
Lesson 2: Programming
GPUs - part I

Gauthier Lafruit & Jan Lemeire

2022-2023

http://parallel.vub.ac.be/education/gpu

Levels of Understanding

 Level 0
◦ Host code

 Level 1
◦ Parallel execution on the device

 Level 2 => explained later
◦ Device model and thread blocks

 Level 3 => explained later
◦ Hardware threads & SIMT

2

Device/GPU

Global Memory (1GB)

Multiprocessor 1

Shared Memory (16/48KB)

Scalar

Processor

/ Core

Registers

16K/8

Scalar

Processor

Registers

Multiprocessor 2

Shared Memory

Scalar

Processor

Registers

Scalar

Processor

RegistersHost/

CPU

Constant Memory (64KB)

GPU Concepts

Texture Memory (in global memory)

R

A

M

Grid (1D, 2D or 3D)

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Block

(2, 0)

Block

(2, 1)

Thread block

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

kernel

Max #threads per thread block: 1024
Executed in warps of 32 threads
Max thread blocks simultaneously on MP: 8
Max active warps on MP: 24/48

gridDim.x

g
r
i
d
D
i
m
.
y

b
l
o
c
k
D
i
m
.
y

blockDim.x

(threadIdx.x, threadIdx.y)

(blockIdx.x, blockIdx.y)

100GB/s 200 cycles

40GB/s few cycles

4-8 GB/s

CUDA terminology

Device/GPU ± 1TFLOPS

Global Memory (1GB)

Multiprocessor 1

Local Memory (16/48KB)

Scalar

Processor

± 1GHz

Private

16K/8

Scalar

Processor

Private

Multiprocessor 2

Local Memory

Scalar

Processor

Private

Scalar

Processor

PrivateHost/

CPU

Constant Memory (64KB)

GPU Concepts

Texture Memory (in global memory)

R

A

M

Grid (1D, 2D or 3D)

Group

(0, 0)

Group

(1, 0)

Group

(0, 1)

Group

(1, 1)

Group

(2, 0)

Group

(2, 1)

Work group

Work item

(0, 0)

Work item

(1, 0)

Work item

(2, 0)

Work item

(0, 1)

Work item

(1, 1)

Work item

(2, 1)

Work item

(0, 2)

Work item

(1, 2)

Work item

(2, 2)

kernel

Max #work items per work group: 1024
Executed in warps/wavefronts of 32/64 work items
Max work groups simultaneously on MP: 8
Max active warps/wavefronts on MP: 24/48

get_local_size(0)

g
e
t
_
l
o
c
a
l
_
s
i
z
e
(
1
)

W
o
r
k

g
r
o
u
p

s
i
z
e

S
y

Work group size Sx

(get_local_id(0), get_local_id(1))

(get_group_id(0),get_group_id(1))

100GB/s 200 cycles

40GB/s few cycles

4-8 GB/s

OpenCL terminology

Level 0

Host Code

5

Typical Sequence of Events

7

CUDA Working Group

Will be used in this course

OpenCL Resources
A small sample

◦ www.khronos.org

◦ www.iwocl.org (*)

◦ www.streamcomputing.eu (*)

◦ developer.amd.com/tools-and-sdks/opencl-zone/

◦ www.eriksmistad.no/category/opencl/

◦ www.youtube.com

 AJ Guillon

(*) These sites include references to books

10

http://www.khronos.org/
http://www.iwocl.org/
http://www.streamcomputing.eu/
http://developer.amd.com/tools-and-sdks/opencl-zone/
http://www.eriksmistad.no/category/opencl/
http://www.youtube.com/

CUDA

 We need a way to
◦ Modify our program to use accelerators

◦ Specify the code that needs to run on the
accelerators

 CUDA
◦ A host API: functions starting with prefix ‘cuda’

◦ CUDA C language

◦ A model of a GPU

11

HOST API

 We need only a little knowledge:
1. Select the appropriate GPU.

2. Allocate memory on the GPU.

3. Transfer data between CPU and GPU.

4. Compile and run code for/on the GPU.

 Understand what has to be modified.

12

CUDA is almost C
 CUDA is very similar to C, we only add some keywords:
◦ Type qualifiers:

 __global__ to declare a function to be executed on the GPU
 __device__ to declare a function to be called by another function on the

GPU
 __shared__ to declare shared memory in a kernel
 __local__ [see doc]
 __constant__ [see doc]

◦ Keywords: threadIdx, blockIdx, gridDim, blockDim to access
elements in a kernel

◦ Intrinsics:
 __syncthreads(); // to synchronize threads between warps (within a

block) and in all the warps (thus all threads..)

 atomicAdd(); // to synchronize blocks (see atomic ops:

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions)

 dim2, dim3, uint2, uint3 // units for cuda : dim2 hello(16,32);
◦ Runtime API: to allocate memory on the GPU and transfer data,

check errors, etc.. [doc]
◦ Kernel functions to launch code to the GPU from the CPU:

<<<X,Y,Z>>>(.) (special syntax detailed later)

