VRIJE —
pUB UNIVERSITEITROE o g o
BRUSSEL

GPU

education/gpu

INtro

VRIJE
UNIVERSITEIT
BRUSSEL

» Predict performance

» Understand performance
- ldentify bottlenecks
- Estimate the effect of changes

» Pedagogical tool

The Philosophy of the model

» The GPU is modeled with pipelines: one for each
susbsystem
> Basically: the computational and the memory subsystem
» To understand several aspects influencing the

performance, one should understand the behavior
of pipelined processors

» Our performance analysis is based on the
simulation of a dual pipeline model

o [t does not intend to reflect a hardware-accurate model nor
a cycle-accurate simulation

«

=>Java | http://parallel.vub.ac.be/pipeline/

—_—

Pipeline simulator

» Semi-abstract model of a GPU multiprocessor: 1

pipeline for computional subsystem and 1 pipeline
for memory subsystem

» Based on instruction dependency graph of program
and the latencies of the hardware

CTO T TE . . . (2) communication-bound graph: 3 warp.s -1 work group§ -time of 1 run = 22.0
Computational pipeline i i ; ; : : : ' '
INp@ofo@1 [o@?] i2@0| @1 |raq] |
@ D out S e Y [e S —
1 [l [l 1 [l [l [l [l
L] 1 1 1 1 1 1 1

Memory pipeline

Pipeline Analogy

A processing pipeline

A
Issue latency (A) I
= inverse of throughput
Time for 1 stage I Completion latency (A\)
Is called a cycle = end-to-end latency
Is equal for all stages I
Time to complete all stages
I Here: A =4 * A\

VRIJE
UNIVERSITEIT
BRUSSEL

‘m

» See text of
Lesson 3

» Kernel has 3
dependent
computations

Full latency hiding
due to simultaneous
multithreading

A

Latency-bound

throughput-bound

ICo-m.putationaI pipeline)

Single pipeline

INjoq 1@dq 21q
e T Y Y
ouT [I |
Global memery pipeline ! 1 th read
IN
ouT : : . . .
0.0 i i i i 10 12
{Computational pipeline i :
INfog@qo@| [1@d1@ 2adza@i
ouT
Clobal memory pipeline
" 2 threads
OUT T T T T T T
0.0 i2 i i i 1o 12
iComputatlonal pipeline]
IN 0@40@1|0@;q0@d1 aqir@i1@d1 @42@42@1|2@212@q
ouT | Ihrwl I%Iﬁxﬁﬁ
Global memory pipeline i i i i 4 th read S
IM
ouT
TR ST P " "R T (T 8threads
M‘lputatlonal plpelme : I E H
: o x“-‘—-_h H
ouT T - 7 7 7 7 T
Glokal memery pipeline : : : ; i H H
4 5] Ew §12 §14 §15 §13 Ezn 222 EM Eza

VRIJE
UNIVERSITEIT
BRUSSEL

Single Pipeline

» One warp and only dependent instructions

/(

—=>Java
==

Software ‘3 computations (all dependent)’ & GPU ‘Latencies 1 _and 4’

» Completion latency (A) determines performance
= length of the pipeline

» Increase occupancy:

é{) Java

—_—

Increase #Threads (warps)

» latency hiding

> Issue latency (A\) determines performance
= 1 cycle for simple pipeline

Determines the peak performance

Occupancy roofline

Issue latency (A)

IPC ‘ occupancy- peak
= throughput bound . performance
S A
) N S
3 / ;
j=a :
2 N :
(@) QO :
5 :
QO E
~—+ [
D :
5 :
O :
< E
~~ H ’
\>/ Occupancy
A/)\ = number of concurrent

threads (warps)

Y VRIJE
UNIVERSITEIT
BRUSSEL

Hardware Parameters: Latencies

» Issue latency (A\): the number of cycles required
between issuing two consecutive independent
Instructions
> inversely proportional to the peak performance

» Completion latency (A): the number of cycles until the
result of an instruction is available for use by a
subsequent instruction

» Both may depend on context. instructions may be
executed inefficiently, resulting in longer latencies

