
Lesson 5: Performance
Limiters

Gauthier Lafruit & Jan Lemeire

2024-2025

http://parallel.vub.ac.be/education/gpu

Obstacle 1
Hard to implement

Obstacle 2
Hard to get efficiency

GPU processing power is not for free

2

 The potential peak performance is given by the
roofline model
◦ Computational Intensity of kernel determines whether

computation or memory bound.

 However, performance limiters will introduce
overhead and result in lower performances
◦ Deviations from the peak performance are due to lost

cycles: cycles during which other instructions could have
been executed, the pipeline is not used most efficiently

 Idle cycles, or

 Cycles of inefficient execution of instructions

3

 Estimate a performance bound for your kernel

◦ Compute bound: t1 = #operations / #operations per second
(peak performance)

◦ Memory bound: t2 = # memory accesses / #accesses per second
(bandwidth)

◦ Minimal runtime tmin = max(t1, t2)
expressed by roofline model

 Measure the actual runtime

◦ tactual = tmin + toverhead

 Try to account for and minimize toverhead

Estimate overhead

4

0. Limited

Parallelism

Performance Limiters

Level 1

Example: video decoding

6

Perf

orm

ance

Anal

ysis

Thanks to Wladimir van der Laan, University of Groningen

7

Amdahl’s Law

Limitations of inherent parallelism: a part s of
the algorithm is not parallelizable

seqseqseq TsTsT .).1(+−=
seq

seq

par Ts
p

Ts
T .

).1(
+

−
=

sp

p

Ts
p

Ts

T

T

T
Speedup

seq

seq

seq

par

seq

).1(1
.

).1(max
−+

=

+
−

==
Assume

no other

overhead

not parallelizableparallelizable

8

Amdahl’s Law

sp

p
Speedup

).1(1 −+


sp
Efficiency

).1(1

1

−+


If p is big enough:

s
Speedup

1


s Speedupmax

10% 10

25% 4

50% 2

75% 1.33

If the algorithm limits the amount of possible
parallel execution, then the speedup is limited.

1. Compute

intensity

Performance Limiters

Level 1

10

Roofline model
Is determined by the hardware

Equation of Memory line: peak performance = CI * BW

What is taking longer: memory transfer or the computations?

Depends on Computational Intensity (CI)

See lesson 1

2. Occupancy

Performance Limiters

Level 1

Keep all processing units busy

Enough parallelism (threads) is necessary

 For all cores (= MultiProcessors)

 For all Scalar Processors (SPs)
◦ Hardware threads (warps) enable SIMT (lesson 3)

 To fill pipeline of scalar processor
◦ With instructions of different warps

◦ = Simultaneous multithreading (lesson 3)

◦ Results in Latency hiding

12

The effect of parallelism

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 10000 20000 30000 40000 50000 60000 70000

Vector addition

Array size =

#threads

Runtime

(ns)

Increasing array size

Running more and more threads

Only when all pipelines are full, the runtime increases

13

Processor needs sufficient threads to keep the system busy, to keep
all pipelines full; to get full performance.

if GPU is not fully used, additional work can be scheduled without

cost

see previous slide with graph of runtime in function of the

number of threads for a vector addition

the runtime does not increases as long as GPU is not full.

function shaped as a staircase

only just before the jump to the next step the GPU is fully busy

Additionally, concurrent threads also needed for latency hiding.

14

The effect of parallelism

Hiding of Memory Latencies

 1 warp, without latency hiding

 2 warps running concurrently

 4 warps running concurrently: full latency hiding

15

Maximize Parallelism & Occupancy

 A great number of thread blocks:
◦ A multiple of the number of cores times the occupancy in

thread block count
◦ If each core can run 4 thread blocks simultaneously, the

number of thread blocks should be at least 4 * #cores

 Occupancy = Number of warps running
concurrently on a core
◦ Relative occupancy = occupancy divided by maximum

number of warps that can run concurrently on a core
◦ Is determined by 4 hardware resources, see lesson 3

16

3. ILP & MLP

Performance Limiters

Level 1

 Well-known fact: latency is hidden by launching other threads

 Less-known fact: one can also exploit Instruction Level
Parallelism (ILP) in one thread.
◦ Data level parallelism in one thread.

 Performance limiter is absence of ILP or MLP:
◦ Dependent instructions can not be parallelized.

◦ Dependent memory accesses can not be parallelized.

