
Lesson 3: Architecture &
Strategy - part I

Gauthier Lafruit & Jan Lemeire

2022-2023

http://parallel.vub.ac.be/education/gpu

The modern CPU

‘Sequential’ processor: super-scalar
out-of-order pipeline

Pipeline depth

Pipeline width

Different processing units

Out-of-order execution
Branch prediction
Register renaming
…

Algorithm

Implementation

Compiler

Automatic

optimization

Low latency of

each instruction!

Write once

Run everywhere

efficiently!

CPU computing

automatic

manual

GPU strategy for

massive computations

GPU architecture strategy

 Light-weight threads, supported by the hardware
◦ Thread processors, more than 1000 active threads per core

◦ Switching between threads can happen in 1 cycle!

 No caching mechanism, branch prediction, …
◦ GPU does not try to be efficient for every program, does not spend

transistors on optimization

◦ Simple straight-forward sequential programming should be
abandoned…

 Less higher-level memory:
◦ GPU: 16KB shared memory per SIMD multiprocessor

◦ CPU: L2 cache contains several MB’s

 Massively floating-point computation power

 RISC instruction set instead of CISC

 Transparent system organization
Modern (sequential) CPUs based on simple Von Neumann

architecture

 6-24 stages

 in-order execution!!

 no branch prediction!!

 no forwarding!!

 no register renaming!!

 Memory system:
◦ relatively small

◦ Until recently no caching

◦ On the other hand: much more registers (see later)

 No program call stack and no memory stack!
◦ All functions inlined

◦ No recursion possible

GPU processor pipeline

Optimization

Compiler

Algorithms

Implementation

performanceprogrammability

portability

Challenges of GPU computing

GPUs have several pipelines which will be filled
with instructions from different kernel threads
through:

1. Running thread blocks on the different
multiprocessors

2. Simultaneous multithreading: several
hardware threads active at the same time

◦ Discussed next

3. Single Instruction Multiple Threads (SIMT)
◦ Discussed later

Fill the pipelines

Architecture

GPU Architecture

Streaming MultiProcessor (Nvidia)

Compute Unit (OpenCL)

global memory partitioned

Every controller can serve 1 request

1 Streaming Multiprocessor
= a pipeline

Multiple warps (hardware threads)

are simultaneously active

The Same Instruction is

executed on Multiple work items/

Threads

(SIMT)

Scalar Processors (width of

pipeline):

8 – 32 – 192 - 128

Warps waiting for
data

Properties of
different

architectures

#LD/STO units = 16 32 32 32

GPUs of our lab and architecture

N(П) = #multiprocessors
|ω| = warp size

Group & Warp slots: maximum #
thread blocks or warps

The different Nvidia architectures

1st generation: Tesla

2 SMs (Compute
Units) are grouped

into one TPC

Compute Capability = 1.x

CUDA Compute Capability
can be queried, also in GPU

Caps Viewer

https://en.wikipedia.org/wiki/CUDA

NVIDIA Compute Capability is

linked to architecture

2nd generation: Fermi
Compute Capability = 2.x

Kepler
Maxwell

This is only half of an SM

3rd generation: Kepler
4rd generation: Maxwell

5th generation: Pascal

Compute Capability = 3.x
Compute Capability = 4.x or 5.x

Compute Capability = 6.x

6th generation: Volta & Turing5th generation: Pascal

Without double precision (DP) units

Compute Capability = 8.x
if < 8.5: Volta

7th generation: Ampere
Compute Capability = 9.x

Simultaneous

multithreading

 Performing multiple threads of execution
in parallel
◦ Replicate registers, PC, etc.
◦ Fast switching between threads

 Fine-grain multithreading
◦ Switch threads after each cycle
◦ Interleave instruction execution
◦ If one thread stalls, others are executed

 Coarse-grain multithreading
◦ Only switch on long stall (e.g., L2-cache miss)
◦ Simplifies hardware, but doesn’t hide short

stalls (eg, data hazards)

Multithreading

 1 process/thread active per core

 When activating another thread: context switch
◦ Stop program execution: flush pipeline (let all

instructions finish)

