

GPU Computing

>>> Lesson 5: Performance Limiters

Gauthier Lafruit & Jan Lemeire 2024-2025

http://parallel.vub.ac.be/education/gpu

GPU processing power is not for free

Obstacle 1

Hard to implement

Obstacle 2

Hard to get efficiency

- The potential peak performance is given by the roofline model
 - Computational Intensity of kernel determines whether computation or memory bound.
- However, performance limiters will introduce overhead and result in lower performances
 - Deviations from the peak performance are due to <u>lost</u>
 <u>cycles</u>: cycles during which other instructions could have been executed, the pipeline is not used most efficiently
 - · Idle cycles, or
 - Cycles of inefficient execution of instructions

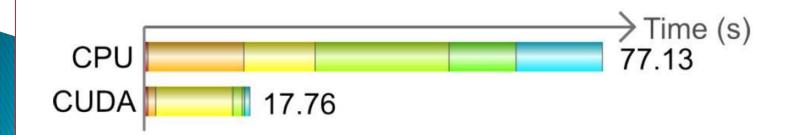
Estimate overhead

- Estimate a performance bound for your kernel
 - Compute bound: t₁ = #operations / #operations per second (peak performance)
 - Memory bound: t₂ = # memory accesses / #accesses per second (bandwidth)
 - Minimal runtime t_{min} = max(t₁, t₂)
 <u>expressed by roofline model</u>
- Measure the actual runtime
 - $^{\circ}$ $\mathbf{t}_{actual} = \mathbf{t}_{min} + \mathbf{t}_{overhead}$
- Try to account for and minimize toverhead

0. Limited Parallelism

Example: video decoding

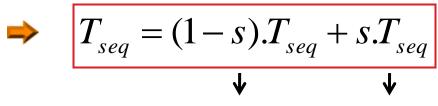
Decoding 1080p video sequence			
Stage	CPU (s)	CUDA (s)	_
1 MOTION_DECODE	0.64	0.64	
2 MOTION_RENDER	16.16	1.33	← 12 ×
3 RESIDUAL_DECODE	12.00	12.94	
4 WAVELET_TRANSFORM	22.52	1.63	← 14 ×
5 COMBINE	11.27	0.39	← 29 ×
6 UPSAMPLE	14.53	0.85	← 17 ×
Total	77.13	17.76	← 4.3 ×



erf rm ce nal sis

Amdahl's Law

Limitations of inherent parallelism: a part s of the algorithm is not parallelizable



$$T_{seq} = (1-s).T_{seq} + s.T_{seq}$$

$$T_{par} = \frac{(1-s).T_{seq}}{p} + s.T_{seq}$$

parallelizable not parallelizable

$$Speedup_{max} = \frac{T_{seq}}{T_{par}} = \frac{T_{seq}}{\frac{(1-s).T_{seq}}{p} + s.T_{seq}} = \frac{p}{1 + (p-1).s}$$

Assume no other overhead

Amdahl's Law

$$\Rightarrow Speedup < \frac{p}{1 + (p-1).s}$$

$$Efficiency < \frac{1}{1 + (p-1).s}$$

If p is big enough:

$$Speedup < \frac{1}{s}$$

S	Speedup _{max}
10%	10
25%	4
50%	2
75%	1.33

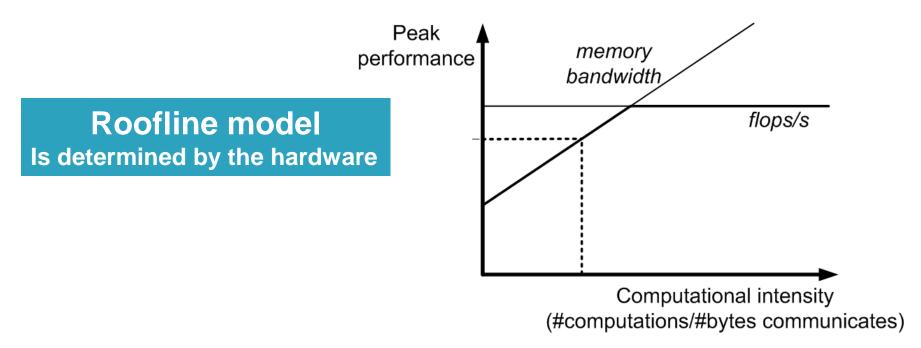
If the algorithm limits the amount of possible parallel execution, then the speedup is limited.

