
Lesson 5: Performance 
Limiters

Gauthier Lafruit & Jan Lemeire

2024-2025

http://parallel.vub.ac.be/education/gpu



Obstacle 1
Hard to implement

Obstacle 2
Hard to get efficiency

GPU processing power is not for free
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 The potential peak performance is given by the 
roofline model
◦ Computational Intensity of kernel determines whether 

computation or memory bound.

 However, performance limiters will introduce 
overhead and result in lower performances
◦ Deviations from the peak performance are due to lost 

cycles: cycles during which other instructions could have 
been executed, the pipeline is not used most efficiently

 Idle cycles, or

 Cycles of inefficient execution of instructions
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 Estimate a performance bound for your kernel

◦ Compute bound: t1 = #operations / #operations per second 
(peak performance)

◦ Memory bound: t2 = # memory accesses / #accesses per second
(bandwidth)

◦ Minimal runtime tmin = max(t1, t2)    
expressed by roofline model

 Measure the actual runtime

◦ tactual = tmin + toverhead

 Try to account for and minimize toverhead

Estimate overhead
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0. Limited 

Parallelism

Performance Limiters
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Example: video decoding
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Amdahl’s Law

Limitations of inherent parallelism: a part s of 
the algorithm is not parallelizable
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Amdahl’s Law
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If the algorithm limits the amount of possible 
parallel execution, then the speedup is limited.
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Roofline model
Is determined by the hardware

Equation of Memory line: peak performance = CI * BW

What is taking longer: memory transfer or the computations?

Depends on Computational Intensity (CI)

See lesson 1



2. Occupancy

Performance Limiters

Level 1



Keep all processing units busy

Enough parallelism (threads) is necessary

 For all cores ( = MultiProcessors)

 For all Scalar Processors (SPs)
◦ Hardware threads (warps) enable SIMT (lesson 3)

 To fill pipeline of scalar processor
◦ With instructions of different warps

◦ = Simultaneous multithreading (lesson 3)

◦ Results in Latency hiding
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The effect of parallelism
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Increasing array size

Running more and more threads

Only when all pipelines are full, the runtime increases
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Processor needs sufficient threads to keep the system busy, to keep
all pipelines full; to get full performance.

if GPU is not fully used, additional work can be scheduled without 

cost 

see previous slide with graph of runtime in function of the 

number of threads for a vector addition

the runtime does not increases as long as GPU is not full.

function shaped as a staircase

only just before the jump to the next step the GPU is fully busy

Additionally, concurrent threads also needed for latency hiding.
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The effect of parallelism



Hiding of Memory Latencies 

 1 warp, without latency hiding

 2 warps running concurrently

 4 warps running concurrently: full latency hiding
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Maximize Parallelism & Occupancy

 A great number of thread blocks:
◦ A multiple of the number of cores times the occupancy in 

thread block count
◦ If each core can run 4 thread blocks simultaneously, the 

number of thread blocks should be at least 4 * #cores

 Occupancy = Number of warps running 
concurrently on a core 
◦ Relative occupancy = occupancy divided by maximum 

number of warps that can run concurrently on a core
◦ Is determined by 4 hardware resources, see lesson 3
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3. ILP & MLP

Performance Limiters

Level 1



 Well-known fact: latency is hidden by launching other threads

 Less-known fact: one can also exploit Instruction Level 
Parallelism (ILP) in one thread.
◦ Data level parallelism in one thread.

 Performance limiter is absence of ILP or MLP:
◦ Dependent instructions can not be parallelized.

◦ Dependent memory accesses can not be parallelized.

Dependent Code
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Maximize parallelism on the multiprocessor

 Occupancy = Thread-Level Parallelism (TLP)

◦ Scheduler has more choice to fill the pipeline

 Instruction Level Parallelism (ILP)

◦ Independent instructions within one warp

◦ Can be executed concurrently

 Memory Level Parallelism (MLP)

◦ Independent memory requests for one warp

◦ Can be serviced concurrently

Peak performance is reached for lower occupancies (fewer 

concurrent warps) if the ILP and MLP are increased.
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TLP versus ILP and MLP

Thread-Level Parallelism
 Independent threads

Instruction-Level Parallelism
 Independent instructions

Memory-Level Parallelism
• One thread reading / writing 2, 4, 8, 16, … floating point values
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Computational Performance
A function of TLP and ILP

TLP: threads per MultiProcessor
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Occupancy roofline

ILP = 1

ILP = 2

ILP = 3

ILP = 4



Memory throughput
A function of TLP and MLP

 MLP: 1 float, 2 float, 4 float, 8 float, 8 float2, 8 float4 and 14 float4

 TLP: occupancy
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4. Synchronization