Dependent Code

20

Maximize parallelism on the multiprocessor

 Occupancy = Thread-Level Parallelism (TLP)

◦ Scheduler has more choice to fill the pipeline

 Instruction Level Parallelism (ILP)

◦ Independent instructions within one warp

◦ Can be executed concurrently

 Memory Level Parallelism (MLP)

◦ Independent memory requests for one warp

◦ Can be serviced concurrently

Peak performance is reached for lower occupancies (fewer

concurrent warps) if the ILP and MLP are increased.

21

TLP versus ILP and MLP

Thread-Level Parallelism
 Independent threads

Instruction-Level Parallelism
 Independent instructions

Memory-Level Parallelism
• One thread reading / writing 2, 4, 8, 16, … floating point values

22

Computational Performance
A function of TLP and ILP

TLP: threads per MultiProcessor

23

Occupancy roofline

ILP = 1

ILP = 2

ILP = 3

ILP = 4

Memory throughput
A function of TLP and MLP

 MLP: 1 float, 2 float, 4 float, 8 float, 8 float2, 8 float4 and 14 float4

 TLP: occupancy

24

4. Synchronization

Performance Limiters

Level 2

Local and global
synchronization

 Local synchronization
◦ threads of the same group can synchronize:

__syncthreads();
◦ threads that reach the barrier must wait

 Cannot be chosen by the scheduler

 ➔ Less potential for latency hiding

 Global synchronization should happen across
kernel calls
◦ A new kernel must be launched to ensure synchronization

(thread blocks have all reached the same spot in the
algorithm)

◦ Overhead!

26

Lost cycles due to
local synchronization

27

No synchronization Barrier after each

memory period

Minimize synchronization
overhead

 Local synchronization:
◦ Keep workgroups small → less effect

 with multiple concurrent workgroups latency hiding is
still possible

◦ No synchronization is needed within a warp because
they run in lockstep anyway!

28

Minimize synchronization
overhead

 Global synchronization
◦ Exchange computations for memory access
◦ E.g. Hotspot: simulate heat flow (e.g. on a chip)

 Heatpoint = f(heatneighbors)

 Points are partitioned over the thread blocks, each thread
block simulates NxN points

 Calculate for NxN points and globally synchronize after each
time step?

 No: calculate different iterations independently with
overlapping borders for each thread block

 Iteration 0: (N+k)x(N+k) points

 …

 Iteration k-1: NxN points

29

5. Memory

hierarchy

Performance Limiters

Level 2

Architecture – Memory Model

31

Exploit memory hierarchy

 Data placement is crucial for performance

 Maximally use local memory and private
memory (registers)
◦ Copy shared data to local memory

◦ See examples of Convolution or Matrix
Multiplication

32

Memory Levels

 Global memory
◦ Share data between GPU and CPU

◦ Large latency and low throughput

 ➔ Access should be minimized

◦ Cached in L2-cache on modern GPUs

 Constant memory
◦ Share read-only data between GPU and CPU

◦ Is cached in L1 cache

◦ Limited size. Typically 64 KB

◦ Prefer it to local memory for small read-only data

33

 Local memory
◦ Share data within a work group

◦ Use it if the same data is used by multiple threads
in the same work group

 Private memory (registers)
◦ Lowest latency highest throughput

◦ Watch out: private arrays will be stored in global
memory, but cached in L1-cache

34

Memory Levels

6. Branch

divergence

Performance Limiters

Level 3

36

SIMT Conditional Processing
 Unlike threads in a CPU-based program, SIMT threads cannot

follow different execution paths

◦ All threads of a warp/wavefront are executing the same
instruction, they are executed in lockstep

 Program flow diverged is solved by instruction predication

 Example kernel: if (x < 5) y = 5; else y = -5;

◦ The SIMT warp performs all 3 instructions

◦ y = 5; is only executed by threads for which x < 5

◦ y = -5; is executed by all others

◦ a bit is used to enable/disable actual execution

◦ See lesson 3

 Warp branch divergence decreases performance: cycles are lost

36

Example: tree traversal

 Given: a (search) tree

 Each thread does a lookup in the tree: follows a
(different) path in a tree, from root to leave.
◦ Implemented with a while-loop

 If not all leaves are at the same depth: the highest
depth determines the execution time of a
warp/wavefront

 Imbalances in the tree result in many lost cycles

37

Branch Divergence Remedies

 Static thread reordering
◦ Group threads which will follow the same execution

path

◦ Typical in reduction operations, see extended
example at the end of lesson

 Dynamic thread reordering
◦ Reorder at runtime, e.g. using a lookup table

◦ OK if time lost reordering < time won due to
reordering

38

7. Concurrent

memory access

Performance Limiters

Level 3

Concurrent Memory Access

 Each Multiprocessor has active threads:
➢ Simultaneous access of global memory

 Each hardware thread (warp) executes 32/64
kernel threads
➢ Simultaneous access of global memory

➢ Simultaneous access of shared memory

 But: concurrent memory access is limited by
the hardware!
◦ Efficient access depends on memory organization

◦ Let’s discuss this for global and shared memory

40

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124

128

192

256

...