1. Compute intensity

What is taking longer: memory transfer or the computations?

See lesson 1

Depends on Computational Intensity (CI)



Equation of Memory line: peak performance = CI * BW

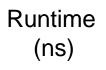
2. Occupancy

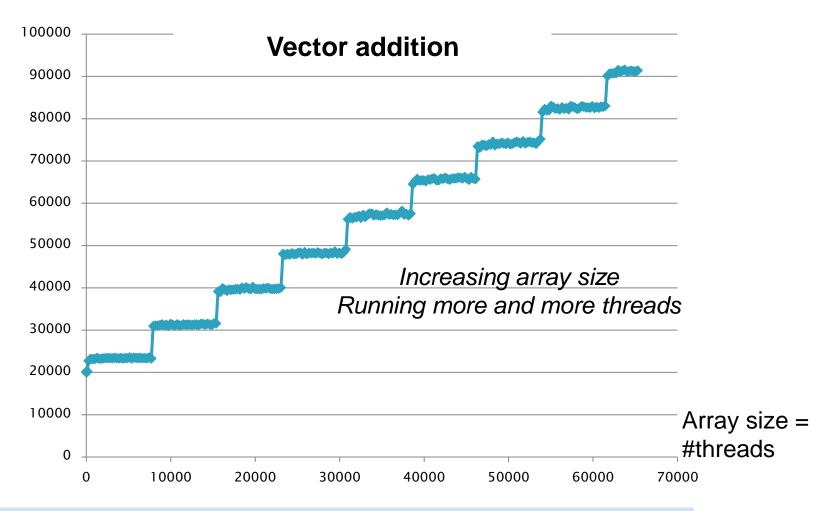
Keep all processing units busy

Enough parallelism (threads) is necessary

- For all cores (= MultiProcessors)
- For all Scalar Processors (SPs)
 - Hardware threads (warps) enable SIMT (lesson 3)
- To fill pipeline of scalar processor
 - With instructions of different warps
 - Simultaneous multithreading (lesson 3)
 - Results in Latency hiding

The effect of parallelism





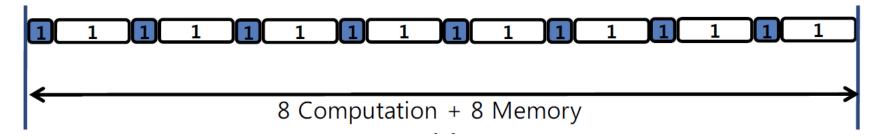
Only when all pipelines are full, the runtime increases

The effect of parallelism

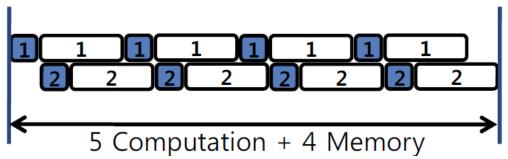
- Processor needs sufficient threads to keep the system busy, to keep all pipelines full; to get full performance.
- if GPU is not fully used, additional work can be scheduled without cost
 - see previous slide with graph of runtime in function of the number of threads for a vector addition
 - the runtime does not increases as long as GPU is not full.
 - function shaped as a staircase
 - only just before the jump to the next step the GPU is fully busy
- Additionally, concurrent threads also needed for latency hiding.

Hiding of Memory Latencies

1 warp, without latency hiding



2 warps running concurrently



4 warps running concurrently: full latency hiding

Maximize Parallelism & Occupancy

- A great number of thread blocks:
 - A multiple of the number of cores times the occupancy in thread block count
 - If each core can run 4 thread blocks simultaneously, the number of thread blocks should be at least 4 * #cores
- Occupancy = Number of warps running concurrently on a core
 - Relative occupancy = occupancy divided by maximum number of warps that can run concurrently on a core
 - Is determined by 4 hardware resources, see lesson 3

3. ILP & MLP

Dependent Code

- Well-known fact: latency is hidden by launching other threads
- Less-known fact: one can also exploit *Instruction Level Parallelism* (ILP) in one thread.
 - Data level parallelism in one thread.
- Performance limiter is absence of ILP or MLP:
 - Dependent instructions can not be parallelized.
 - Dependent memory accesses can not be parallelized.

