
Lesson 3: Architecture &
Strategy - part I

Gauthier Lafruit & Jan Lemeire

2022-2023

http://parallel.vub.ac.be/education/gpu

The modern CPU

‘Sequential’ processor: super-scalar
out-of-order pipeline

Pipeline depth

Pipeline width

Different processing units

Out-of-order execution
Branch prediction
Register renaming
…

Algorithm

Implementation

Compiler

Automatic

optimization

Low latency of

each instruction!

Write once

Run everywhere

efficiently!

CPU computing

automatic

manual

GPU strategy for

massive computations

GPU architecture strategy

 Light-weight threads, supported by the hardware
◦ Thread processors, more than 1000 active threads per core

◦ Switching between threads can happen in 1 cycle!

 No caching mechanism, branch prediction, …
◦ GPU does not try to be efficient for every program, does not spend

transistors on optimization

◦ Simple straight-forward sequential programming should be
abandoned…

 Less higher-level memory:
◦ GPU: 16KB shared memory per SIMD multiprocessor

◦ CPU: L2 cache contains several MB’s

 Massively floating-point computation power

 RISC instruction set instead of CISC

 Transparent system organization
Modern (sequential) CPUs based on simple Von Neumann

architecture

 6-24 stages

 in-order execution!!

 no branch prediction!!

 no forwarding!!

 no register renaming!!

 Memory system:
◦ relatively small

◦ Until recently no caching

◦ On the other hand: much more registers (see later)

 No program call stack and no memory stack!
◦ All functions inlined

◦ No recursion possible

GPU processor pipeline

Optimization

Compiler

Algorithms

Implementation

performanceprogrammability

portability

Challenges of GPU computing

GPUs have several pipelines which will be filled
with instructions from different kernel threads
through:

1. Running thread blocks on the different
multiprocessors

2. Simultaneous multithreading: several
hardware threads active at the same time

◦ Discussed next

3. Single Instruction Multiple Threads (SIMT)
◦ Discussed later

Fill the pipelines

Architecture

GPU Architecture

Streaming MultiProcessor (Nvidia)

Compute Unit (OpenCL)

global memory partitioned

Every controller can serve 1 request

1 Streaming Multiprocessor
= a pipeline

Multiple warps (hardware threads)

are simultaneously active

The Same Instruction is

executed on Multiple work items/

Threads

(SIMT)

Scalar Processors (width of

pipeline):

8 – 32 – 192 - 128

Warps waiting for
data

Properties of
different

architectures

#LD/STO units = 16 32 32 32

GPUs of our lab and architecture

N(П) = #multiprocessors
|ω| = warp size

Group & Warp slots: maximum #
thread blocks or warps

The different Nvidia architectures

1st generation: Tesla

2 SMs (Compute
Units) are grouped

into one TPC

Compute Capability = 1.x

CUDA Compute Capability
can be queried, also in GPU

Caps Viewer

https://en.wikipedia.org/wiki/CUDA

NVIDIA Compute Capability is

linked to architecture

2nd generation: Fermi
Compute Capability = 2.x

Kepler
Maxwell

This is only half of an SM

3rd generation: Kepler
4rd generation: Maxwell

5th generation: Pascal

Compute Capability = 3.x
Compute Capability = 4.x or 5.x

Compute Capability = 6.x

6th generation: Volta & Turing5th generation: Pascal

Without double precision (DP) units

Compute Capability = 8.x
if < 8.5: Volta

7th generation: Ampere
Compute Capability = 9.x

Simultaneous

multithreading

 Performing multiple threads of execution
in parallel
◦ Replicate registers, PC, etc.
◦ Fast switching between threads

 Fine-grain multithreading
◦ Switch threads after each cycle
◦ Interleave instruction execution
◦ If one thread stalls, others are executed

 Coarse-grain multithreading
◦ Only switch on long stall (e.g., L2-cache miss)
◦ Simplifies hardware, but doesn’t hide short

stalls (eg, data hazards)

Multithreading

 1 process/thread active per core

 When activating another thread: context switch
◦ Stop program execution: flush pipeline (let all

instructions finish)

