VRIJE —
pUB UNIVERSITEITROE o g o
BRUSSEL

GPU

Levels of Understanding

» Level O
o Host code

» Level 1
o Parallel execution on the device

» Level 2 => explained here
- Device model and work groups

» Level 3 => explained later
- Hardware threads & SIMT

p—

GPU Concepts

Device/GPU :
Grid (1D, 2D or 3D)
Multiprocessor 1 Multiprocessor 2 el
P P gridDim.x

.. >

40GB/s 4 few cycles ﬁ (0, 0) (1,0 (2,0)

Host/ % Block ,4 Block | «Block

CPU fyl O @y | R

m v 1/ y El \ \"
\ \
Pri((::ilsasror Scalar Scalar Scalar Vil ,' \ AN
/C Processor Processor Processong ’ / \
- .I\ : : .
i 1OOGB/S 200 cycle Thread block
(blockIdx.x, blockIdx.y)

S A Thread Thread Thread

g (0, 0) (1,0) (2, 0)

al Thread Thread Thread

2 ©, 1) 1, 1) 2, 1)

8 Thread Thread Thread

4-8 GB/s 3 v ©,2) 1, 2) @, 2)

<,bl k >
. ockDim. x
Max #threads per thread block: 1024

(threadldx.x, threadIdx.y)

CUDA terminology

Executed in warps of 32 threads
Max thread blocks simultaneously on MP: 8
Max active warps on MP: 24/48

Level 2

GPU Model and
Thread blocks

Execution Model

» Kernel = smallest unit of execution, like a C function,
executed by each thread

» Data parallelism: kernel is run by a grid of thread
blocks

» A thread block consists of instances of the same
kernel: thread

» Different data elements are fed into the threads of
the thread blocks

= We talk about stream computing

Thread blocks

» Threads are grouped into thread blocks
- Number of threads of a block is determined by the
programmer (same for all blocks)

» A thread block is executed on one multiprocessor (MP)
> From start to end

» Threads of the same thread block share shared
memory
- Kind of explicit cache

» Within a thread block, synchronization among threads
is possible
> With the barrier statement.
> Synchronization between blocks is NOT possible

GPU Model

GPU

Multiprocessor N

.
Multiprocessor 2

Multiprocessor 1

Control
Unit
(SIMD)

Memory & Data Locality

We have multiple types of memory:

> Global memory/Constant memory

> Shared memory

> Local memory

We want to exploit multilevel caches by using

- Spatial locality (address space)

o Terr_lp)oral locality (data accessed before will be likely accessed
again

> Tasks repeated many times (last accessed)

On GPU YOU are responsible for the content of the caches!

- Advantage Control when the writes happen.

v

v

v

Tip: It’s a perfectly valid approach to develop a program,
prove the concept, and then deal with locality issues

v

Y VRIJE
UNIVERSITEIT
BRUSSEL

Global Off-chip All threads + host Application
Off-chip _ All threads + host | Application
Off-chip _ All threads + host | Application

Using shared memory

» Dynamic
- Kernel_function<<< , hum_threads,
sizeof(int)>>>(params...)

> __global__ void Kernel(params) {
extern __shared__ int a][];
}

» Static
o #define CONSTANT_SIZE 100

> __global__ void Kernel(params) {
__shared__ int a[CONSTANT_SIZE];
}

» See: https://stackoverflow.com/questions/5531247/allocating-
shared-memory

https://stackoverflow.com/questions/5531247/allocating-shared-memory
https://stackoverflow.com/questions/5531247/allocating-shared-memory

‘ Convolution example \

Example: convolution

Source pixel

+(4x2) Parallelism: +++
Locality: ++
Work/pixel: ++

Convolution kernel
(emboss)

New pixel value (destination pixel)

-
"‘
.