Maximize parallelism on the multiprocessor

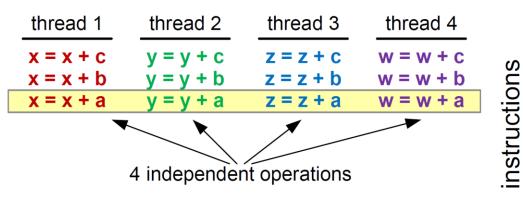
- Occupancy = Thread-Level Parallelism (TLP)
 - Scheduler has more choice to fill the pipeline
- Instruction Level Parallelism (ILP)
 - Independent instructions within one warp
 - Can be executed concurrently
- Memory Level Parallelism (MLP)
 - Independent memory requests for one warp
 - Can be serviced concurrently

Peak performance is reached for lower occupancies (fewer concurrent warps) if the ILP and MLP are increased.

TLP versus ILP and MLP

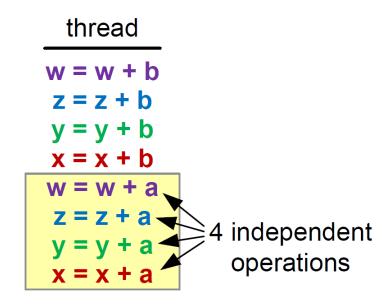
Thread-Level Parallelism

Independent threads



Instruction-Level Parallelism

Independent instructions

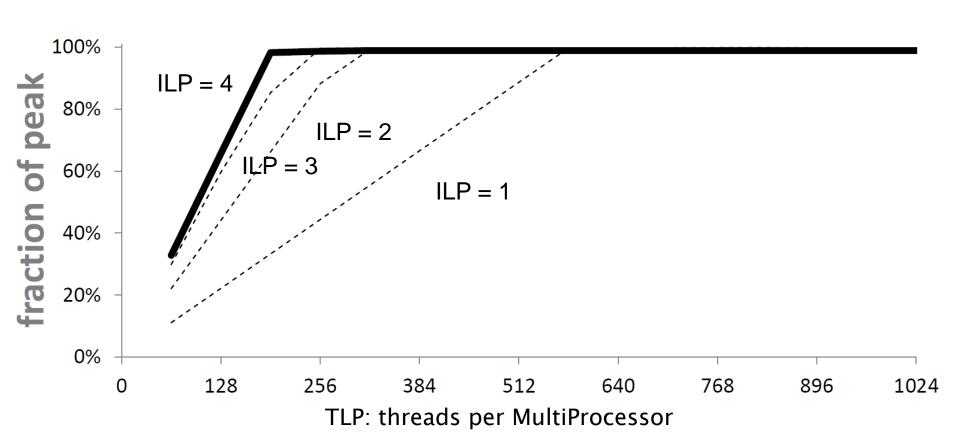


Memory-Level Parallelism

• One thread reading / writing 2, 4, 8, 16, ... floating point values

Computational Performance

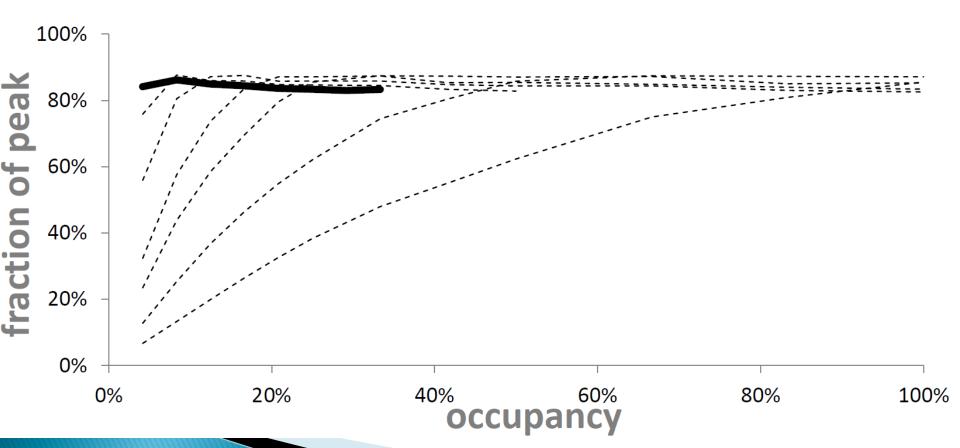
A function of TLP and ILP



Occupancy roofline

Memory throughput A function of TLP and MLP

- MLP: 1 float, 2 float, 4 float, 8 float, 8 float2, 8 float4 and 14 float4
- TLP: occupancy