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions

1a. Print the CUDA-enabled GPUs

int nDevices;

cudaGetDeviceCount(&nDevices);

for (int i = 0; i < nDevices; i++) {

cudaDeviceProp prop;

cudaGetDeviceProperties(&prop, i);

printf("Device Number: %d\n", i);

printf(" Device name: %s\n", prop.name);

printf(" Compute Capability: %d.%d\n", prop.major, prop.minor);

printf(" Memory Clock Rate (KHz): %d\n", prop.memoryClockRate);

printf(" Peak Memory Bandwidth (GB/s): %f\n\n",

2.0*prop.memoryClockRate*(prop.memoryBusWidth/8)/1.0e6);

}

deviceProperties.major

int devicesCount;

cudaGetDeviceCount(&devicesCount);

string desiredDeviceName = "GTX XYZ";

for(int deviceIndex = 0; deviceIndex < devicesCount; ++deviceIndex)

{

cudaDeviceProp deviceProperties;

cudaGetDeviceProperties(&deviceProperties, deviceIndex);

if (deviceProperties.name == desiredDeviceName)

{

cudaSetDevice(deviceIndex);

break;

}

}

1b. Select the appropriate GPU

 Explicit memory allocation returns pointers to
GPU memory
◦ cudaMalloc(), cudaFree()

2. Allocate memory on the GPU

 Explicit memory copy for host ↔ device,
device ↔ device

 cudaMemcpy(), cudaMemcpy2D(), ...

3. Transfer data between CPU and GPU

CPU-GPU Memory Management

 As we are going to deal with pointers to the CPU and to the GPU main memory, it is
useful to start every pointer name by h_ if it is a pointer to the host’s memory (CPU) or d_
if it is a pointer to the GPU’s memory

int N = 16;
int num_bytes = N*sizeof(int);
int *d_a, *h_a = 0;

h_a = (int*) malloc(num_bytes); // allocate the memory on the CPU
cudaMalloc ((void**) &d_a, num_bytes); // allocate the memory on GPU

cudaMemset(d_a, 0, num_bytes); // set all the values to 0
cudaMemcpy(h_a, d_a, num_bytes, cudaMemcpyDeviceToHost); // copy back the values

free(h_a); // free the memory
cudaFree(d_a); // free the memory on GPU

We often use flags such as:
cudaMemcpyDeviceToHost or cudaMemcpyHostToDevice

4. Compile and run code for/on the GPU

 Declare a kernel (details discussed in the next section):
◦ put __global__ in the beginning of the prototype of a function!
◦ The Nvidia compiler (nvcc) will know what to do

__global__ void mySuperKernel(float * A, float * B, float *C) {
…

}

 Start a GPU program:
mySuperKernel <<<num_blocks, num_threads>>>(params…)
◦ Call a kernel function
◦ Provide parameters (scalars and pointers to GPU memory)
◦ Provide the number of threads through the GRID dimensions

 With the special operator <<< >>>

Grid and Blocks dimensions
 Threads are ordered in a

hierarchy:
◦ A Grid consists of blocks, a blocks

 A lot of problems in science are
not expressed in 1D but are
rather natural in 2 or 3
dimensions.
◦ Images work well in 2D
◦ Medical scans work well in 3D

 Examples:
◦ mySuperKernel <<<1, 1>>>(A, B, C);

// executes 1 block composed of 1
thread

◦ mySuperKernel<<<B, 1>>>(A, B, C);
// executes B blocks composed of 1
thread

◦ mySuperKernel<<<B, M>>>(A, B, C);
// Executes B blocks composed of M
threads each.

Indexing

 CUDA Built-In Variables
◦ blockIdx.{x,y,z} block ID in the {x,y,z}-axis of the block

◦ threadIdx.{x,y,z} thread ID in the {x,y,z}-axis of the thread

◦ blockDim.{x,y,z} block dimensions

◦ threadDim.{x,y,z} thread dimensions

 The full global thread ID in x dimension can be
computed by
◦ globalThreadID = blockIdx.x * blockDim.x + threadIdx.x;

More on kernel invocation
 Kernel_function<<<num_blocks, num_threads>>>(params…)
◦ Use variables for num_blocks and num_threads, you are

going to tune them.
◦ num_threads is the number of threads in each block we want

 The number of threads in a block is limited: 512, 1024, …

◦ Parameters can be passed via registers or constant memory
 If passed by registers: eg: 128 threads + 3 parameters : 128 x 3

= 384 registers
 A GPU has a lot of registers, at least 8192 per SM. So potentially you

could use 8192/128=64 registers per thread. But it is a bad
idea: prefer using multiple blocks (otherwise the SM are going to be
idle as soon as you access the memory)

◦ The number of threads in a block should ALWAYS be a
multiple of the warp size (32, 64, …)

Level 1

Parallel Execution

on the Device

23

Example

 Implement a vector addition
◦ Assume three lists A, B and C

◦ Element i of C:

 Ci = Ai + Bi;