◦ Save state of process/thread into Process Control
Block : registers, program counter and operating
system-specific data

◦ Restore state of activated thread

◦ Restart program execution and refill the pipeline

 Processor ‘sees’ only 1 thread

 Called Software threads

Multithreading on CPU

O
ve

rh
e
ad

Running threads on same CPU core

 Executed one by one

 Context switch
◦ Thread’s state in core:

instruction fetch buffer,
return address stack,
register file, control
logic/state, …

◦ Supported by hardware

 Takes time!

thread

creation

T1

saving

T1's state

Processor

core

Thread 1

restoring

T2's state

Thread 2

Thread 3

Process/Thread pool

Operating

system’s

scheduler

T2

Context switch

(overhead)

Coarse-grain multithreading

 In several modern CPUs
◦ typically 2 HW threads (Intel: hyperthreading)

 Devote extra hardware for keeping process
state

 Thread switching by hardware
◦ (almost) no overhead

◦ within 1 cycle!

◦ Instructions in flight from different threads

Fine multi-threading:
Hardware threads

 In multiple-issue dynamically scheduled
processor
◦ Schedule instructions from multiple threads
◦ Instructions from independent threads execute

when function units are available
◦ Within threads, dependencies handled by

scheduling and register renaming

 Example: Intel Pentium-4 HyperThreading
◦ Two threads: duplicated registers, shared function

units and caches

Simultaneous Multithreading

 Independent instructions (no bubbles)

 More time between instructions: possibility
for latency hiding
◦ Hide memory accesses

 If pipeline full
◦ Forwarding not necessary

◦ Branch prediction not necessary

Benefits of fine-grained multithreading

Running a simple addition kernel

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 10000 20000 30000 40000 50000 60000 70000

Run more and more
threads

#threads

Runtime
(ns)

27

Runtime increases only when all pipelines are full (8000 threads)

The execution on a GPU

 Thread blocks are scheduled on MultiProcessors .

 Warps of active threads are scheduled on the multiprocessor

28

Concurrency

 Keep all processing units busy!
◦ Enough threads

 All Multiprocessors (MPs)

 All Scalar Processors (SPs)

 Full pipeline of scalar processor
◦ Pipeline of up to 24 stages

What determines the

occupancy

Occupancy

 Occupancy = #𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑤𝑎𝑟𝑝𝑠 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑜𝑛 𝑎 Multiprocessor

 A higher occupancy means that more work can be scheduled
and in general a higher performance

 Limited resources will limit the number of thread blocks that
can be simultaneously active and run concurrently:

1. Registers needed per block

 Each kernel’s local variables are stored in register memory

2. Local memory needed per block

3. Maximum number of concurrent thread blocks

4. Maximum number of thread

 The most constrained resource determines the occupancy

◦ Each Multiprocessor has resources (depends on architecture, can
be queried)

 For Pascal architecture: 256KB registers, 96KB local memory,
max. 32 blocks, max. 2048 threads(=64 warps)

31

The effect of

occupancy will be

studied with the

Pipeline Model

	Slide 1: GPU Computing
	Slide 2
	Slide 3: ‘Sequential’ processor: super-scalar out-of-order pipeline
	Slide 4
	Slide 5
	Slide 6: GPU architecture strategy
	Slide 7: GPU processor pipeline
	Slide 8
	Slide 9: Fill the pipelines
	Slide 10
	Slide 11: GPU Architecture
	Slide 12: 1 Streaming Multiprocessor = a pipeline
	Slide 14: Properties of different architectures
	Slide 15: The different Nvidia architectures
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Multithreading
	Slide 22: Multithreading on CPU
	Slide 23: Running threads on same CPU core
	Slide 24: Fine multi-threading: Hardware threads
	Slide 25: Simultaneous Multithreading
	Slide 26: Benefits of fine-grained multithreading
	Slide 27: Running a simple addition kernel
	Slide 28: The execution on a GPU
	Slide 29: Concurrency
	Slide 30
	Slide 31: Occupancy
	Slide 32