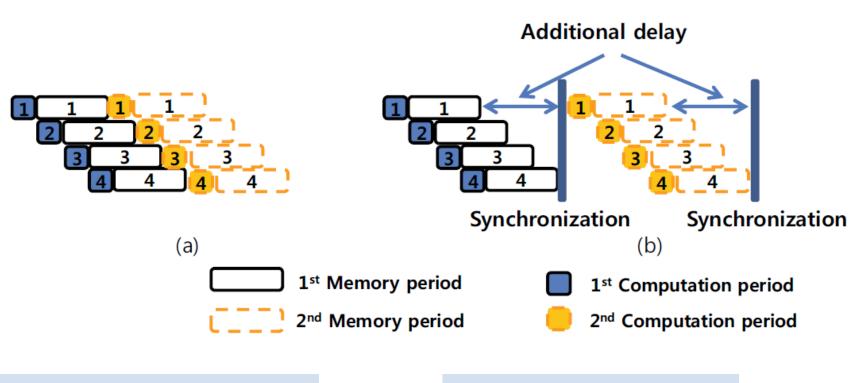


4. Synchronization

Local and global synchronization

- Local synchronization
 - threads of the same group can synchronize:
 - __syncthreads();
 - threads that reach the barrier must wait
 - Cannot be chosen by the scheduler
 - Less potential for latency hiding
- Global synchronization should happen across kernel calls
 - A new kernel must be launched to ensure synchronization (thread blocks have all reached the same spot in the algorithm)
 - Overhead!

Lost cycles due to local synchronization



No synchronization

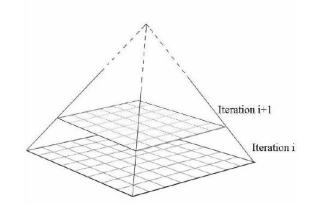
Barrier after each memory period

Minimize synchronization overhead

- Local synchronization:
 - Keep workgroups small → less effect
 - with multiple concurrent workgroups latency hiding is still possible
 - No synchronization is needed within a warp because they run in lockstep anyway!

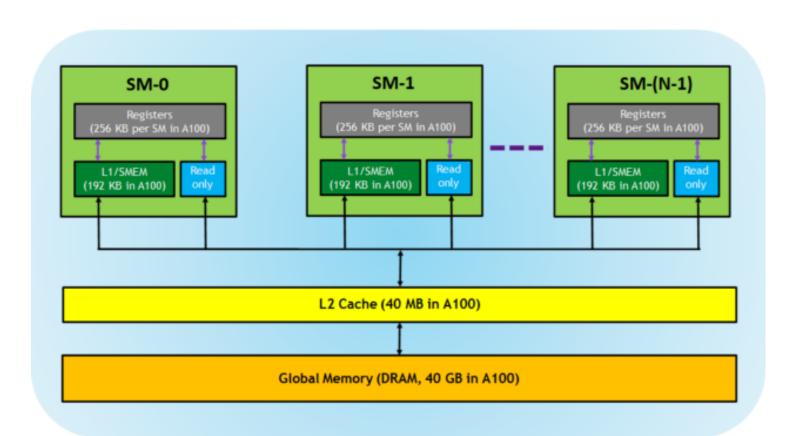
Minimize synchronization overhead

- Global synchronization
 - Exchange computations for memory access
 - E.g. Hotspot: simulate heat flow (e.g. on a chip)
 - Heat_{point} = f(heat_{neighbors})
 - Points are partitioned over the thread blocks, each thread block simulates NxN points
 - Calculate for NxN points and globally synchronize after each time step?
 - No: calculate different iterations independently with overlapping borders for each thread block
 - Iteration 0: (N+k)x(N+k) points
 - •
 - Iteration k-1: NxN points



