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Levels of Understanding

 Level 0
◦ Host code

 Level 1
◦ Parallel execution on the device

 Level 2 => explained later
◦ Device model and thread blocks

 Level 3   => explained later
◦ Hardware threads & SIMT
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Level 0

Host Code
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Typical Sequence of Events

7



CUDA Working Group

Will be used in this course





OpenCL Resources
A small sample

◦ www.khronos.org

◦ www.iwocl.org (*)

◦ www.streamcomputing.eu (*)

◦ developer.amd.com/tools-and-sdks/opencl-zone/

◦ www.eriksmistad.no/category/opencl/

◦ www.youtube.com

 AJ Guillon

(*) These sites include references to books
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CUDA

 We need a way to
◦ Modify our program to use accelerators

◦ Specify the code that needs to run on the 
accelerators

 CUDA 
◦ A host API: functions starting with prefix ‘cuda’

◦ CUDA C language

◦ A model of a GPU

11



HOST API

 We need only a little knowledge:
1. Select the appropriate GPU.

2. Allocate memory on the GPU.

3. Transfer data between CPU and GPU.

4. Compile and run code for/on the GPU.

 Understand what has to be modified.
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CUDA is almost C
 CUDA is very similar to C, we only add some keywords:
◦ Type qualifiers:

 __global__ to declare a function to be executed on the GPU
 __device__ to declare a function to be called by another function on the 

GPU
 __shared__ to declare shared memory in a kernel
 __local__ [see doc]
 __constant__ [see doc]

◦ Keywords: threadIdx, blockIdx, gridDim, blockDim to access 
elements in a kernel

◦ Intrinsics:
 __syncthreads(); // to synchronize threads between warps (within a 

block) and in all the warps (thus all threads..)

 atomicAdd(); // to synchronize blocks (see atomic ops: 

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions )

 dim2, dim3, uint2, uint3 // units for cuda : dim2 hello(16,32);
◦ Runtime API: to allocate memory on the GPU and transfer data, 

check errors, etc.. [doc]
◦ Kernel functions to launch code to the GPU from the CPU: 

<<<X,Y,Z>>>( . ) (special syntax detailed later)

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions


1a. Print the CUDA-enabled GPUs

int nDevices;

cudaGetDeviceCount(&nDevices);

for (int i = 0; i < nDevices; i++) {

cudaDeviceProp prop;

cudaGetDeviceProperties(&prop, i);

printf("Device Number: %d\n", i);

printf("  Device name: %s\n", prop.name);

printf("  Compute Capability: %d.%d\n", prop.major, prop.minor);

printf("  Memory Clock Rate (KHz): %d\n", prop.memoryClockRate);

printf("  Peak Memory Bandwidth (GB/s): %f\n\n",

2.0*prop.memoryClockRate*(prop.memoryBusWidth/8)/1.0e6);

}

deviceProperties.major



int devicesCount;

cudaGetDeviceCount(&devicesCount);

string desiredDeviceName = "GTX XYZ";

for(int deviceIndex = 0; deviceIndex < devicesCount; ++deviceIndex)

{

cudaDeviceProp deviceProperties;

cudaGetDeviceProperties(&deviceProperties, deviceIndex);

if (deviceProperties.name == desiredDeviceName)

{

cudaSetDevice(deviceIndex);

break;

}

}

1b. Select the appropriate GPU



 Explicit memory allocation returns pointers to 
GPU memory
◦ cudaMalloc(), cudaFree()

2. Allocate memory on the GPU



 Explicit memory copy for host ↔ device, 
device ↔ device

 cudaMemcpy(), cudaMemcpy2D(), ...

3. Transfer data between CPU and GPU



CPU-GPU Memory Management

 As we are going to deal with pointers to the CPU and to the GPU main memory, it is 
useful to start every pointer name by h_ if it is a pointer to the host’s memory (CPU) or d_ 
if it is a pointer to the GPU’s memory

int N = 16;
int num_bytes = N*sizeof(int);
int *d_a, *h_a = 0;

h_a = (int*) malloc(num_bytes); // allocate the memory on the CPU
cudaMalloc ( (void**) &d_a, num_bytes); // allocate the memory on GPU

cudaMemset( d_a, 0, num_bytes); // set all the values to 0
cudaMemcpy( h_a, d_a, num_bytes, cudaMemcpyDeviceToHost); // copy back the values

free(h_a); // free the memory
cudaFree(d_a); // free the memory on GPU

We often use flags such as:
cudaMemcpyDeviceToHost or cudaMemcpyHostToDevice



4. Compile and run code for/on the GPU

 Declare a kernel (details discussed in the next section):
◦ put __global__ in the beginning of the prototype of a function!
◦ The Nvidia compiler (nvcc) will know what to do

__global__ void mySuperKernel(float * A, float * B, float *C) {
…

}

 Start a GPU program:
mySuperKernel <<<num_blocks, num_threads>>>(params…)
◦ Call a kernel function
◦ Provide parameters (scalars and pointers to GPU memory)
◦ Provide the number of threads through the GRID dimensions

 With the special operator <<< >>>



Grid and Blocks dimensions
 Threads are ordered in a 

hierarchy:
◦ A Grid consists of blocks, a blocks 

 A lot of problems in science are 
not expressed in 1D but are 
rather natural in 2 or 3 
dimensions.
◦ Images work well in 2D
◦ Medical scans work well in 3D

 Examples:
◦ mySuperKernel <<<1, 1>>>(A, B, C); 

// executes 1 block composed of 1 
thread

◦ mySuperKernel<<<B, 1>>>(A, B, C); 
// executes B blocks composed of 1 
thread

◦ mySuperKernel<<<B, M>>>(A, B, C); 
// Executes B blocks composed of M 
threads each. 