3x3 kernel (also called fi/ter or
mask) is applied to each pixel of
the image

vm VRHE e Convolution example

BRUSSEL

Examples of convolution

Bufferedimage BufferedimageOp Bufferedimage

The source The filter The destination

Edge detection
with sobel filter

VRIJE
UNIVERSITEIT
BRUSSEL

‘ Convolution example \

Speedup

times

120

100

80

60

40

20

seperable convolution speedup

pr

pal

== The maximum

speedup(without
communicationtime)

4

__—-'".

=f—The minimum

speedup(include
communicationtime)

10 20 30

kernel radius (pixels)

40

GPU Programming

Convolution on GPU

« DATA W

KERNEL_RADIUS
«—>

H ¥LV¥V3d

GPU Progr,

v

Convolution Kernel Code

__global __ void Convolution(float* A, float* B, float* C, int DATA _WIDTH, int

KERNEL_WIDTH)

{
int col = blockldx.x * BLOCK_SIZE + threadldx.x;
int row = blockldx.y * BLOCK_SIZE + threadldx.y;

__sShared__ float shm[BLOCK_SIZE][BLOCK SIZE];
shm[threadldx.y][threadldx.x] = A[col * DATA_WIDTH + row];
... Il copy 9 pixels to shared

__syncthreads();

float tmp = 0;
for (inti=0; i< KERNEL _WIDTH;i++)
for (intj = O;)<KERNEL_WIDTH;j++)
tmp += shm[threadldx.y + i][threadldx.x + |] * C[[*KERNEL_WIDTH + i;
B[col*DATA WIDTH + row] = tmp;

Y VRIJE
UNIVERSITEIT
BRUSSEL

(C=AxB

Matrix Multiplication

Happens in iterations:

first blocks 0 are multiplied,
then 1 are multiplied and added,
and at last blocks 2

In each iteration:

- Thread copies element of A
and B to shared

 Barrier synchronization

- Calculates sum of products
of A row and B column

16

Execution Model

» Execution of N blocks of M threads

» Thread blocks are assigned to multiprocessors (MPs)
- A thread block stays there until it completes

» Multiprocessors may execute multiple thread blocks
concurrently

» Thread blocks not yet assigned to a multiprocessor
must wait

» The order in which thread blocks execute is non-
deterministic

» Consequences:
o There can be no interaction between thread blocks
o CUDA code scales inherently

L Thread block execution

» Simple scheduler
> Assigns thread blocks to available multiprocessors (MPs)
- Basically, a waiting queue for thread blocks

» Thread blocks (TBs) execute independently
> Global Synchronization among thread blocks is not possible!

GPU with 2 MPs GPU with 4 MPs

'l B

TS time | | T8O [TBL [TB2
T84 [TBS [TBG

Multiple TBs per MP

» One MP can execute TBs concurrently

» Determined by available resources (hardware limits):
o Max. TBs simultaneously on MP: 8
o Max. threads simultaneously on MP . 1024

o Private memory (registers) per MP : 16/48KB
o Shared memory per MP . 16/32KB

GPU with 4 CUs

TBO TB1
TB2 TB3 \
TB4 TB5

e] TBOTB1 TB2TB3 TB4 TB5 TB6
time

Exercise: Matrix Vector Operation

» Matrix A mxn
» Vector B n

» Computation?

- Repeat N times:
- Ali,jl = Ali,jl + Ali,jI*B[j]

» Observe
- Data throughput in function of N
- Computational throughput in function of N

VRIJE
UNIVERSITEIT
BRUSSEL

\

Exercise: Erosion

Typical operation in image processing

4

Given an input pixel, the value of the corresponding output pixel is the
minimum of values of pixels under a mask centered on the input pixel

Example Erosion with a 3x3 mask on a binary image:

4

4

L= =]

(= =]

Implement erosion for one-dimensional data for a parameterizable mask

width

4

Doing everything in global memory

Using local memory

1.

2.

Try two

—~dimensional erosion

4

Level 3
See other chapter

	Slide 1: GPU Computing
	Slide 2: Levels of Understanding
	Slide 3
	Slide 4
	Slide 5: Execution Model
	Slide 6: Thread blocks
	Slide 7: GPU Model
	Slide 8: Memory & Data Locality
	Slide 9
	Slide 10: Using shared memory
	Slide 11: Example: convolution
	Slide 12: Examples of convolution
	Slide 13: Speedup
	Slide 14: Convolution on GPU
	Slide 15: Convolution Kernel Code
	Slide 16: Matrix Multiplication
	Slide 18: Execution Model
	Slide 19: Thread block execution
	Slide 20: Multiple TBs per MP
	Slide 21: Exercise: Matrix Vector Operation
	Slide 22: Exercise: Erosion
	Slide 25