◦ Each thread processes one data item

 Extension:
◦ One work item processes more than one data

item

26

Threads executes kernel

 Massively parallel programs are usually written so
that each kernel thread computes one part of a
problem
◦ For vector addition, we will add corresponding elements

from two arrays, so each thread will perform one addition

◦ If we think about the thread structure visually, the threads
will usually be arranged in the same shape as the data

Vector addition

 Consider a simple vector addition of 16
elements
◦ 2 input buffers (A, B) and 1 output buffer (C) are

required

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

A

B

C

=

+

Vector Addition:

Array Indices

Vector addition

 Create thread structure to match the problem
◦ 1-dimensional problem in this case

Thread structure:

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

A

B

C

=

+

Vector Addition:

1

4

1

5

1

2

1

3

1

0

1

1
8 96 74 52 30 1

Work item IDs

Vector addition

 Each thread is responsible for adding the
indices corresponding to its ID

Thread structure:

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

A

B

C

=

+

Vector Addition:

1

4

1

5

1

2

1

3

1

0

1

1
8 96 74 52 30 1

A kernel defines the code for a thread

CUDA Kernel code

 __global__ to declare a function to be executed
on the GPU

 Variables blockDim, blockIdx, threadDim and
threadIdx to determine position of thread in the grid
◦ Type: dim3 struct with fields x, y and z

global__ void vecAdd(float* A, float* B, float* C)
{

int i = threadIdx.x + blockDim.x * blockIdx.x;
C[i] = A[i] + B[i];

}

// allocate host (CPU) memory

float* h_A = (float*) malloc(N * sizeof(float));

float* h_B = (float*) malloc(N * sizeof(float));

… initalize h_A and h_B …

// allocate device (GPU) memory

float* d_A, d_B, d_C;

cudaMalloc((void**) &d_A, N * sizeof(float));

cudaMalloc((void**) &d_B, N * sizeof(float));

cudaMalloc((void**) &d_C, N * sizeof(float));

// copy host memory to device

cudaMemcpy(d_A, h_A, N * sizeof(float),cudaMemcpyHostToDevice));

cudaMemcpy(d_B, h_B, N * sizeof(float),cudaMemcpyHostToDevice));

// execute the kernel on N/256 blocks of 256 threads each

vecAdd<<<N/256, 256>>>(d_A, d_B, d_C);

// copy result array back to host

float* h_C = (float*) malloc(N * sizeof(float));

cudaMemcpy(h_C, d_C, N * sizeof(float),cudaMemcpyDeviceToHost));

Host (CPU) code

 Grid of blocks in 2 dimensions

 Block of threads in 3 dimensions

__global__ void KernelFunc(...);

main()

{

dim3 DimGrid(100, 50); // 5000 thread blocks

dim3 DimBlock(4, 8, 8); // 256 threads per block

KernelFunc<<< DimGrid, DimBlock>>>(...);

}

Multi-dimensional Grid

Indexing – Higher dimensions
 Number of blocks in 2D grid: gridDim.x * gridDim.y

 Number of threads in 3D block: blockDim.x * blockDim.y
* blockDim.z

 Example of initialization:

◦ dim3 grid(16,16); // grid = 16x16 blocks
dim3 block(32,32); // block = 32x32 threads
myKernel<<<grid, block>>>(…);

◦ x = blockIdx.x * blockDim.x + threadIdx.x;
y = blockIdx.y * blockDim.y + threadIdx.y;

 2D GRID

Matrix Multiplication

__global__ void MatrixMulKernel(float* A, float* B, float* C, int Width)

{

int row = blockIdx.y*blockDim.y + threadIdx.y;

int col = blockIdx.x*blockDim.x + threadIdx.x;

// each thread computes one element of the result matrix

float sumOfProducts = 0;

for (int k = 0; k < Width; ++k)

sumOfProducts += A[row*Width+k] * B[k*Width+col];

C[row*Width+col] = sumOfProducts;

}

	Slide 1: GPU Computing
	Slide 2: Levels of Understanding
	Slide 3
	Slide 4
	Slide 5
	Slide 7: Typical Sequence of Events
	Slide 8: CUDA Working Group
	Slide 9
	Slide 10: OpenCL Resources A small sample
	Slide 11: CUDA
	Slide 12: HOST API
	Slide 13: CUDA is almost C
	Slide 14: 1a. Print the CUDA-enabled GPUs
	Slide 15: 1b. Select the appropriate GPU
	Slide 16: 2. Allocate memory on the GPU
	Slide 17: 3. Transfer data between CPU and GPU
	Slide 18: CPU-GPU Memory Management
	Slide 19: 4. Compile and run code for/on the GPU
	Slide 20: Grid and Blocks dimensions
	Slide 21: Indexing
	Slide 22: More on kernel invocation
	Slide 23
	Slide 26: Example
	Slide 27: Threads executes kernel
	Slide 28: Vector addition
	Slide 29: Vector addition
	Slide 30: Vector addition
	Slide 31: CUDA Kernel code
	Slide 32: Host (CPU) code
	Slide 33: Multi-dimensional Grid
	Slide 34: Indexing – Higher dimensions
	Slide 35: Matrix Multiplication