VRIJE
UNIVERSITEIT

‘Running A simple
ADDITION kernel

] 100000
Runtime Run more and more threads

(n S) 90000 J
80000
70000 F ;
60000 I

50000

40000

30000 -

20000

10000

#work items

0 10000 20000 30000 40000 50000 60000 70000

0

vus

VRIJE
UNIVERSITEIT
BRUSSEL

Peak performance

200

150

100 -

50

Performance comparison on GeForce GT 640

[i @ SP instructions™

bomme- A S [1-SF instructions- -

® DP jnstructions:

A R A e [

| : . : .
5o o e
:, . . éoncuri’gntwq:rkltemg_

500 1,000 1,500 2000 2500 3,000 3,500

VRIJE
UNIVERSITEIT
BRUSSEL

Cycles Per Instruction

» The reversed graph

CPI for INT instructions on GeForce GT 640
Com P letion laten Cy l : : - ® 1independent instruction

Issue latency TS s Ay G e e S S o

, 0 , 0 , ' workltems
200 300 400 500 600 700 800

VRIJE
UNIVERSITEIT
BRUSSEL

VU

Bandwidth

Bandwidth on GeForce GT 640

2]
| | | | | | | . E
PRTAT ST L (L S S S
ES5E5E /| ¢ | ¢ | %
e E2EE | | | | |
o £ 292 | | | | |
.mﬂ-m-e:.&: I EEREE REEEEET EEEED e e
S daos 1| ¢ i
E8888 || | | | |
Qo g : | | |
¢ oy Pt
@
o | |
G_ 1 1
..t I I

3.000

2.500

VRIJE
UNIVERSITEIT
BRUSSEL

Instruction-Level Parallelism (ILP)

» Consider a kernel which has 2 series of 3
independent instructions

«

<=>Java | Model ‘3 computations (two independent instructions)’

—_—

—_—

» Less concurrent warps needed for full latency
hiding

VUBE Dual Pipeline

» Computation and memory
» Memory access is modeled as a single pipeline

<

=>Java | Model ‘3 computations and memory (all dependent)’

» Npem >> /\comp and A,.,, >> Acomp

= More concurrency needed for peak performance

» Communication vs memory bound

&

)Java Models ‘balanced graph’, ‘communication-bound graph’ and
‘computation-bound graph’

» The cost of barrier synchronization

=>Java | Compare models with and without barrier

1 warp applies SIMT

» Since the scheduling unitis a warp (hardware thread)
consisting of 32 kernel threads, the simulator is based
on warps and not on individual work items.

» We are interested in the issue and completion latency of
instructions of warps

- It will generate 32 executions of the same instruction for all the
32 work items of the warp

> In the microbenchmarks we have to divide the CPI by the warp
size (32 for Nvidia)

Y VRIJE
UNIVERSITEIT
BRUSSEL

Real GPU is not a simple pipeline

» NVIDIA generations (Processing Elements per
Compute Unit)

> Tesla: 8 PEs/CU =» 1 warp instruction every 4 clock cycles

> Fermi: 32 PEs/CU =» 1 warp instruction every clock cycle

- Kepler: 192 PEs/CU = 6 warp instructions every clock cycle

> Maxwell: 128 PEs/CU = 4 warp instructions every clock cycle

» Pipeline model:
- One computation pipeline A, = f(generation)

* Acomp(Tesla) = 4 clock cycles

* Acomp(Fermi) = 1 clock cycles

* Aomp(Kepler) = 1/6 clock cycles
* Acomp(Maxwell) = 1/4 clock cycles

> One memory pipeline
- Latencies depend on type of memory request
- Longer for non-ideal memory access

Measuring the
parameters with
microbenchmarks

www.gpuperformance.orq
See paper Lemeire 2016:

Jan Lemeire, Jan G. Cornelis, Laurent Segers,

, Procs of 24th
Euromicro International Conference on Parallel, Distributed and Network-based
Processing (PDP), Heraklion, Greece, 2016

http://www.gpuperformance.org/
http://parallel.vub.ac.be/~jan/papers/Lemeire2016_Microbenchmarks_for_GPU_characteristics_forPDP2016.pdf
http://parallel.vub.ac.be/~jan/papers/Lemeire2016_Microbenchmarks_for_GPU_characteristics_forPDP2016.pdf

