M’B INVESLEN ULB B
BRUSSEL

education/gpu

VUBEEE
Levels of Understanding

» Level O
- Host code

» Level 1
o Parallel execution on the device

» Level 2
- Device model and work groups

» Level 3 => explained here
- Hardware threads & SIMT

p—

GPU Concepts

Device/GPU .
Grid (7D, 2D or 3D) kernel
Multiprocessor 1 Multiprocessor 2 . A
gridDim.x >
40GB/s 4 few cycles E 0,0 (,0 2,0
Host/ 3 | Block 4 Block “\Block
CPU Ty O a1 R
oV Sy \ \
Pr?)ccil:‘sror Scalar Scalar Scalar /' ,' \\ o .
/ CUDA Core Processor Processor Processov\ ,, ,I \\ \\
, \
? 100GB/s4 200 cycle \ Thread block
(blockIdx.x, blockIdx.y)
Thread Thread Thread
>4 0o | .o | @0
E Thread | Thread | Thread
g 0, 1) 1,1 2, 1)
8 Thread | Thread | Thread
4-8 GB/s 3 v Q, 2) 1,2) 2,2)
4:‘.bl kD >
5 ockDim. x
Max #threads per thread block: 1024

Executed in warps of 32 threads (threadidx.x, threadIdx.y)

Max thread blocks simultaneously on MP: 8

Max active warps on MP: 24/48
CUDA terminology

Vector processors & SIMD

One way to do several computations at the same
time

Vector processors

128-bit vector registers

1812 Instructions are performed at once
3[-3]5]-7 on all elements of the vector registers
10[5]7 |8l

» All processing elements execute the same instruction
at the same time

> Multiple data elements in 128-bit or 256-bit wide
registers (vector registers)
- MMX and SSE instructions in x86

» Instead of iterating over the vector (for-loop), one
instruction is sufficient

Vector processors

» Simplifies synchronization

» Reduced instruction control hardware: an instruction
has to be read only once for x number of calculations

» Works best for highly data-parallel applications

» Has long be viewed as the solution for high-
performance computing
- Why always repeating the same instructions (on

different data)? => just apply the instruction
immediately on all data

» However. difficult to program, since less flexible
> |Is OpenCL/SIMT easier?

VRIJE
UNIVERSITEIT
BRUSSEL

Instruction and Data Streams

Data Streams

Single Multiple
Instruction | Single SISD: SIMD: Vector
Streams Intel Pentium 4 Instructions of x86
Multiple | MISD: MIMD:
No examples today | Intel Xeon e5345

Vector processing = Single Instruction on
Multiple Data (SIMD)

Level 3

Hardware Threads
& SIMT

VRIJE

vus

UNIVERSITEIT
BRUSSEL

1 Streaming Multiprocessor

= a pipeline

-
Shader Core v
— Scheduler
_SIMD)
v Pipeline
Reading from | Fetch | *
global memory [Dewde
local/global access RFl ’_‘L ”4'L F'L
(or L1 miss); texture
or const cache miss §ay T A A T
| - -i---.
- R _ L1 L1 Hocal&! Shared
. > tex |lconsti) o Mem.
To interconhect 5004
| | All threads
Data hitin L1?
MSHRs
[Writeback J

Warps waiting for

l

|

— Multiple warps (hardware threads)
are simultaneously active

The Same Instruction is
executed on Multiple Threads
(SIMT)

Number of processing elements
. (width of pipeline):
8-32-192-128

data

A —_

\ VRIJE
UNIVERSITEIT
BRUSSEL

Warp executes kernel threads in lock

step
» Hardware thread (called warp by Nvidia):

- Kernel threads are executed together in groups, the
instructions of the kernel are executed at the same time they
will execute the same instruction

- Nvidia: 32; AMD: 64; Intel: variable number (8/16/24/32)
» Conseqguences:

1. Running 1 kernel thread or 32 kernel threads takes the same
amount of time

- Thus: create thread blocks which are multiples of 32 or 64

2. Branching: if kernel threads of the same warp take different
branches, all branches will be executed after each other

- Performance loss

3. Concurrent memory access: if kernel threads access memory,
all kernel threads of the same warp do it simultaneously

- Not all memory access can be done with the same speed

ARB0ARY
AR ~.
WL A
\ LWL\ QS

W\ \
W\ X

VRIJE
UNIVERSITEIT
BRUSSEL

When is SIMT = vector processing?

» Contiguous data access (See lesson 2)

6

dst | o “ 1 2 3 1

» In this case, warp execution of instructions on the

data is similar to vector instructions operating on
vector registers.

Src

Vectors versus SIMT

» Vectors (SIMD)
- Data should be stored in vector register
> Instructions are performed onto these registers

- Harder to program

» SIMT
- Each thread of a warp can choose on which data it
works
- Easier to program: programmer does not have to
worry about thread-data mapping

L Warp execution

© Kernel threads are sent into the pipeline grouped in a warp

4+ ALUs all execute the same instruction in lockstep’: Single
Instruction, Multiple Threads (SIMT)

4+ Every cycle a new warp can issue an instruction

Warp 1 Warp 2| |Warp 3 Warp 4 Warp 5

O 96 538 > 128 >
Add Add Add
global ID
of kernel

UNIVERSITEIT

- Warp execution

© On an Nvidia Kepler architecture, a single precision floating point
instruction (add or multiplication) takes 9 cycles, which is the depth of
the pipeline.

4+ 8 other warps can be scheduled in the mean time

4+ After 9 cycles, the second instruction of the first warp
(multiplication) can be issued, next the second warp and so on

= With 9 warps the pipeline is completely filled, no stalling/idling,
the completion latency of 9 cycles is completely hidden.

Warp 9 Warp 1 Warp 2

128 |||1L]
Add |

9 10 11 12 13 14 15

Cycle

SIMT Conditional Processing

© If kernel threads of a warp follow different branches, the
instructions of both branches have to be executed, but are
desactivated for some threads.

=> Performance loss!

© Example: assume 8 threads, one instruction in if-clause, one in
then-clause

4+ 3 cyles in which 24 instructions are executed, 8 lost cycles
(66% usage)

Desactivated
instructions (red)

	Slide 1: GPU Computing
	Slide 2: Levels of Understanding
	Slide 3
	Slide 4
	Slide 5: Vector processors
	Slide 6: Vector processors
	Slide 7: Instruction and Data Streams
	Slide 8
	Slide 9: 1 Streaming Multiprocessor = a pipeline
	Slide 10: Warp executes kernel threads in lock step
	Slide 11: When is SIMT = vector processing?
	Slide 12: Vectors versus SIMT
	Slide 13: Warp execution
	Slide 14: Warp execution
	Slide 15: SIMT Conditional Processing