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124

128

192

256

MC

MC

MC
...

128

192

256

MC

600 4 8 12 16 20 24 28 32 36 40 44 48 52 56

64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124

MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC

Memory: linear addressing, 2D layout

divided into partitions

divided into banks

Memory

Controllers:

Can handle 1

request at a

time

41

 Divided into partitions
1. NVIDIA GPUs typically have 8 partitions

2. Memory controller can serve 1 segment at a time (≈ cache
line of 4x32 Bytes)

 1: Active warps of different cores/multiprocessors
simultaneously access global memory
◦ Partition camping when they access the same partition =>

serialization of memory requests

◦ This is difficult to control and overcome…

 2: Memory coalescing for warps
◦ Accessed elements of a warp should belong to same aligned

segment (≈ cache line)

◦ if not (uncoalesced access), memory requests are serialized
=> will take more time

Global memory

Global Memory

42

Global Memory Access

 Global memory is organized in segments (cache
line), a memory controller can serve 1 segment at a
time.

 Memory requests of warp are handled together
◦ Data elements of the same segment are grouped and will

be served together

 Ideal situation:
◦ All bytes of necessary segments are needed

◦ The number of bytes that need to be accessed to satisfy a
warp memory request is equal to the number of bytes
actually needed by the warp for the given request

 A few examples will clarify this

Global Memory

43

Concurrent data access

Access is grouped per cache line

Reads of cache lines are serialized

=> Penalty if multiple cache lines

are needed for 1 warp memory

request

Global Memory

44

Concurrent data access

Stride of 4 => 1/4th of performance

Stride of 16 => 1/16th of performance

Global Memory

45

Global Memory Access
Impact of strided access

 2-D and 3-D data stored in flat memory
space
◦ Strided access is not a good idea (e.g. access

columns of a matrix)

Global Memory

47

Global Memory Access
Array of struct vs struct of arrays

typedef struct {

float a, b, c;

} triplet_t;

__kernel void aos(__global triplet_t
*triplets) {

float a =
triplets[get_global_id(0)].a;

}

__kernel void soa(__global float *as,

__global float *bs,

__global float *cs)

{

float a = as[get_global_id(0)];

}

AOS introduces strides
If elements are visited at different

moments

SOA removes strides

Global Memory

48

shared Memory access

 shared memory is divided into banks

 Each bank can service one address per cycle

 Multiple simultaneous accesses to a bank
result in a bank conflict
◦ Conflicting accesses are serialized

◦ Cost = max # simultaneous accesses to single bank

 No bank conflicts when
◦ All threads of warp access another bank

◦ All threads of warp read the same address

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

shared Memory

50

Bank Addressing Examples

 No Bank Conflicts
◦ Linear addressing

stride of 1

 No Bank Conflicts
◦ Random 1:1

Permutation

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

shared Memory

51

Bank Addressing Examples

 2-way Bank Conflicts
◦ Linear addressing

stride of 2

 8-way Bank Conflicts
◦ Linear addressing

stride of 8

Thread 11

Thread 10

Thread 9
Thread 8

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2

Bank 1
Bank 0

x8

x8

shared Memory

52

shared Memory access

 Word storage order:
◦ Banks are 4 bytes wide

 Row access
__shared float sh[32][32];

shared Memory

53

shared Memory access

 Column access
__shared float sh[32][32];

 Column access
__shared float sh[32][33];

shared Memory

54

Worst case: Threads of the same warp

accessing the same column of a matrix

having a width of a multiple of 32

Solution: ‘pad’ matrix with an extra

column => no more bank conflicts

8. Other

Performance

Considerations

Performance Limiters

Other performance considerations

 Unroll loops with a fixed number of iterations
◦ Removes loop overhead

 Index computations and tests

◦ Increases ILP and MLP

◦ Use #pragma unroll

 Vectorization
◦ Use build-in vector types: float2, float4, int2, int4

◦ Especially for AMD GPUs

56

 Let one thread process multiple data items
◦ Thread index calculation overhead is amortized