Y VRIJE

UNIVERSITEIT
BRUSSEL
| £ Microbenchmarks gpuperformance v2.3BETA: measure your GPU — d it > I n the advanced
Quadro P520 (platform NVIDIA CUDA) I eve I ’ al SO d e
Expert level: ‘M\ranoed (2) Iam bd as are
microbenchmarks measuring computational performance d
measure all Perf (GOps) I{c) L{c}) I (warps) m e as u re '
sP 35.8 4.1 84.6 256
SP/2 indep aMn.i 3.44 442 128
MADD 68.4 21 476 256
MADD/2 indep 835 1.72 231 128
INT 14.9 9.63 134 128
INT/2 indep 15.9 9.02 68.5 128
IMADD 229 6.25 81.2 128
IMADDI2 indep 24 5.97 43 128
o 14.5 0.89 153 128
DIVI2 indep 15.7 9.14 81.2 128
oP 0.408 352 1100 16
DP/2 indep 0.409 350 676 8
o ec [
Welcome to the gpu performance microbenchmarks. Choose an OpenCl device to start benchmar
Loaded the results of 28 previous measurements of the OpenCL device found on this compute
0%
Continue measuring | Clear & rerun ‘ ‘ Rerun selecte
Inspect database | ‘ Qluit |

v T

VRIJE
UNIVERSITEIT

~ Latencies for different memory
types

Random walk on GeForce GT 640

n, (B ! ! @ GLOBAL memory
260 1 - E-LOCAL memoty -
l | . O CONSTANT memory |
Sy NS [Al HRIVATEmerﬂnm___:L__
'—H. - —i T
#E
aflo

caching

I I I I 1
I I I I I 1 I
I I I I 1 I
\'I'jm- S
5 gl EUR SR R oot

L array 5Ee
5 10 15 20 25 30 35043

Additional information about the Pipeline Model.
Will not be discussed in the course.
Just for those interested.

The Pipeline Model

VRIJE

UNIVERSITEIT
BRUSSEL
W h t h . . d k
¢ Run Help
EEE Boq Q@ A4
) *dct8x8.vp 2 = O | W@ Properties 32 W@ Detail Graphs =0
161.7 ms 161.8 ms 161.9 ms 162 ms CUDAkernel1DCT(float*, int, int, int)
[=] Process: 11119 — ——
(=l Thread: -1494415584
Start 161.329
Runtime AP BRI cudaMemcpy2D s ms
Driver API Du_ratl_on 106.132 ps
[=] [0] GeForce GTX 480 ,) Grid Size [64,64,1]
(= Context 1 (CUDA) C Block Size [881]
T MemCpy (HtoD) Registers/Thread 14
T MemCpy (DtoH) Memcpy DtoH [sync] Shared Memory/Block 512 bytes
¥ MemCpy (DtoD) =t - - Memory
[=] Compute CUDAkemelQua... @ CUDAkemnel1IDCT{float*, int... Global Load Effici
T 0.7% [101] CUD... ~— obal Load Erficlency g
o
< 0.3% [10] CUDAK... Global Store Efficiency 100%
T 0.0% [2] CUDAKe... CUDAkemelQua... DRAM Utilization 10.9% (18.4:
SF 0.0% [1] CUDAke... (CUDAkemel1IDCT{float*, int... —| Instruction
T 0.0% [1] CUDAke... Branch Divergence Overhe; 0%
¥ 0.0% [1] CUDAke... Total Replay Overhead & 51%
A7 O T YR Shared Memory Replay Ovi 0%
¥ 0.0% [1]1 CUDAke... 1obal . .
& Streams Global Memory Replay Ove & 51%
Stream 1 |] cubAkemel1IDCT(float*, int... Memcpy DtoH [sync] Global Cache Replay Overf; 0%
Local Cache Replay Overhe 0%
— Occupancy
- . . v
W& Analysis 2 W& Details| B Console | W Settings =0

Analysis Results

High Branch Divergence Overhead [35.1% avg, for kernels accounting for 1.9% of compute]

Timeline Divergent branches are causing significant instruction issue overhead. More...

High Instruction Replay Overhead [46.6% avg, for kernels accounting for 39.1% of compute]

Multiprocessor i T o i T
A combination of global, shared, and local memory replays are causing significant instruction issue overhead. More...

Kernel Memory High Global Memory Instruction Replay Overhead [45.9% avg, for kernels accounting for 39.1% of compute]

Non-coalesced global memory accesses are causing significant instruction issue overhead. Maore...

