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The modern CPU



‘Sequential’ processor: super-scalar 
out-of-order pipeline 

Pipeline depth

Pipeline width

Different processing units

Out-of-order execution
Branch prediction
Register renaming
…
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GPU strategy for 

massive computations



GPU architecture strategy

 Light-weight threads, supported by the hardware
◦ Thread processors, more than 1000 active threads per core

◦ Switching between threads can happen in 1 cycle!

 No caching mechanism, branch prediction, …
◦ GPU does not try to be efficient for every program, does not spend 

transistors on optimization

◦ Simple straight-forward sequential programming should be 
abandoned…

 Less higher-level memory:
◦ GPU: 16KB shared memory per SIMD multiprocessor

◦ CPU: L2 cache contains several MB’s

 Massively floating-point computation power

 RISC instruction set instead of CISC

 Transparent system organization
Modern (sequential) CPUs based on simple Von Neumann 

architecture



 6-24 stages 

 in-order execution!!

 no branch prediction!!

 no forwarding!!

 no register renaming!!

 Memory system: 
◦ relatively small

◦ Until recently no caching

◦ On the other hand: much more registers (see later)

 No program call stack and no memory stack!
◦ All functions inlined

◦ No recursion possible

GPU processor pipeline
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Challenges of GPU computing



GPUs have several pipelines which will be filled 
with instructions from different kernel threads 
through:

1. Running thread blocks on the different 
multiprocessors

2. Simultaneous multithreading: several 
hardware threads active at the same time

◦ Discussed next

3. Single Instruction Multiple Threads (SIMT)
◦ Discussed later

Fill the pipelines



Architecture



GPU Architecture

Streaming MultiProcessor (Nvidia)

Compute Unit (OpenCL)

global memory partitioned

Every controller can serve 1 request



1 Streaming Multiprocessor
= a pipeline

Multiple warps (hardware threads) 

are simultaneously active

The Same Instruction is 

executed on Multiple work items/ 

Threads 

(SIMT)

Scalar Processors (width of 

pipeline):

8 – 32 – 192 - 128

Warps waiting for 
data



Properties of 
different 

architectures

#LD/STO units        = 16    32     32     32

GPUs of our lab and architecture

N(П) = #multiprocessors
|ω| = warp size

Group & Warp slots: maximum # 
thread blocks or warps



The different Nvidia architectures

1st generation: Tesla

2 SMs (Compute 
Units) are grouped 

into one TPC

Compute Capability = 1.x

CUDA Compute Capability 
can be queried, also in GPU 

Caps Viewer

https://en.wikipedia.org/wiki/CUDA



NVIDIA Compute Capability is 

linked to architecture

2nd generation: Fermi
Compute Capability = 2.x



Kepler
Maxwell

This is only half of an SM

3rd generation: Kepler
4rd generation: Maxwell

5th generation: Pascal

Compute Capability = 3.x
Compute Capability = 4.x or 5.x

Compute Capability = 6.x



6th generation: Volta & Turing5th generation: Pascal

Without double precision (DP) units

Compute Capability = 8.x
if < 8.5: Volta

7th generation: Ampere
Compute Capability = 9.x



Simultaneous 

multithreading



 Performing multiple threads of execution 
in parallel
◦ Replicate registers, PC, etc.
◦ Fast switching between threads

 Fine-grain multithreading
◦ Switch threads after each cycle
◦ Interleave instruction execution
◦ If one thread stalls, others are executed

 Coarse-grain multithreading
◦ Only switch on long stall (e.g., L2-cache miss)
◦ Simplifies hardware, but doesn’t hide short 

stalls (eg, data hazards)

Multithreading



 1 process/thread active per core

 When activating another thread: context switch
◦ Stop program execution: flush pipeline (let all 

instructions finish)

◦ Save state of process/thread into Process Control 
Block : registers, program counter and operating 
system-specific data

◦ Restore state of activated thread

◦ Restart program execution and refill the pipeline

 Processor ‘sees’ only 1 thread

 Called Software threads

Multithreading on CPU

O
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e
ad



Running threads on same CPU core

 Executed one by one

 Context switch
◦ Thread’s state in core: 

instruction fetch buffer, 
return address stack, 
register file, control 
logic/state, …

◦ Supported by hardware

 Takes time!

thread

creation

T1

saving

T1's state

Processor 

core

Thread 1

restoring

T2's state

Thread 2

Thread 3

Process/Thread pool

Operating 

system’s 

scheduler

T2

Context switch 

(overhead)

Coarse-grain multithreading



 In several modern CPUs 
◦ typically 2 HW threads (Intel: hyperthreading)

 Devote extra hardware for keeping process 
state

 Thread switching by hardware
◦ (almost) no overhead

◦ within 1 cycle!

◦ Instructions in flight from different threads

Fine multi-threading: 
Hardware threads



 In multiple-issue dynamically scheduled 
processor
◦ Schedule instructions from multiple threads
◦ Instructions from independent threads execute 

when function units are available
◦ Within threads, dependencies handled by 

scheduling and register renaming

 Example: Intel Pentium-4 HyperThreading
◦ Two threads: duplicated registers, shared function 

units and caches

Simultaneous Multithreading



 Independent instructions (no bubbles)

 More time between instructions: possibility 
for latency hiding
◦ Hide memory accesses

 If pipeline full
◦ Forwarding not necessary

◦ Branch prediction not necessary

Benefits of fine-grained multithreading



Running a simple addition kernel
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Runtime increases only when all pipelines are full (8000 threads)



The execution on a GPU

 Thread blocks are scheduled on MultiProcessors .

 Warps of active threads are scheduled on the multiprocessor

28



Concurrency

 Keep all processing units busy!
◦ Enough threads

 All Multiprocessors (MPs)

 All Scalar Processors (SPs)

 Full pipeline of scalar processor
◦ Pipeline of up to 24 stages



What determines the 

occupancy



Occupancy

 Occupancy = #𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑤𝑎𝑟𝑝𝑠 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑜𝑛 𝑎 Multiprocessor

 A higher occupancy means that more work can be scheduled 
and in general a higher performance

 Limited resources will limit the number of thread blocks that 
can be simultaneously active and run concurrently:

1. Registers needed per block

 Each kernel’s local variables are stored in register memory

2. Local memory needed per block

3. Maximum number of concurrent thread blocks

4. Maximum number of thread

 The most constrained resource determines the occupancy

◦ Each Multiprocessor has resources (depends on architecture, can 
be queried)

 For Pascal architecture: 256KB registers, 96KB local memory, 
max. 32 blocks, max. 2048 threads(=64 warps)

31



The effect of 

occupancy will be 

studied with the 

Pipeline Model
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