◦ ILP and MLP will increase

◦ Extra potential for loop unrolling

◦ Increased data reuse (e.g. through private memory)

Other performance considerations

57

Example: Reduction

(Parallel Sum)

Resulting Performance
[GB/s]

0

10

20

30

40

50

60

70

80

90

100

reduction1 reduction2 reduction3 reduction4 reduction5 reduction6

Tesla C2050

AMD Radeon HD7950

59

Optimization

See white paper

Mark Harris (NVIDA):

Optimizing Parallel

Reduction in CUDA

Conclusions

 Effect of the inefficiencies
1. Occupancy ~ idling

2. ILP ~ idling

3. Branching ~ instruction inefficiency

4. Synchronization ~ idling & synchronization
instruction overhead

5. Memory level ~ latencies

6. Memory access pattern ~ concurrent memory
access ~ latencies

Overview

62

Programming for Performance
Minimizing the overall run time

 Minimize idle time
◦ Maximize parallelism
◦ Minimize dependencies
◦ Minimize synchronization

 Minimize software and hardware overheads
◦ Memory access

 Data placement

 Global memory access patterns

 shared memory access patterns

◦ Computation
 Minimize excess computations

 Minimize branching
 Remembering data access is slow and computation fast

63

Program step-by-step, gradually add
instructions, verify subresults

1. Debug
◦ An individual kernel thread can be executed step-

by-step

2. Print
◦ Supported in CUDA?

3. Write subresults to output array
◦ Add an additional array in which you store subresults which

you can then print on the CPU

Tips for programming

64

 Make program variants
◦ Start with naïve version, gradually add optimized

versions

◦ Tip: use same signature (parameters) for each kernel!

 Make compute-only and memory-only versions
to identify main bottleneck
◦ Compute-only: put memory access in a conditional as

with the microbenchmarks (to trick the compiler)

◦ Memory-only: outcomment calculations

◦ Ideal memory access pattern: check the influence of
the memory access pattern by creating a version with
ideal, coalesced bank-conflict-free access

Tips for optimization

65

	Slide 1: GPU Computing
	Slide 2
	Slide 3
	Slide 4: Estimate overhead
	Slide 5
	Slide 6: Example: video decoding
	Slide 7: Amdahl’s Law
	Slide 8: Amdahl’s Law
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Keep all processing units busy
	Slide 13: The effect of parallelism
	Slide 14: The effect of parallelism
	Slide 15: Hiding of Memory Latencies
	Slide 16: Maximize Parallelism & Occupancy
	Slide 19
	Slide 20: Dependent Code
	Slide 21: Maximize parallelism on the multiprocessor
	Slide 22: TLP versus ILP and MLP
	Slide 23: Computational Performance A function of TLP and ILP
	Slide 24: Memory throughput A function of TLP and MLP
	Slide 25
	Slide 26: Local and global synchronization
	Slide 27: Lost cycles due to local synchronization
	Slide 28: Minimize synchronization overhead
	Slide 29: Minimize synchronization overhead
	Slide 30
	Slide 31: Architecture – Memory Model
	Slide 32: Exploit memory hierarchy
	Slide 33: Memory Levels
	Slide 34: Memory Levels
	Slide 35
	Slide 36: SIMT Conditional Processing
	Slide 37: Example: tree traversal
	Slide 38: Branch Divergence Remedies
	Slide 39
	Slide 40: Concurrent Memory Access
	Slide 41
	Slide 42: Global memory
	Slide 43: Global Memory Access
	Slide 44: Concurrent data access
	Slide 45: Concurrent data access
	Slide 47: Global Memory Access Impact of strided access
	Slide 48: Global Memory Access Array of struct vs struct of arrays
	Slide 50: shared Memory access
	Slide 51: Bank Addressing Examples
	Slide 52: Bank Addressing Examples
	Slide 53: shared Memory access
	Slide 54: shared Memory access
	Slide 55
	Slide 56: Other performance considerations
	Slide 57: Other performance considerations
	Slide 58
	Slide 59: Resulting Performance [GB/s]
	Slide 60
	Slide 61
	Slide 62: Overview
	Slide 63: Programming for Performance Minimizing the overall run time
	Slide 64: Tips for programming
	Slide 65: Tips for optimization

