VRIJE —
pUB UNIVERSITETRRL O o g e
BRUSSEL

GPU

education/gpu

GPU processing power is not for free

Obstacle 1

Hard to implement

Obstacle 2

Hard to get efficiency

p—

\ VRIJE
UNIVERSITEIT
BRUSSEL

» The potential peak performance is given by the
roofline model

- Computational Intensity of kernel determines whether
computation or memory bound.

» However, performance limiters will introduce
overhead and result in lower performances

- Deviations from the peak performance are due to lost
cycles: cycles during which other instructions could have
been executed, the pipeline is not used most efficiently

- ldle cycles, or
- Cycles of inefficient execution of instructions

vell Estimate overhead

» Estimate a performance bound for your kernel
- Compute bound- t, - #operations / #operations per second
(peak performance)

- Memory bound. t, = # memory accesses / #accesses per second
(bandwidth)

- Minimal runtime t_. = max(t,, t,)
expressed by roofline model

» Measure the actual runtime
o b .+t

actual = "min overhead

» Try to account for and minimize t_,_.1cqd

Performance Limiters

O. Limited
Parallelism

VRIJE
UNIVERSITEIT
BRUSSEL

Example: video decoding

Decoding 1080p video sequence

Stage CPU (s) CUDA (s)
1 MOTION_DECODE 0.64 0.64
2 MOTION _RENDER 16.16 1.33 <*+—12 %
3 RESIDUAL _DECODE 12.00 12.94
4 WAVELET_TRANSFORM 22.52 1.63 <+—14 %
5 COMBINE 11.27 0.39 «4—29 x
6 UPSAMPLE 14.53 0.85 «-—17 x
Total 77.13 17.76 <4+—4.3 X

> Time (s)
CPU l | | 7713
CUDA i 17.76

erf
rm
ce
nal

SIS

Y VRIJE
UNIVERSITEIT
BRUSSEL

Amdahl’s Law

¢ Limitations of inherent parallelism: a part s of

the algorithm is not parallelizable
(1-5s).T
D (T = (1- s).TSeq +8.T ¢, har = i S.T e
D D P
parallelizable not parallelizable
=> |Speedup, = Toog _ Tseg ___ P Assume
Toor (1=5)Tey 1+(p-1).s| no other
0 ! seq overhead

Amdahl’s Law

P .
= |Speedup< Efficiency <
P P 1+(p-1.s y 1+(p-1).s
s speedupn,,
1 10%
Speedup< — o
peetlp <~ 25% 4
50% 2
/5% 1.33

If the algorithm limits the amount of possible
parallel execution, then the speedup is limited.

Performance Limiters

1. Compute
Intensity

VRIJE
UNIVERSITEIT
BRUSSFI

What is taking longer: memory transfer or the computations?

See lesson 1

Depends on Computational Intensity (Cl)

Peak A
performance memory
bandwidth
Roofline model flops/s
Is determined by the hardware
>

Computational intensity
(#computations/#bytes communicates)

Equation of Memory line: peak performance = Cl * BW

10

Performance Limiters

2. Occupancy

‘m

VRIJE
UNIVERSITEIT
BRUSSEL

Keep all processing units busy

Enough parallelism (threads) is necessary
» For all cores (= MultiProcessors)
» For all Scalar Processors (SPs)
- Hardware threads (warps) enable SIMT (lesson 3)

» To fill pipeline of scalar processor
- With instructions of different warps
- = Simultaneous multithreading (lesson 3)
> Results in Latency hiding

12

The effect of parallelism

] 100000 .
Runtime Vector addition

(ns) 90000 J
80000
70000 N
60000 I

50000
240000 Increasing array size
Running more and more threads
30000 -
20000
10000 Array size =
0 | | | | | | #threads
0 10000 20000 30000 40000 50000 60000 70000

Only when all pipelines are full, the runtime increases

i —_ 13

The effect of parallelism

- Processor needs sufficient threads to keep the system busy, to keep
all pipelines full; to get full performance.
- iIf GPU is not fully used, additional work can be scheduled without
cost
- see previous slide with graph of runtime in function of the
number of threads for a vector addition
- the runtime does not increases as long as GPU is not full.
@ function shaped as a staircase
- only just before the jump to the next step the GPU is fully busy

- Additionally, concurrent threads also needed for latency hiding.

