
Lesson 5: Thread blocks
and shared memory

Gauthier Lafruit & Jan Lemeire

2022-2023

http://parallel.vub.ac.be/education/gpu

Levels of Understanding

 Level 0
◦ Host code

 Level 1
◦ Parallel execution on the device

 Level 2 => explained here
◦ Device model and work groups

 Level 3 => explained later
◦ Hardware threads & SIMT

2

Device/GPU

Global Memory (1GB)

Multiprocessor 1

Shared Memory (16/48KB)

Scalar

Processor

/ Core

Registers

16K/8

Scalar

Processor

Registers

Multiprocessor 2

Shared Memory

Scalar

Processor

Registers

Scalar

Processor

RegistersHost/

CPU

Constant Memory (64KB)

GPU Concepts

Texture Memory (in global memory)

R

A

M

Grid (1D, 2D or 3D)

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Block

(2, 0)

Block

(2, 1)

Thread block

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

kernel

Max #threads per thread block: 1024
Executed in warps of 32 threads
Max thread blocks simultaneously on MP: 8
Max active warps on MP: 24/48

gridDim.x

g
r
i
d
D
i
m
.
y

b
l
o
c
k
D
i
m
.
y

blockDim.x

(threadIdx.x, threadIdx.y)

(blockIdx.x, blockIdx.y)

100GB/s 200 cycles

40GB/s few cycles

4-8 GB/s

CUDA terminology

Level 2

GPU Model and

Thread blocks

4

Execution Model

 Kernel = smallest unit of execution, like a C function,
executed by each thread

 Data parallelism: kernel is run by a grid of thread
blocks

 A thread block consists of instances of the same
kernel: thread

 Different data elements are fed into the threads of
the thread blocks

We talk about stream computing

Thread blocks
 Threads are grouped into thread blocks
◦ Number of threads of a block is determined by the

programmer (same for all blocks)

 A thread block is executed on one multiprocessor (MP)
◦ From start to end

 Threads of the same thread block share shared
memory
◦ Kind of explicit cache

 Within a thread block, synchronization among threads
is possible
◦ With the barrier statement.

◦ Synchronization between blocks is NOT possible

6

GPU Model

Memory & Data Locality
 We have multiple types of memory:

◦ Global memory/Constant memory
◦ Shared memory
◦ Local memory

 We want to exploit multilevel caches by using
◦ Spatial locality (address space)
◦ Temporal locality (data accessed before will be likely accessed

again)
◦ Tasks repeated many times (last accessed)

 On GPU YOU are responsible for the content of the caches!
◦ Advantage Control when the writes happen.

 Tip: It’s a perfectly valid approach to develop a program,
prove the concept, and then deal with locality issues

Using shared memory

 Dynamic

◦ Kernel_function<<<num_blocks, num_threads, shared_memory_size *
sizeof(int)>>>(params…)

◦ __global__ void Kernel(params) {
extern __shared__ int a[];

}

 Static

◦ #define CONSTANT_SIZE 100

◦ __global__ void Kernel(params) {
__shared__ int a[CONSTANT_SIZE];

}

 See: https://stackoverflow.com/questions/5531247/allocating-
shared-memory

https://stackoverflow.com/questions/5531247/allocating-shared-memory
https://stackoverflow.com/questions/5531247/allocating-shared-memory

Example: convolution

Parallelism: +++

Locality: ++

Work/pixel: ++

3x3 kernel (also called filter or
mask) is applied to each pixel of
the image

Convolution example

Examples of convolution

Edge detection

with sobel filter

GPU Programming

Convolution example

Speedup

GPU Programming

Convolution example

Convolution on GPU

GPU Programming

get_group_id(0)=2

get_group_id(1)=2

Convolution example

Convolution Kernel Code

__global__ void Convolution(float* A, float* B, float* C, int DATA_WIDTH, int

KERNEL_WIDTH)

{

int col = blockIdx.x * BLOCK_SIZE + threadIdx.x;

int row = blockIdx.y * BLOCK_SIZE + threadIdx.y;