@
L]
9
(V]

Kernel Instruction

Nvidia Visual Profiler

VRIJE
»] .\

I IeAATeT

A. Peak Performance

< >
e uscus
|

|
| computations | | 1 TeraFlops
|

Resource-bound

4

B. Non-overlap

< [
Il Lot

| Non-overlap

|
—+— computations
|

synchronization point

C. Anti-parallel interactions

Anti-parallel patterns
> & model for latency hiding

computations

| \
branching €/ amdahl J

non-concurrent memory access

Approach

Software characteristics Hardware characteristics
Execution Configuration

& U

Pipeline Simulator

4

Execution Profile

Issue latencies (A)

instruction dependency graph _ _
Completion latencies (/A\)

{ Computational pipeline

INjo@do@1| 2@42@1]
_---1:":___\""—*. : _---1-""‘"-5_ e _eo
ouT 1 [(] Efficiency report
Global memory ppeline i
IN
ouT :
0.0 12 14 6 i 10

T~ | -

Model input: (1) Software

» Instruction dependency graph (IDG):

- An IDG is a Directed Acyclic Graph in which each vertex of
the graph corresponds to a single executed instruction
(type of instruction). The edges between the vertices
represent the dependences between the instructions. They
can be either data dependences or control dependences.

Green node: computation

Orange node: memory request

Yellow node: barrier instruction (on the
work group level)

Model input:

(2) Hardware

» Core count (#Compute Units)

» Clock frequency f ..«

» Subsystem set S: the subsystems that can be modelled
by an independent pipeline

» Scheduler: see later

» Issue limit: number of instructions that can be issued
within one cycle

» Available resources R.: a mapping from R (all types of
resources) to the natural numbers, how much of r is
available on a single core.

Model input:

(2) Hardware continued

» Context set C: A set of all possible contexts.

» Context mapper f: A function that determines the
context in which an instruction i € | is executed given
software characterization and the execution
configuration

» Subsystem and latencies mapper g: A mapping from

(instruction, context) to subsystem, issue and
completion latency

\ VRIJE
UNIVERSITEIT
BRUSSEL

Hardware Parameters: Latencies

» Issue latency (A): the number of cycles required
between issuing two consecutive independent
Instructions
- Determines peak performance

» Completion latency (A): the number of cycles
until the result of an instruction is available for
use by a subsequent instruction

They should not be constants!

- E.g.: Non-coalesced memory reads or bank conflicts
» Larger latency
\\t\

i Model input:
(3) Execution configuration

» Group size: The number of work items (kernel threads)
of the group.

» Group count: The total number of work groups. The
total number of kernel threads is the product of group
count and group size.

» Resource requirements R, of a work group: A mapping
from R to the natural numbers.

‘m

VRIJE
UNIVERSITEIT
BRUSSEL

Work groups

» We simulate 1 core/compute unit

» #Work groups to be executed on each core:
= [Group count/Core count]
» #Concurrent work groups on a core
= min(Ryy || = Rreg|T
min(Rao[r] + Rreqlr])
» Simulation starts with #Concurrent work groups.

Once all threads of work group have finished, a
new work group is started.

Simulator preprocessing step 1

» Context of each instruction is determined
- f: (i €1, kernel code, execution parameters) — c € C
- Added to the IDG for each instruction

Simulator preprocessing step 2

» Latencies & subsystem are determined
cg:(iel,celC) - (S, A\ N
» IDG is decorated with:

- [ssue latency of the instruction
- Completion latency of the instruction
- Subsystem that executes the instruction

\ VRIJE
UNIVERSITEIT
BRUSSEL
S [I I I I t .

» Discrete Event Simulation: the state of the system
changes only at discrete moments in time,
triggered by events.

» An instruction has one of the following states:

- Waiting: the instruction depends on instructions which have not
yet completed execution.

- Ready: all instructions on which the instruction depends have
completed, but the instruction has not been issued yet.

- |ssued: the instruction has been issued to the appropriate
subsystem, but it has not yet completed execution.

- Complete: the instruction has completed execution, its results are
available for dependent instructions.