14

Y VRIJE
UNIVERSITEIT
BRUSSEL

Hiding of Memory Latencies

] Memory period @ computation period

» 1 warp, without latency hiding

T))) S S S O

1

<€

8 Computation + 8 Memory

» 2 warps running concurrently

<€

5 Computation + 4 Memory
» 4 warps running concurrently: ful

latency hiding

15

‘m

VRIJE
UNIVERSITEIT
BRUSSEL

Maximize Parallelism & Occupancy

» A great number of thread blocks:

- A multiple of the number of cores times the occupancy in
thread block count

> |f each core can run 4 thread blocks simultaneously, the
number of thread blocks should be at least 4 * #cores

» Occupancy = Number of warps running
concurrently on a core

- Relative occupancy = occupancy divided by maximum
number of warps that can run concurrently on a core

> |s determined by 4 hardware resources, see lesson 3

16

Performance Limiters

3.ILP & MLP

‘m

VRIJE
UNIVERSITEIT
BRUSSEL

Dependent Code

» Well-known fact: latency is hidden by launching other threads

» Less-known fact: one can also exploit /nstruction Leve/
Parallelism (ILP) in one thread.

- Data level parallelism in one thread.

» Performance limiter is absence of ILP or MLP:
- Dependent instructions can not be parallelized.
- Dependent memory accesses can not be parallelized.

20

Maximize parallelism on the multiprocessor

» Occupancy = Thread-Level Parallelism (TLP)
> Scheduler has more choice to fill the pipeline
» Instruction Level Parallelism (ILP)
> Independent instructions within one warp
- Can be executed concurrently
» Memory Level Parallelism (MLP)
- Independent memory requests for one warp
> Can be serviced concurrently

Peak performance is reached for lower occupancies (fewer
concurrent warps) if the ILP and MLP are increased.

21

VRIJE
UNIVERSITEIT
BRUSSEL

TLP versus ILP and MLP

Thread-Level Parallelism

»

thread 1

Independent threads

thread 2 thread 3 thread 4

X=X+C y=y+c Zz=z+C W=WwW+cC
X=X+b y=y+b z=z+b w=w+b

| xX=x+a y=y+a z=z+a w=w+a |

TSN S

4 independent operations

Memory-Level Parallelism

One thread reading / writing 2, 4, 8, 16, ...

Instruction-Level Parallelism
» Independent instructions

thread
i w=w+Dbhb
I z=z+Db
B y=y+b
2 Xx=x+Db
7p} _—
c wW=w+a
; ;:2:\4 independent
17 operations
v =xXx+a

floating point values

22

VRIJE
UNIVERSITEIT
BRUSSEL

Computational Performance
A function of TLP and ILP

100% -

80% -

60% -

40% -

20% -

fraction of peak

O% I I I I I | | |
0 128 256 384 512 640 768 896 1024

TLP: threads per MultiProcessor

Occupancy roofline

23

VRIJE
UNIVERSITEIT
BRUSSEL

Memory throughput
A function of TLP and MLP

» MLP: 1 float, 2 float, 4 float, 8 float, 8 float2, 8 float4 and 14 float4
» TLP: occupancy

100% -
80% -
60% -

40% -

20% -

fraction of peak

O% I I I I |

0% 20% 40% 60% 80% 100%
occupancy

24

Performance Limiters

4. Synchronization

‘m

VRIJE
UNIVERSITEIT
BRUSSEL

Local and global
synchronization

» Local synchronization
- threads of the same group can synchronize:

__syncthreads();
> threads that reach the barrier must wait

- Cannot be chosen by the scheduler
- =» Less potential for latency hiding

» Global synchronization should happen across
kernel calls

> A new kernel must be launched to ensure synchronization
(thread blocks have all reached the same spot in the
algorithm)

> Qverhead!

26

VRIJE
UNIVERSITEIT
BRUSSEL

Lost cycles due to
local synchronization

Additional delay

3 3
4 4

1 (—)|

Synchromzatlon Synchronization

] 1= Memory period @ 1t Computation period

2nd Memory period 2 Computation period

No synchronization Barrier after each
memory period

27

‘m

VRIJE
UNIVERSITEIT
BRUSSEL

Minimize synchronization
overhead

» Local synchronization:

- Keep workgroups small = less effect

- with multiple concurrent workgroups latency hiding is
still possible

- No synchronization is needed within a warp because
they run in lockstep anyway!

28

Y VRIJE
UNIVERSITEIT
BRUSSEL

Minimize synchronization
overhead

» Global synchronization
- Exchange computations for memory access
- E.g. Hotspot: simulate heat flow (e.g. on a chip)

: Heatpoint = f(heatneighbors)
- Points are partitioned over the thread blocks, each thread
block simulates NxN points

- Calculate for NxN points and globally synchronize after each
time step?