Performance Limiters

Level 2



Local and global 
synchronization

 Local synchronization
◦ threads of the same group can synchronize:

__syncthreads();
◦ threads that reach the barrier must wait

 Cannot be chosen by the scheduler

 ➔ Less potential for latency hiding

 Global synchronization should happen across 
kernel calls
◦ A new kernel must be launched to ensure synchronization 

(thread blocks have all reached the same spot in the 
algorithm)

◦ Overhead!
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Lost cycles due to 
local synchronization
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No synchronization Barrier after each 

memory period



Minimize synchronization 
overhead

 Local synchronization:
◦ Keep workgroups small → less effect

 with multiple concurrent workgroups latency hiding is 
still possible

◦ No synchronization is needed within a warp because 
they run in lockstep anyway!
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Minimize synchronization 
overhead

 Global synchronization
◦ Exchange computations for memory access
◦ E.g. Hotspot: simulate heat flow (e.g. on a chip)

 Heatpoint = f(heatneighbors)

 Points are partitioned over the thread blocks, each thread 
block simulates NxN points

 Calculate for NxN points and globally synchronize after each 
time step?

 No: calculate different iterations independently with 
overlapping borders for each thread block

 Iteration 0: (N+k)x(N+k) points

 …

 Iteration k-1: NxN points
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5. Memory 

hierarchy

Performance Limiters

Level 2



Architecture – Memory Model
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Exploit memory hierarchy

 Data placement is crucial for performance

 Maximally use local memory and private 
memory (registers)
◦ Copy shared data to local memory

◦ See examples of Convolution or Matrix 
Multiplication
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Memory Levels

 Global memory
◦ Share data between GPU and CPU

◦ Large latency and low throughput

 ➔ Access should be minimized

◦ Cached in L2-cache on modern GPUs

 Constant memory
◦ Share read-only data between GPU and CPU

◦ Is cached in L1 cache

◦ Limited size. Typically 64 KB

◦ Prefer it to local memory for small read-only data
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 Local memory
◦ Share data within a work group

◦ Use it if the same data is used by multiple threads 
in the same work group

 Private memory (registers)
◦ Lowest latency highest throughput

◦ Watch out: private arrays will be stored in global 
memory, but cached in L1-cache
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Memory Levels
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divergence

Performance Limiters

Level 3
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SIMT Conditional Processing
 Unlike threads in a CPU-based program, SIMT threads cannot 

follow different execution paths

◦ All threads of a warp/wavefront are executing the same 
instruction, they are executed in lockstep

 Program flow diverged is solved by instruction predication

 Example kernel:  if (x < 5)  y = 5; else y = -5;

◦ The SIMT warp performs all 3 instructions

◦ y = 5; is only executed by threads for which x < 5

◦ y = -5; is executed by all others

◦ a bit is used to enable/disable actual execution

◦ See lesson 3

 Warp branch divergence decreases performance: cycles are lost
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Example: tree traversal

 Given: a (search) tree

 Each thread does a lookup in the tree: follows a 
(different) path in a tree, from root to leave.
◦ Implemented with a while-loop

 If not all leaves are at the same depth: the highest 
depth determines the execution time of a 
warp/wavefront

 Imbalances in the tree result in many lost cycles
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Branch Divergence Remedies

 Static thread reordering
◦ Group threads which will follow the same execution 

path

◦ Typical in reduction operations, see extended 
example at the end of lesson

 Dynamic thread reordering
◦ Reorder at runtime, e.g. using a lookup table

◦ OK if time lost reordering < time won due to 
reordering
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7. Concurrent 

memory access

Performance Limiters

Level 3



Concurrent Memory Access

 Each Multiprocessor has active threads:
➢ Simultaneous access of global memory

 Each hardware thread (warp) executes 32/64 
kernel threads
➢ Simultaneous access of global memory

➢ Simultaneous access of shared memory

 But: concurrent memory access is limited by 
the hardware! 
◦ Efficient access depends on memory organization

◦ Let’s discuss this for global and shared memory
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 Divided into partitions
1. NVIDIA GPUs typically have 8 partitions

2. Memory controller can serve 1 segment at a time (≈ cache 
line of 4x32 Bytes)

 1: Active warps of different cores/multiprocessors 
simultaneously access global memory
◦ Partition camping when they access the same partition => 

serialization of memory requests

◦ This is difficult to control and overcome…

 2: Memory coalescing for warps
◦ Accessed elements of a warp should belong to same aligned 

segment (≈ cache line)

◦ if not (uncoalesced access), memory requests are serialized 
=> will take more time

Global memory

Global Memory
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Global Memory Access

 Global memory is organized in segments (cache 
line), a memory controller can serve 1 segment at a 
time.

