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The modern CPU



‘Sequential’ processor: super-scalar 
out-of-order pipeline 

Pipeline depth

Pipeline width

Different processing units

Out-of-order execution
Branch prediction
Register renaming
…
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GPU strategy for 

massive computations



GPU architecture strategy

 Light-weight threads, supported by the hardware
◦ Thread processors, more than 1000 active threads per core

◦ Switching between threads can happen in 1 cycle!

 No caching mechanism, branch prediction, …
◦ GPU does not try to be efficient for every program, does not spend 

transistors on optimization

◦ Simple straight-forward sequential programming should be 
abandoned…

 Less higher-level memory:
◦ GPU: 16KB shared memory per SIMD multiprocessor

◦ CPU: L2 cache contains several MB’s

 Massively floating-point computation power

 RISC instruction set instead of CISC

 Transparent system organization
Modern (sequential) CPUs based on simple Von Neumann 

architecture



 6-24 stages 

 in-order execution!!

 no branch prediction!!

 no forwarding!!

 no register renaming!!

 Memory system: 
◦ relatively small

◦ Until recently no caching

◦ On the other hand: much more registers (see later)

 No program call stack and no memory stack!
◦ All functions inlined

◦ No recursion possible

GPU processor pipeline



Optimization

Compiler

Algorithms

Implementation

performanceprogrammability

portability

Challenges of GPU computing



GPUs have several pipelines which will be filled 
with instructions from different kernel threads 
through:

1. Running thread blocks on the different 
multiprocessors

2. Simultaneous multithreading: several 
hardware threads active at the same time

◦ Discussed next

3. Single Instruction Multiple Threads (SIMT)
◦ Discussed later

Fill the pipelines



Architecture



GPU Architecture

Streaming MultiProcessor (Nvidia)

Compute Unit (OpenCL)

global memory partitioned

Every controller can serve 1 request



1 Streaming Multiprocessor
= a pipeline

Multiple warps (hardware threads) 

are simultaneously active

The Same Instruction is 

executed on Multiple work items/ 

Threads 

(SIMT)

Scalar Processors (width of 

pipeline):

8 – 32 – 192 - 128

Warps waiting for 
data



Properties of 
different 

architectures

#LD/STO units        = 16    32     32     32

GPUs of our lab and architecture

N(П) = #multiprocessors
|ω| = warp size

Group & Warp slots: maximum # 
thread blocks or warps



The different Nvidia architectures

1st generation: Tesla

2 SMs (Compute 
Units) are grouped 

into one TPC

Compute Capability = 1.x

CUDA Compute Capability 
can be queried, also in GPU 

Caps Viewer

https://en.wikipedia.org/wiki/CUDA



NVIDIA Compute Capability is 

linked to architecture

2nd generation: Fermi
Compute Capability = 2.x



Kepler
Maxwell

This is only half of an SM

3rd generation: Kepler
4rd generation: Maxwell

5th generation: Pascal

Compute Capability = 3.x
Compute Capability = 4.x or 5.x

Compute Capability = 6.x



6th generation: Volta & Turing5th generation: Pascal

Without double precision (DP) units

Compute Capability = 8.x
if < 8.5: Volta

7th generation: Ampere
Compute Capability = 9.x



Simultaneous 

multithreading



 Performing multiple threads of execution 
in parallel
◦ Replicate registers, PC, etc.
◦ Fast switching between threads

 Fine-grain multithreading
◦ Switch threads after each cycle
◦ Interleave instruction execution
◦ If one thread stalls, others are executed

 Coarse-grain multithreading
◦ Only switch on long stall (e.g., L2-cache miss)
◦ Simplifies hardware, but doesn’t hide short 

stalls (eg, data hazards)

Multithreading



 1 process/thread active per core

 When activating another thread: context switch
◦ Stop program execution: flush pipeline (let all 

instructions finish)

◦ Save state of process/thread into Process Control 
Block : registers, program counter and operating 
system-specific data

◦ Restore state of activated thread

◦ Restart program execution and refill the pipeline

 Processor ‘sees’ only 1 thread

 Called Software threads

Multithreading on CPU

O
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Running threads on same CPU core

 Executed one by one

 Context switch
◦ Thread’s state in core: 

instruction fetch buffer, 
return address stack, 
register file, control 
logic/state, …

◦ Supported by hardware

 Takes time!

thread

creation

T1

saving

T1's state

Processor 

core

Thread 1

restoring

T2's state

Thread 2

Thread 3

Process/Thread pool

Operating 

system’s 

scheduler

T2

Context switch 

(overhead)

Coarse-grain multithreading



 In several modern CPUs 
◦ typically 2 HW threads (Intel: hyperthreading)

 Devote extra hardware for keeping process 
state

 Thread switching by hardware
◦ (almost) no overhead

◦ within 1 cycle!

◦ Instructions in flight from different threads

Fine multi-threading: 
Hardware threads



 In multiple-issue dynamically scheduled 
processor
◦ Schedule instructions from multiple threads
◦ Instructions from independent threads execute 

when function units are available
◦ Within threads, dependencies handled by 

scheduling and register renaming

 Example: Intel Pentium-4 HyperThreading
◦ Two threads: duplicated registers, shared function 

units and caches

Simultaneous Multithreading



 Independent instructions (no bubbles)

 More time between instructions: possibility 
for latency hiding
◦ Hide memory accesses

 If pipeline full
◦ Forwarding not necessary

◦ Branch prediction not necessary

Benefits of fine-grained multithreading



Running a simple addition kernel
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Runtime increases only when all pipelines are full (8000 threads)



The execution on a GPU

 Thread blocks are scheduled on MultiProcessors .

 Warps of active threads are scheduled on the multiprocessor

28



Concurrency

 Keep all processing units busy!
◦ Enough threads

 All Multiprocessors (MPs)

 All Scalar Processors (SPs)

 Full pipeline of scalar processor
◦ Pipeline of up to 24 stages



What determines the 

occupancy



Occupancy

 Occupancy = #𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑤𝑎𝑟𝑝𝑠 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑜𝑛 𝑎 Multiprocessor

 A higher occupancy means that more work can be scheduled 
and in general a higher performance

 Limited resources will limit the number of thread blocks that 
can be simultaneously active and run concurrently:

1. Registers needed per block

 Each kernel’s local variables are stored in register memory

2. Local memory needed per block

3. Maximum number of concurrent thread blocks

4. Maximum number of thread

 The most constrained resource determines the occupancy

◦ Each Multiprocessor has resources (depends on architecture, can 
be queried)

 For Pascal architecture: 256KB registers, 96KB local memory, 
max. 32 blocks, max. 2048 threads(=64 warps)

31



The effect of 

occupancy will be 

studied with the 

Pipeline Model
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