- No: calculate different iterations independently with
overlapping borders for each thread block

- Iteration 0: (N+k)x(N+k) points

- |teration k-1: NxN points

29

Performance Limiters

5. Memory
hierarchy

vus

VRIJE
UNIVERSITEIT
BRUSSEL

Architecture - Memory Model

SM-0

SM-1

SM-(N-1)

L2 Cache (40 MB in A100)

l

Global Memory (DRAM, 40 GB in A100)

31

‘m

VRIJE
UNIVERSITEIT

Exploit memory hierarchy

» Data placement is crucial for performance

» Maximally use local memory and private
memory (registers)
o Copy shared data to local memory

- See examples of Convolution or Matrix
Multiplication

32

‘m

VRIJE
UNIVERSITEIT
BRUSSEL

Memory Levels

» Global memory
> Share data between GPU and CPU
- Large latency and low throughput

- = Access should be minimized
> Cached in L2-cache on modern GPUs

» Constant memory
> Share read-only data between GPU and CPU
> |s cached in L1 cache
> Limited size. Typically 64 KB
- Prefer it to local memory for small read-only data

33

‘m

VRIJE
UNIVERSITEIT
BRUSSEL

Memory Levels

» Local memory
- Share data within a work group
- Use it if the same data is used by multiple threads
in the same work group
» Private memory (registers)
- Lowest latency highest throughput

- Watch out: private arrays will be stored in global
memory, but cached in L1-cache

34

Performance Limiters

6. Branch
divergence

SIMT Conditional Processing

» Unlike threads in a CPU-based program, SIMT threads cannot
follow different execution paths

o All threads of a warp/wavefront are executing the same
instruction, they are executed in lockstep

» Program flow diverged is solved by instruction predication
» Example kernel: if (x < 5) y = 5; else y = -5;

o

The SIMT warp performs all 3 instructions

-y = 5; is only executed by threads for which x < 5
-y = -5; is executed by all others

a bit is used to enable/disable actual execution

See lesson 3

o

(o)

» Warp branch divergence decreases performance: cycles are |ost

386

‘m

VRIJE
UNIVERSITEIT
BRUSSEL

Example: tree traversal

» Given: a (search) tree

» Each thread does a lookup in the tree: follows a
(different) path in a tree, from root to leave.
> Implemented with a while-loop

» If not all leaves are at the same depth: the highest
depth determines the execution time of a
warp/wavefront

» Imbalances in the tree result in many lost cycles

37

Y VRIJE
UNIVERSITEIT
BRUSSEL

Branch Divergence Remedies

» Static thread reordering

- Group threads which will follow the same execution
path

- Typical in reduction operations, see extended
example at the end of lesson

» Dynamic thread reordering
- Reorder at runtime, e.g. using a lookup table

- OK if time lost reordering < time won due to
reordering

38

Performance Limiters

/. Concurrent
memory access

Concurrent Memory Access

» Each Multiprocessor has active threads:
» Simultaneous access of global memory

» Each hardware thread (warp) executes 32/64
kernel threads
» Simultaneous access of global memory
» Simultaneous access of shared memory

» But: concurrent memory access is limited by
the hardware!

o Efficient access depends on memory organization
- Let’s discuss this for global and shared memory

40

VRIJE

NIV TEIT
f@ii;

0
mle

48 2 660

112) (11 20 2_6)

Memory: linear addressing, 2D layout

GG

Eé,;

Memory
- Controllers:
S B B R RN EEE a i T Can handle 1

divided into banks request at a

ST

g
%@
6@
B

41

VUB R | Global Memory |
Global memory

» Divided into partitions

1. NVIDIA GPUs typically have 8 partitions
2. Memory controller can serve 1 segment at a time (= cache

line of 4x32 Bytes)
» 1: Active warps of different cores/multiprocessors
simultaneously access global memory
- Partition camping when they access the same partition =>

serialization of memory requests
> This is difficult to control and overcome...

» 2: Memory coalescing for warps
- Accessed elements of a warp should belong to same aligned

segment (= cache line)
- if not (uncoalesced access), memory requests are serialized

=> will take more time

42

‘m

| Global Memory |
Global Memory Access

» Global memory is organized in segments (cache
line), a memory controller can serve 1 segment at a
time.