 Memory requests of warp are handled together
◦ Data elements of the same segment are grouped and will 

be served together

 Ideal situation:
◦ All bytes of necessary segments are needed

◦ The number of bytes that need to be accessed to satisfy a 
warp memory request is equal to the number of bytes 
actually needed by the warp for the given request

 A few examples will clarify this

Global Memory
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Concurrent data access

Access is grouped per cache line

Reads of cache lines are serialized

=> Penalty if multiple cache lines 

are needed for 1 warp memory 

request

Global Memory
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Concurrent data access

Stride of 4 => 1/4th of performance

Stride of 16 => 1/16th of performance

Global Memory
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Global Memory Access
Impact of strided access

 2-D and 3-D data stored in flat memory 
space
◦ Strided access is not a good idea (e.g. access 

columns of a matrix)

Global Memory

47



Global Memory Access
Array of struct vs struct of arrays

typedef struct {

float a, b, c;

} triplet_t;

__kernel void aos(__global triplet_t
*triplets) {

float a = 
triplets[get_global_id(0)].a;

}

__kernel void soa(__global float *as,

__global float *bs,

__global float *cs)

{

float a = as[get_global_id(0)];

}

AOS introduces strides
If elements are visited at different 

moments

SOA removes strides

Global Memory
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shared Memory access

 shared memory is divided into banks

 Each bank can service one address per cycle

 Multiple simultaneous accesses to a bank
result in a bank conflict 
◦ Conflicting accesses are serialized

◦ Cost = max # simultaneous accesses to single bank

 No bank conflicts when
◦ All threads of warp access another bank

◦ All threads of warp read the same address

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

shared Memory
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Bank Addressing Examples

 No Bank Conflicts
◦ Linear addressing 

stride of 1

 No Bank Conflicts
◦ Random 1:1 

Permutation

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

shared Memory
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Bank Addressing Examples

 2-way Bank Conflicts
◦ Linear addressing 

stride of 2

 8-way Bank Conflicts
◦ Linear addressing 

stride of 8

Thread 11

Thread 10

Thread 9
Thread 8

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2

Bank 1
Bank 0

x8

x8

shared Memory
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shared Memory access

 Word storage order:
◦ Banks are 4 bytes wide

 Row access
__shared float sh[32][32];

shared Memory
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shared Memory access

 Column access
__shared float sh[32][32];

 Column access
__shared float sh[32][33];

shared Memory
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Worst case: Threads of the same warp 

accessing the same column of a matrix 

having a width of a multiple of 32

Solution: ‘pad’ matrix with an extra 

column => no more bank conflicts
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Other performance considerations

 Unroll loops with a fixed number of iterations
◦ Removes loop overhead

 Index computations and tests

◦ Increases ILP and MLP

◦ Use #pragma unroll

 Vectorization
◦ Use build-in vector types: float2, float4, int2, int4

◦ Especially for AMD GPUs
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 Let one thread process multiple data items
◦ Thread index calculation overhead is amortized

◦ ILP and MLP will increase

◦ Extra potential for loop unrolling

◦ Increased data reuse (e.g. through private memory)

Other performance considerations
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Example: Reduction 

(Parallel Sum)



Resulting Performance
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Optimization



See white paper 

Mark Harris (NVIDA):

Optimizing Parallel 

Reduction in CUDA



Conclusions



 Effect of the inefficiencies
1. Occupancy ~ idling

2. ILP ~ idling

3. Branching ~ instruction inefficiency

4. Synchronization ~ idling & synchronization 
instruction overhead

5. Memory level ~ latencies

6. Memory access pattern ~ concurrent memory 
access ~ latencies

Overview
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Programming for Performance
Minimizing the overall run time

 Minimize idle time
◦ Maximize parallelism
◦ Minimize dependencies
◦ Minimize synchronization

 Minimize software and hardware overheads
◦ Memory access

 Data placement

 Global memory access patterns

 shared memory access patterns

◦ Computation
 Minimize excess computations

 Minimize branching
 Remembering data access is slow and computation fast
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Program step-by-step, gradually add 
instructions, verify subresults

1. Debug
◦ An individual kernel thread can be executed step-

by-step

2. Print
◦ Supported in CUDA?

3. Write subresults to output array
◦ Add an additional array in which you store subresults which 

you can then print on the CPU

Tips for programming
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 Make program variants
◦ Start with naïve version, gradually add optimized 

versions

◦ Tip: use same signature (parameters) for each kernel!

 Make compute-only and memory-only versions 
to identify main bottleneck
◦ Compute-only: put memory access in a conditional as 

with the microbenchmarks (to trick the compiler)

◦ Memory-only: outcomment calculations

◦ Ideal memory access pattern: check the influence of 
the memory access pattern by creating a version with 
ideal, coalesced bank-conflict-free access

Tips for optimization
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