◦ Save state of process/thread into Process Control
Block : registers, program counter and operating
system-specific data

◦ Restore state of activated thread

◦ Restart program execution and refill the pipeline

 Processor ‘sees’ only 1 thread

 Called Software threads

Multithreading on CPU

O
ve

rh
e
ad

Running threads on same CPU core

 Executed one by one

 Context switch
◦ Thread’s state in core:

instruction fetch buffer,
return address stack,
register file, control
logic/state, …

◦ Supported by hardware

 Takes time!

thread

creation

T1

saving

T1's state

Processor

core

Thread 1

restoring

T2's state

Thread 2

Thread 3

Process/Thread pool

Operating

system’s

scheduler

T2

Context switch

(overhead)

Coarse-grain multithreading

 In several modern CPUs
◦ typically 2 HW threads (Intel: hyperthreading)

 Devote extra hardware for keeping process
state

 Thread switching by hardware
◦ (almost) no overhead

◦ within 1 cycle!

◦ Instructions in flight from different threads

Fine multi-threading:
Hardware threads

 In multiple-issue dynamically scheduled
processor
◦ Schedule instructions from multiple threads
◦ Instructions from independent threads execute

when function units are available
◦ Within threads, dependencies handled by

scheduling and register renaming

 Example: Intel Pentium-4 HyperThreading
◦ Two threads: duplicated registers, shared function

units and caches

Simultaneous Multithreading

 Independent instructions (no bubbles)

 More time between instructions: possibility
for latency hiding
◦ Hide memory accesses

 If pipeline full
◦ Forwarding not necessary

◦ Branch prediction not necessary

Benefits of fine-grained multithreading

Running a simple addition kernel

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 10000 20000 30000 40000 50000 60000 70000

Run more and more
threads

#threads

Runtime
(ns)

27

Runtime increases only when all pipelines are full (8000 threads)

The execution on a GPU

 Thread blocks are scheduled on MultiProcessors .

 Warps of active threads are scheduled on the multiprocessor

28

Concurrency

 Keep all processing units busy!
◦ Enough threads

 All Multiprocessors (MPs)

 All Scalar Processors (SPs)

 Full pipeline of scalar processor
◦ Pipeline of up to 24 stages

What determines the

occupancy

Occupancy

 Occupancy = #𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑤𝑎𝑟𝑝𝑠 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑜𝑛 𝑎 Multiprocessor

 A higher occupancy means that more work can be scheduled
and in general a higher performance

 Limited resources will limit the number of thread blocks that
can be simultaneously active and run concurrently:

1. Registers needed per block

 Each kernel’s local variables are stored in register memory

2. Local memory needed per block

3. Maximum number of concurrent thread blocks

4. Maximum number of thread

 The most constrained resource determines the occupancy

◦ Each Multiprocessor has resources (depends on architecture, can
be queried)

 For Pascal architecture: 256KB registers, 96KB local memory,
max. 32 blocks, max. 2048 threads(=64 warps)

31

The effect of

occupancy will be

studied with the

Pipeline Model

	Slide 1: GPU Computing
	Slide 2
	Slide 3: ‘Sequential’ processor: super-scalar out-of-order pipeline
	Slide 4
	Slide 5
	Slide 6: GPU architecture strategy
	Slide 7: GPU processor pipeline
	Slide 8
	Slide 9: Fill the pipelines
	Slide 10
	Slide 11: GPU Architecture
	Slide 12: 1 Streaming Multiprocessor = a pipeline
	Slide 14: Properties of different architectures
	Slide 15: The different Nvidia architectures
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Multithreading
	Slide 22: Multithreading on CPU
	Slide 23: Running threads on same CPU core
	Slide 24: Fine multi-threading: Hardware threads
	Slide 25: Simultaneous Multithreading
	Slide 26: Benefits of fine-grained multithreading
	Slide 27: Running a simple addition kernel
	Slide 28: The execution on a GPU
	Slide 29: Concurrency
	Slide 30
	Slide 31: Occupancy
	Slide 32