Indexing

 CUDA Built-In Variables
◦ blockIdx.{x,y,z}   block ID in the {x,y,z}-axis of the block

◦ threadIdx.{x,y,z}  thread ID in the {x,y,z}-axis of the thread

◦ blockDim.{x,y,z}   block dimensions

◦ threadDim.{x,y,z}  thread dimensions

 The full global thread ID in x dimension can be 
computed by
◦ globalThreadID = blockIdx.x * blockDim.x + threadIdx.x;



More on kernel invocation
 Kernel_function<<<num_blocks, num_threads>>>(params…)
◦ Use variables for num_blocks and num_threads, you are 

going to tune them.
◦ num_threads is the number of threads in each block we want

 The number of threads in a block is limited: 512, 1024, …

◦ Parameters can be passed via registers or constant memory
 If passed by registers: eg: 128 threads + 3 parameters : 128 x 3 

= 384 registers
 A GPU has a lot of registers, at least 8192 per SM. So potentially you 

could use 8192/128=64 registers per thread. But it is a bad 
idea: prefer using multiple blocks (otherwise the SM are going to be 
idle as soon as you access the memory)

◦ The number of threads in a block should ALWAYS be a 
multiple of the warp size (32, 64, …)



Level 1

Parallel Execution 

on the Device
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Example

 Implement a vector addition
◦ Assume three lists A, B and C

◦ Element i of C:

 Ci = Ai + Bi;

◦ Each thread processes one data item

 Extension:
◦ One work item processes more than one data 

item
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Threads executes kernel

 Massively parallel programs are usually written so 
that each kernel thread computes one part of a 
problem
◦ For vector addition, we will add corresponding elements 

from two arrays, so each thread will perform one addition

◦ If we think about the thread structure visually, the threads 
will usually be arranged in the same shape as the data



Vector addition

 Consider a simple vector addition of 16 
elements
◦ 2 input buffers (A, B) and 1 output buffer (C) are 

required
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Vector addition

 Create thread structure to match the problem 
◦ 1-dimensional problem in this case

Thread structure:
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Vector addition

 Each thread is responsible for adding the 
indices corresponding to its ID

Thread structure:
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CUDA Kernel code

 __global__ to declare a function to be executed 
on the GPU

 Variables blockDim, blockIdx, threadDim and
threadIdx to determine position of thread in the grid
◦ Type: dim3 struct with fields x, y and z

global__ void vecAdd(float* A, float* B, float* C)
{

int i = threadIdx.x + blockDim.x * blockIdx.x;
C[i] = A[i] + B[i];

}



// allocate host (CPU) memory

float* h_A = (float*) malloc(N * sizeof(float));

float* h_B = (float*) malloc(N * sizeof(float));

… initalize h_A and h_B …

// allocate device (GPU) memory

float* d_A, d_B, d_C;

cudaMalloc( (void**) &d_A, N * sizeof(float));

cudaMalloc( (void**) &d_B, N * sizeof(float));

cudaMalloc( (void**) &d_C, N * sizeof(float));

// copy host memory to device

cudaMemcpy( d_A, h_A, N * sizeof(float),cudaMemcpyHostToDevice));

cudaMemcpy( d_B, h_B, N * sizeof(float),cudaMemcpyHostToDevice));

// execute the kernel on N/256 blocks of 256 threads each

vecAdd<<<N/256, 256>>>(d_A, d_B, d_C);

// copy result array back to host

float* h_C = (float*) malloc(N * sizeof(float));

cudaMemcpy( h_C, d_C, N * sizeof(float),cudaMemcpyDeviceToHost));

Host (CPU) code



 Grid of blocks in 2 dimensions

 Block of threads in 3 dimensions

__global__ void KernelFunc(...); 

main() 

{ 

dim3 DimGrid(100, 50); // 5000 thread blocks 

dim3 DimBlock(4, 8, 8); // 256 threads per block 

KernelFunc<<< DimGrid, DimBlock>>>(...); 

}

Multi-dimensional Grid 



Indexing – Higher dimensions
 Number of blocks in 2D grid: gridDim.x * gridDim.y

 Number of threads in 3D block: blockDim.x * blockDim.y
* blockDim.z

 Example of initialization:

◦ dim3 grid(16,16); // grid = 16x16 blocks
dim3 block(32,32); // block = 32x32 threads
myKernel<<<grid, block>>>(…);

◦ x = blockIdx.x * blockDim.x + threadIdx.x;
y = blockIdx.y * blockDim.y + threadIdx.y;



 2D GRID

Matrix Multiplication

__global__ void MatrixMulKernel(float* A, float* B, float* C, int Width)

{

int row = blockIdx.y*blockDim.y + threadIdx.y;

int col = blockIdx.x*blockDim.x + threadIdx.x;

// each thread computes one element of the result matrix

float sumOfProducts = 0;

for (int k = 0; k < Width; ++k)

sumOfProducts += A[row*Width+k] * B[k*Width+col];

C[row*Width+col] = sumOfProducts;

}
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