__shared__ float shm[BLOCK_SIZE][BLOCK_SIZE];

shm[threadIdx.y][threadIdx.x] = A[col * DATA_WIDTH + row];

… // copy 9 pixels to shared

__syncthreads();

float tmp = 0;

for (int i = 0; i< KERNEL_WIDTH;i++)

for (int j = 0;j<KERNEL_WIDTH;j++)

tmp += shm[threadIdx.y + i][threadIdx.x + j] * C[j*KERNEL_WIDTH + i];

B[col*DATA_WIDTH + row] = tmp;

}

GPU Programming

Convolution example

Matrix Multiplication

16

Happens in iterations:
• first blocks 0 are multiplied,

then 1 are multiplied and added,
and at last blocks 2

• In each iteration:
• Thread copies element of A

and B to shared
• Barrier synchronization
• Calculates sum of products

of A row and B column

Execution Model

 Execution of N blocks of M threads

 Thread blocks are assigned to multiprocessors (MPs)
◦ A thread block stays there until it completes

 Multiprocessors may execute multiple thread blocks
concurrently

 Thread blocks not yet assigned to a multiprocessor
must wait

 The order in which thread blocks execute is non-
deterministic

 Consequences:

◦ There can be no interaction between thread blocks

◦ CUDA code scales inherently

18

 Simple scheduler
◦ Assigns thread blocks to available multiprocessors (MPs)

◦ Basically, a waiting queue for thread blocks

 Thread blocks (TBs) execute independently
◦ Global Synchronization among thread blocks is not possible!

Thread block execution

Device

TB 0 TB 1

TB 2 TB 3

TB 4 TB 5

TB 6

Kernel grid

TB 0 TB 1

TB 2 TB 3

TB 4 TB 5

TB 6

Device

TB 0 TB 1 TB 2 TB 3

TB 4 TB 5 TB 6

time

GPU with 2 MPs
GPU with 4 MPs

Multiple TBs per MP

 One MP can execute TBs concurrently

 Determined by available resources (hardware limits):

◦ Max. TBs simultaneously on MP: 8

◦ Max. threads simultaneously on MP : 1024

◦ Private memory (registers) per MP : 16/48KB

◦ Shared memory per MP : 16/32KB

Kernel grid

TB 0 TB 1

TB 2 TB 3

TB 4 TB 5

TB 6

Device

TB 0

time

GPU with 4 CUs

TB 1 TB 2 TB 3 TB 4 TB 5 TB 6

Exercise: Matrix Vector Operation

 Matrix A mxn

 Vector B n

 Computation?
◦ Repeat N times:

 A[i,j] = A[i,j] + A[i,j]*B[j]

 Observe

◦ Data throughput in function of N

◦ Computational throughput in function of N

21

Exercise: Erosion
 Typical operation in image processing

 Given an input pixel, the value of the corresponding output pixel is the
minimum of values of pixels under a mask centered on the input pixel

 Example Erosion with a 3x3 mask on a binary image:

 Implement erosion for one-dimensional data for a parameterizable mask
width
1. Doing everything in global memory

2. Using local memory

 Try two-dimensional erosion

22

Level 3

See other chapter

25

	Slide 1: GPU Computing
	Slide 2: Levels of Understanding
	Slide 3
	Slide 4
	Slide 5: Execution Model
	Slide 6: Thread blocks
	Slide 7: GPU Model
	Slide 8: Memory & Data Locality
	Slide 9
	Slide 10: Using shared memory
	Slide 11: Example: convolution
	Slide 12: Examples of convolution
	Slide 13: Speedup
	Slide 14: Convolution on GPU
	Slide 15: Convolution Kernel Code
	Slide 16: Matrix Multiplication
	Slide 18: Execution Model
	Slide 19: Thread block execution
	Slide 20: Multiple TBs per MP
	Slide 21: Exercise: Matrix Vector Operation
	Slide 22: Exercise: Erosion
	Slide 25

