
Lesson 7: Warps & SIMT

Gauthier Lafruit & Jan Lemeire

2022-2023

http://parallel.vub.ac.be/education/gpu

Levels of Understanding

 Level 0
◦ Host code

 Level 1
◦ Parallel execution on the device

 Level 2
◦ Device model and work groups

 Level 3 => explained here
◦ Hardware threads & SIMT

2

Device/GPU

Global Memory (1GB)

Multiprocessor 1

Shared Memory (16/48KB)

Scalar
Processor

/ CUDA Core

Registers
16K/8

Scalar
Processor

Registers

Multiprocessor 2

Shared Memory

Scalar
Processor

Registers

Scalar
Processor

RegistersHost/
CPU

Constant Memory (64KB)

GPU Concepts

Texture Memory (in global memory)

R
A
M

Grid (1D, 2D or 3D)

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 0)

Block
(2, 1)

Thread block

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

kernel

Max #threads per thread block: 1024
Executed in warps of 32 threads
Max thread blocks simultaneously on MP: 8
Max active warps on MP: 24/48

gridDim.x

g
r
i
d
D
i
m
.
y

b
l
o
c
k
D
i
m
.
y

blockDim.x

(threadIdx.x, threadIdx.y)

(blockIdx.x, blockIdx.y)

100GB/s 200 cycles

40GB/s few cycles

4-8 GB/s

CUDA terminology

Vector processors & SIMD

One way to do several computations at the same
time

Vector processors

 All processing elements execute the same instruction
at the same time
◦ Multiple data elements in 128-bit or 256-bit wide

registers (vector registers)
◦ MMX and SSE instructions in x86

 Instead of iterating over the vector (for-loop), one
instruction is sufficient

Instructions are performed at once

on all elements of the vector registers

7 8 2 -1

3 -3 5 -7

10 5 7 -8

128-bit vector registers

+

Vector processors

 Simplifies synchronization

 Reduced instruction control hardware: an instruction
has to be read only once for x number of calculations

 Works best for highly data-parallel applications

 Has long be viewed as the solution for high-
performance computing

◦ Why always repeating the same instructions (on
different data)? => just apply the instruction
immediately on all data

 However: difficult to program, since less flexible
◦ Is OpenCL/SIMT easier?

Instruction and Data Streams

Data Streams

Single Multiple

Instruction

Streams

Single SISD:

Intel Pentium 4

SIMD: Vector

instructions of x86

Multiple MISD:

No examples today

MIMD:

Intel Xeon e5345

◼ Vector processing = Single Instruction on

Multiple Data (SIMD)

Level 3

Hardware Threads

& SIMT

1 Streaming Multiprocessor
= a pipeline

Multiple warps (hardware threads)

are simultaneously active

The Same Instruction is

executed on Multiple Threads

(SIMT)

Number of processing elements

(width of pipeline):

8 – 32 – 192 - 128

Warps waiting for
data

Reading from
global memory

Warp executes kernel threads in lock
step

 Hardware thread (called warp by Nvidia):
◦ Kernel threads are executed together in groups, the

instructions of the kernel are executed at the same time they
will execute the same instruction

◦ Nvidia: 32; AMD: 64; Intel: variable number (8/16/24/32)

 Consequences:
1. Running 1 kernel thread or 32 kernel threads takes the same

amount of time

 Thus: create thread blocks which are multiples of 32 or 64
2. Branching: if kernel threads of the same warp take different

branches, all branches will be executed after each other

 Performance loss
3. Concurrent memory access: if kernel threads access memory,

all kernel threads of the same warp do it simultaneously

 Not all memory access can be done with the same speed

 Contiguous data access (See lesson 2)

 In this case, warp execution of instructions on the
data is similar to vector instructions operating on
vector registers.

When is SIMT = vector processing?

 Vectors (SIMD)
◦ Data should be stored in vector register

◦ Instructions are performed onto these registers

◦ Harder to program

 SIMT
◦ Each thread of a warp can choose on which data it

works

◦ Easier to program: programmer does not have to
worry about thread-data mapping

Vectors versus SIMT

AddAddAddAddAddAddAdd32

Add

Warp execution

1 2 3 4 5 6

AddAddAddAddAddAddAdd0

Add
…

Warp 1

Cycle

Kernel threads are sent into the pipeline grouped in a warp

ALUs all execute the same instruction in `lockstep’: Single
Instruction, Multiple Threads (SIMT)

Every cycle a new warp can issue an instruction

AddAddAddAddAddAddAdd64

Add

Warp 2 Warp 3

global ID
of kernel
thread

AddAddAddAddAddAddAdd96

Add

AddAddAddAddAddAddAdd128

Add

Warp 4 Warp 5

Warp execution

MulMulMulMulMulMulMul0

Mul

On an Nvidia Kepler architecture, a single precision floating point
instruction (add or multiplication) takes 9 cycles, which is the depth of
the pipeline.

8 other warps can be scheduled in the mean time

After 9 cycles, the second instruction of the first warp
(multiplication) can be issued, next the second warp and so on

With 9 warps the pipeline is completely filled, no stalling/idling,
the completion latency of 9 cycles is completely hidden.

…

…

MulMulMulMulMulMulMul32

Mul

AddAddAddAddAddAddAdd128

Add

Warp 9

9 10 11 12 13 14 15

Cycle

Warp 1 Warp 2

AddAddAddAddAddAddAdd0

then

AddAddAddAddAddAddAdd0

If

AddAddAddAddAddAddAdd0

else

SIMT Conditional Processing
If kernel threads of a warp follow different branches, the

instructions of both branches have to be executed, but are
desactivated for some threads.

=> Performance loss!

Example: assume 8 threads, one instruction in if-clause, one in
then-clause

3 cyles in which 24 instructions are executed, 8 lost cycles
(66% usage)

Desactivated
instructions (red)

Desac-

tivated

	Slide 1: GPU Computing
	Slide 2: Levels of Understanding
	Slide 3
	Slide 4
	Slide 5: Vector processors
	Slide 6: Vector processors
	Slide 7: Instruction and Data Streams
	Slide 8
	Slide 9: 1 Streaming Multiprocessor = a pipeline
	Slide 10: Warp executes kernel threads in lock step
	Slide 11: When is SIMT = vector processing?
	Slide 12: Vectors versus SIMT
	Slide 13: Warp execution
	Slide 14: Warp execution
	Slide 15: SIMT Conditional Processing

