for possible correct settings used for an Enigma
message (rotor and plugboard settings) from a suitable crib:

• For a possible setting of the rotors Bombe performed a chain of
logical deductions based on the crib, implemented electrically.

• The Bombe detected when a contradiction occurred, ruled out that
setting, and moved on to the next.

• Most of the possible settings would cause contradictions and be
discarded, leaving only a few to be investigated in detail.



The Bombe

• The first bombe was installed on 18 March 1940.

• More than two hundred Bombes were in operation by the end
of the war – all of them were destroyed at the end of the war.



Colossus

• July 1942: Turing devised a method to decypher Lorenz
cipher messages produced by the Germans’ Geheimschreiber
machine.

• Tommy Flowers and Max Newman, went on to build
Colossus (1943-44), an embodiment of Turing’s method, the
world’s first automatic calculation device. – vacuum tube circuits were used.



Building the first
Universal Computer



John von Neumann and the Moore School

• Von Neumann (1903-57) worked on Hilbert’s program until
Gödel’s incompleteness theorems.

• Moved to Princeton (1930) and vowed never to read a paper
on logic again !

• During WW II was asked to participate in the project

to construct a powerful electronic calculator, the ENIAC

at the Moore School of Electrical Engineering in the UPenn.

• ENIAC had 18,000 vacuum tubes compared to Colossus 1,500.

• ENIAC’s chief engineer was John Presper Eckert, Jr.

• ENIAC though a digital device, its components were built to
be functionally similar to those in differential analyzers.



The ENIAC



John von Neumann and the EDVAC draft report

• When von Neumann joined the Moore school the ENIAC was
more or less up and running.

• Turned his attentions to the next planned computer EDVAC.

• In June 1945 produced his famous “First Draft of a Report on
the EDVAC ”

• It described a computer

? where arithmetic operations performed in binary and

? containing a component which brings instructions to be executed

one at a time from the memory into the arithmetic component.

• This way to organize a computer known as the von
Neumann architecture.



EDVAC draft report

• Report emphasized the EDVAC should be all-purpose...

• and “logical control” of a computer is crucial for its being “as
nearly as possible all-purpose”.

• Strong echoes of Turing in the work but no references made.

• Von Neumann showed EDVAC’s general applicability by
programming it to simply sort data efficiently.

• Much to Eckert and Muachly’s annoyance the report only had
von Neumann’s name on it !

• Unclear how much of the EDVAC report represent von
Neuman’s personal contribution?



Post-war computers required memory

• Post-war computers designed to be all-purpose universal
devices.

• Capable of carrying out any symbolic process as long as the
steps in process were sufficiently precise.

• Therefore needed the stored program concept.

• ... and memory which had to be

? large to store these “instructions” and data. - didn’t have Turing’s

infinite length tape !

? sufficiently fast so data or instructions could be accessed in a

single step i.e. random access. - no shunting along one square of tape at a time!

• 1940s, two candidate devices: mercury delay line (EDVAC solution)

and cathode ray tube (Manchester University solution).



The EDVAC

Finished 1949, operational 1951

• Completion of EDVAC was

delayed.

• Eckert and Mauchly wanted to

commercialize their work.

• Became embroiled in patent

disputes with UPenn. awarded

patent for ENIAC, but not for EDVAC

• They departed UPenn to form

the Eckert-Mauchly Computer

Corporation



Alan Turing’s AutomaticComputingEngine

• After the war Turing joined the National Physics Lab.

• According to his mother, Turing was concerned with

“his plans for the construction of a universal computer

and of the service such a machine might render to psychology

in the study of the human brain”– E. S. Turing, 1959

• His ideas came together in his report ACE Report of 1945 –

pre-empted to some extent by the von Neumann’s draft EDVAC report

• However, went beyond von Neumann’s scope and conception.

• Turing’s ACE not restricted to routine calculation. Some of
the problems within its repertoire:

? The solution of simultaneous liner equations

? Finding the solution for a simple jigsaw problem.

? From a given Chess position, to calculate all the winning positions

for three moves on either side.



Alan Turing’s ACE

• ACE was designed in a minimal way.

• Many operations were to be carried out by programming.

• When a proposal was made to modify ACE in a von Neumann
direction he responded:

“It is . . . very contrary to the line of development here,

and much more in the American tradition of solving one’s

difficulties by means of much equipment than by thought. . .

Furthermore certain operations which we regard as more

fundamental than addition and multiplication have been

omitted.”– Alan Turing, 1959

• Unfortunately, NPL did not prioritize building ACE. In
disillusionment Turing left in 1947 for Manchester University.

• However, the Pilot Model ACE - a less ambitious version of ACE - was
eventually built and first ran in 1950.



Eckert, von Neumann, Turing

Stored memory: Whose idea ?

• Version 1
Product of von Neumann’s genius alone and the EDVAC draft

report is evidence of this.

“ Von Neumann was the first person, as far as I am

concerned, who understood explicitly that a computer is

essentially performed logical functions, and that the electrical

aspects were ancillary.”– Goldstine, The computer from Pascal to von

Neumann, 1972

• Version 2
EDVAC report was a reflection of the joint thinking of the Moore

school group at UPenn =⇒ Eckert a vital contributor.

• Version 3
Turing, though unattributed, influenced and inspired von Neumann.



Davis’s opinion

• Eckert probably did not envision a universal computer. Why?

? Design of the ENIAC is very far from a universal computer.

? It contains modules replicating components of the analogue

differential analyzers which are unnecessary for a digital computer.

? Though he proposed the mercury delay line as a solution to

EDVAC’s memory problem, in a memo spoke of automatic

programming set up on alloy discs.

• Version 3 is the most plausible and believes it is now the most

common view.
“ Virtually all computers today from $10 million

supercomputers to the tiny chips that power cell phones and

Furbies, have one thing in common: they are all “von

Neumann machines”, variations on the basic computer

architecture that John von Neumann, building on the work of

Alan Turing, laid out in the 1940s”– Time magazine, March 19, 1999