Pipeline simulator

» Semi-abstract model of GPU: 1 pipeline for
computional subsystem and 1 pipeline for
memory subsystem

» Based on instruction dependency graph of
program and the latencies of the hardware

CTO T TE . . . (2) communication-bound graph: 3 warp.s -1 work group§ -time of 1 run = 22.0
Computational pipeline i i ; ; : : : ' '
Np@ifoeifoe?] 22 T W 7 |
@ D out S e Y [e S —
1 [l [l 1 [l [l [l [l

Memory pipeline

Instruction scheduler

» The scheduler determines which of the ready
instructions is issued next
> Priority to the first work groups?
(=WG_PRECEDENCE)
> Or Round Robin (RR)?
» An important part of the scheduler is the issue

limit, which determines the maximum number of
instructions that can be scheduled in one cycle.

Inefficiencies

Lambdas are not constants

» Will be longer for inefficient execution
- Examples
- Global vs local memory
- Bank conflicts
- Branching within a warp
o Is discussed in next lesson

» Is modelled by the context

Computational
microbenchmarks

www.gpuperformance.orq
See paper Lemeire 2016:

Jan Lemeire, Jan G. Cornelis, Laurent Segers,

, Procs of 24th
Euromicro International Conference on Parallel, Distributed and Network-based
Processing (PDP), Heraklion, Greece, 2016

http://www.gpuperformance.org/
http://parallel.vub.ac.be/~jan/papers/Lemeire2016_Microbenchmarks_for_GPU_characteristics_forPDP2016.pdf
http://parallel.vub.ac.be/~jan/papers/Lemeire2016_Microbenchmarks_for_GPU_characteristics_forPDP2016.pdf

Kernel: fool the compiler

__kernel void independentlmadd (
__global float *src,
__global float *dst,

int flagq)

unsigned int index = get global id(0);
float r = src[index];
float 1 = get_local id(0);

#pragma unroll

for (int 1 = 0; i < N; ++i) {
r=r *1 - 0.5f;

}

if (flag * r)

VRIJE
UNIVERSITEIT
BRUSSEL

Java app

Microbenchmarks: measure your GPU

- o IEH

platform 1, device 1:

GeForce GTX 650 Ti

Computational performance

iType Peak lambda Lambda Ridoge point
5P 467.2 0.28 10.20 11264
MADD 1001.9 013 5.89 11264
INT 308.2 0.43 573 11264
SF
DpP

Memory performance
Global 1.3 11.18
Char 34.0 3.84 20.98 1024
Char2 60.7 4.31 T9.68 1024
Float 69.0 7.56 81.93 512
Float2 2.7 14.45 90.58 256
Floatd 4.0 28.24 173.09 256
Local 200.0 0.66
Constant 837 1.57
Private 1820.0 0.07

	Slide 1: GPU Computing
	Slide 2
	Slide 3: Goal
	Slide 4: The Philosophy of the model
	Slide 5: Pipeline simulator
	Slide 6
	Slide 7: A processing pipeline
	Slide 8: Single pipeline
	Slide 9: Single Pipeline
	Slide 10: Occupancy roofline
	Slide 11: Hardware Parameters: Latencies
	Slide 12: Running A simple ADDITION kernel
	Slide 13: Peak performance
	Slide 14: Cycles Per Instruction
	Slide 15: Bandwidth
	Slide 16: Instruction-Level Parallelism (ILP)
	Slide 17: Dual Pipeline
	Slide 18: 1 warp applies SIMT
	Slide 19: Real GPU is not a simple pipeline
	Slide 20
	Slide 21: Benchmark app
	Slide 22: Latencies for different memory types
	Slide 23
	Slide 24: What happens inside a kernel?
	Slide 25
	Slide 26: Approach
	Slide 27: Model input: (1) Software
	Slide 28: Model input: (2) Hardware
	Slide 29: Model input: (2) Hardware continued
	Slide 30: Hardware Parameters: Latencies
	Slide 31: Model input: (3) Execution configuration
	Slide 32: Work groups
	Slide 33: Simulator preprocessing step 1
	Slide 34: Simulator preprocessing step 2
	Slide 35: Simulation
	Slide 36: Pipeline simulator
	Slide 37: Instruction scheduler
	Slide 38
	Slide 39: Lambdas are not constants
	Slide 40
	Slide 41: Kernel: fool the compiler
	Slide 43: Java app