» Memory requests of warp are handled together

- Data elements of the same segment are grouped and will
be served together

» ldeal situation:

- All bytes of necessary segments are needed

- The number of bytes that need to be accessed to satisfy a
warp memory request is equal to the number of bytes
actually needed by the warp for the given request

» A few examples will clarify this

43

m UNIVERSITE Global Memory
BRUSSEL

Concurrent data access

i —_

Cache Lirse n CacheLlinenr+1
e e e e e O O 1
Cache Lire x
Frrt
aall il s Access is grouped per cache line
T Reads of cache lines are serialized
FX X ¥ => Penalty if multiple cache lines
o [[[are needed for 1 warp memory
Cache Line 2 requeSt
tt11
Cachie Line w
Frrs

44

Concurrent data access

Cache Line n Calhe Linea+ 1

Stride of 4 => 1/4th of performance

Cache Line rr Cache linen+ 1 Cache Lir= n+ 2 Cache Lin=rn+ 3

L 1 2 3 L] G ¥ 3] n 11 é 13 14

Stride of 16 => 1/16th of performance

Cache Line n Cache Linen+ 1 Cache Linen+ 2

f t 1 T

(=]

vueliiee | Global Memory |
Global Memory Access

Impact of strided access

» 2-D and 3-D data stored in flat memory
space

- Strided access is not a good idea (e.g. access
columns of a matrix)

Width

Rl Bl I I Quadro K620 AMD HD 7950
. Aligned: 26 GB/s Aligned: 170 GB/s
32|33 | 3| 35 | - Strided: 7 GB/s Strided: 4 GB/s

Width

. 2,1 22 | 23|24 |25]| --- §30f31] 32

3,3 | 34 3.5

47

VUB RS | Global Memory |
Global Memory Access
Array of structvs struct of arrays

typedef struct {

float a, b, c; AQOS introduces strides
} triplet_t; If elements are visited at different
moments

__kernel void aos(__global triplet_t
7':-tr--i p'| etS) { words | @o | bo || Co ‘l ay & ‘l az || bo || €2 ‘l az || b3 || €3

float a = (%) (%) (%)
triplets[get_global_id(0)].a;

words ﬂo 01 3 I g I (14 I Qg I fls I g ICH 011

kernel void soa(__global float *as, éééééééééééé
__global float *bs,

__global float *cs)

{ SOA removes strides
float a = as[get_global_id(0)];

48

shared Memory access

» shared memory is divided into banks
» Each bank can service one address per cycle

» Multiple simultaneous accesses to a bank
result in a bank conflict
> Conflicting accesses are serialized
o Cost = max # simultaneous accesses to single bank
» No bank conflicts when

- All threads of warp access another bank
- All threads of warp read the same address

50

VRIJE
UNIVERSITEIT
BRUSSEL

shared Memory

Bank Addressing Examples

» NoO

o

Thread O
Thread 1
Thread 2
Thread 3
Thread 4

Thread 5
Thread 6
Thread 7

Thread 15

Bank Conflicts

Linear addressing
stride of 1

» No Bank Conflicts

o Random 1:1
Permutation

Bank 15

Thread O
Thread 1
Thread 2

Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 15

Bank 15

Bank Addressing Examples

» 2-way Bank Conflicts |» 8-way Bank Conflicts

> Linear addressing > Linear addressing
stride of 2 stride of 8

Thread O
Thread 1

Thread 2 ~‘
Thread 3 ~"
Thread 4 "r

Thread 8 /

Thread 9

Thread 10
Thread 11 Bank 15

Thread O
Thread 1
Thread 2
Thread 3
Thread 4

Thread 5 ¥

Thread 6 »

Thread 7

4

Thread 15

52

‘m

| shared Memory |
shared Memory access

BRUSSEL

» Word storage order:
> Banks are 4 bytes wide

» Row access
__shared float sh[32][32];

= .
(o] (=] (I

—
w
=}

191

[S]
]
Lo

]
o
[

(==
—
]
w
=
ot
(=]
~1
W
—

53

shared Memory access

» Column access » Column access
__shared float sh[32][32]; __shared float sh[32][33];
(2) () l
() (U m
() () ‘
= HH
= S \
= SEEEE
= SHH
0 1 2 3 4 5 6 7 31 0
Worst case: Threads of the same warp Solution: ‘pad’ matrix with an extra
accessing the same column of a matrix column => no more bank conflicts

having a width of a multiple of 32

L >4

Performance Limiters

8. Other
Performance
Considerations

‘m

VRIJE
UNIVERSITEIT
BRUSSEL

Other performance considerations

» Unroll loops with a fixed number of iterations

- Removes loop overhead
- Index computations and tests
> Increases ILP and MLP

- Use #pragma unroll

» Vectorization

- Use build-in vector types: float2, float4, int2, int4
- Especially for AMD GPUs

56

‘m

VRIJE
UNIVERSITEIT
BRUSSEL

Other performance considerations

» Let one thread process multiple data items
- Thread index calculation overhead is amortized
o ILP and MLP will increase
- Extra potential for loop unrolling
> Increased data reuse (e.g. through private memory)

57

Example: Reduction
(Parallel Sum)

100

VRIJE
UNIVERSITEIT
BRUSSEL

Resulting Performance
[GB/s]

90

80

70

60

50

40

30

20

reduction] reduction2 reduction3 reduction4 reduction5 reduction6

—
Optimization

m Tesla C2050
m AMD Radeon HD7950

59

See white paper
Mark Harris (NVIDA):

Optimizing Parallel
Reduction in CUDA

Conclusions

‘m

VRIJE
UNIVERSITEIT
BRUSSEL

Overview

» Effect of the inefficiencies

1.

2
3.
4

o) Ui

Occupancy ~ idling

. ILP ~ idling

Branching ~ instruction inefficiency

. Synchronization ~ idling & synchronization

instruction overhead

. Memory level ~ latencies

Memory access pattern ~ concurrent memory
access ~ latencies

62

Programming for Performance
Minimizing the overall run time
» Minimize idle time
- Maximize parallelism
> Minimize dependencies
> Minimize synchronization

» Minimize software and hardware overheads
- Memory access

- Data placement
- Global memory access patterns

- shared memory access patterns
- Computation

- Minimize excess computations
* Minimize branching

» Remembering data access is slow and computation fast

63

‘m

VRIJE
UNIVERSITEIT
BRUSSEL

Tips for programming

Program step-by-step, gradually add
instructions, verify subresults

1. Debug

- An individual kernel thread can be executed step-
by-step
2. Print
> Supported in CUDA?

3. Write subresults to output array

- Add an additional array in which you store subresults which
you can then print on the CPU

64

Tips for optimization

» Make program variants

> Start with naive version, gradually add optimized
versions

- Tip: use same signature (parameters) for each kernel!

» Make compute-only and memory-only versions
to identify main bottleneck
- Compute-only: put memory access in a conditional as
with the microbenchmarks (to trick the compiler)
- Memory-only: outcomment calculations

- ldeal memory access pattern: check the influence of
the memory access pattern by creating a version with
ideal, coalesced bank-conflict-free access

65

	Slide 1: GPU Computing
	Slide 2
	Slide 3
	Slide 4: Estimate overhead
	Slide 5
	Slide 6: Example: video decoding
	Slide 7: Amdahl’s Law
	Slide 8: Amdahl’s Law
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Keep all processing units busy
	Slide 13: The effect of parallelism
	Slide 14: The effect of parallelism
	Slide 15: Hiding of Memory Latencies
	Slide 16: Maximize Parallelism & Occupancy
	Slide 19
	Slide 20: Dependent Code
	Slide 21: Maximize parallelism on the multiprocessor
	Slide 22: TLP versus ILP and MLP
	Slide 23: Computational Performance A function of TLP and ILP
	Slide 24: Memory throughput A function of TLP and MLP
	Slide 25
	Slide 26: Local and global synchronization
	Slide 27: Lost cycles due to local synchronization
	Slide 28: Minimize synchronization overhead
	Slide 29: Minimize synchronization overhead
	Slide 30
	Slide 31: Architecture – Memory Model
	Slide 32: Exploit memory hierarchy
	Slide 33: Memory Levels
	Slide 34: Memory Levels
	Slide 35
	Slide 36: SIMT Conditional Processing
	Slide 37: Example: tree traversal
	Slide 38: Branch Divergence Remedies
	Slide 39
	Slide 40: Concurrent Memory Access
	Slide 41
	Slide 42: Global memory
	Slide 43: Global Memory Access
	Slide 44: Concurrent data access
	Slide 45: Concurrent data access
	Slide 47: Global Memory Access Impact of strided access
	Slide 48: Global Memory Access Array of struct vs struct of arrays
	Slide 50: shared Memory access
	Slide 51: Bank Addressing Examples
	Slide 52: Bank Addressing Examples
	Slide 53: shared Memory access
	Slide 54: shared Memory access
	Slide 55
	Slide 56: Other performance considerations
	Slide 57: Other performance considerations
	Slide 58
	Slide 59: Resulting Performance [GB/s]
	Slide 60
	Slide 61
	Slide 62: Overview
	Slide 63: Programming for Performance Minimizing the overall run time
	Slide 64: Tips for programming
	Slide 65: Tips for optimization