5. Memory hierarchy

Architecture - Memory Model



Exploit memory hierarchy

- Data placement is crucial for performance
- Maximally use local memory and private memory (registers)
 - Copy shared data to local memory
 - See examples of Convolution or Matrix Multiplication

Memory Levels

- Global memory
 - Share data between GPU and CPU
 - Large latency and low throughput
 - Access should be minimized
 - Cached in L2-cache on modern GPUs
- Constant memory
 - Share read-only data between GPU and CPU
 - Is cached in L1 cache
 - Limited size. Typically 64 KB
 - Prefer it to local memory for small read-only data

Memory Levels

- Local memory
 - Share data within a work group
 - Use it if the same data is used by multiple threads in the same work group
- Private memory (registers)
 - Lowest latency highest throughput
 - Watch out: private arrays will be stored in global memory, but cached in L1-cache

6. Branch divergence

SIMT Conditional Processing

- Unlike threads in a CPU-based program, SIMT threads cannot follow different execution paths
 - All threads of a warp/wavefront are executing the same instruction, they are executed in lockstep
- Program flow diverged is solved by instruction predication
- Example kernel: if (x < 5) y = 5; else y = -5;
 - The SIMT warp performs all 3 instructions
 - y = 5; is only executed by threads for which x < 5
 - y = -5; is executed by all others
 - a bit is used to enable/disable actual execution
 - See lesson 3
- Warp branch divergence decreases performance: cycles are lost

Example: tree traversal

- Given: a (search) tree
- Each thread does a lookup in the tree: follows a (different) path in a tree, from root to leave.
 - Implemented with a while-loop
- If not all leaves are at the same depth: the highest depth determines the execution time of a warp/wavefront
- Imbalances in the tree result in many lost cycles

Branch Divergence Remedies

Static thread reordering

- Group threads which will follow the same execution path
- Typical in reduction operations, see extended example at the end of lesson

Dynamic thread reordering

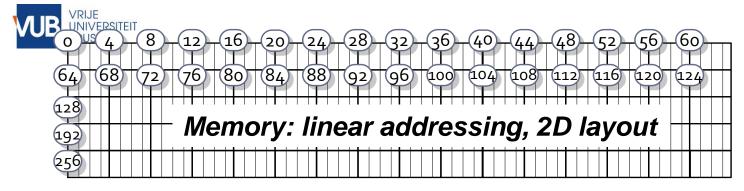
- Reorder at runtime, e.g. using a lookup table
- OK if time lost reordering < time won due to reordering

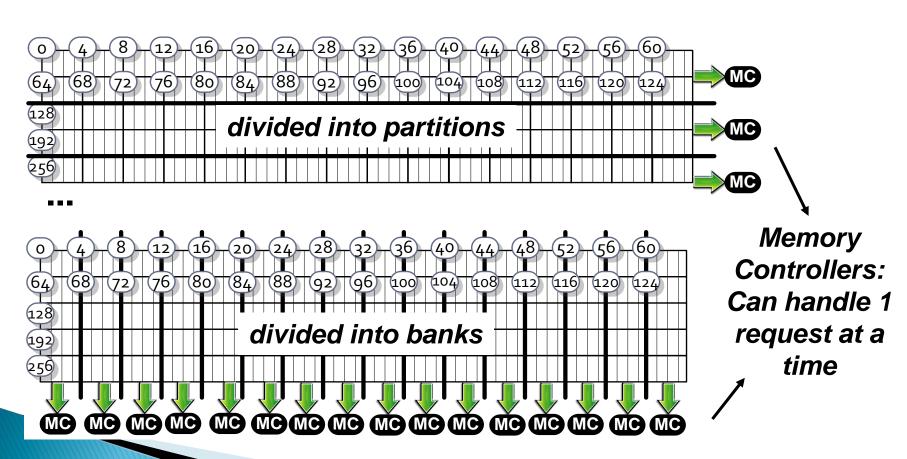
Performance Limiters

7. Concurrent memory access

Concurrent Memory Access

- Each Multiprocessor has active threads:
 - Simultaneous access of global memory
- Each hardware thread (warp) executes 32/64 kernel threads
 - Simultaneous access of global memory
 - Simultaneous access of shared memory
- But: concurrent memory access is limited by the hardware!
 - Efficient access depends on memory organization
 - Let's discuss this for global and shared memory





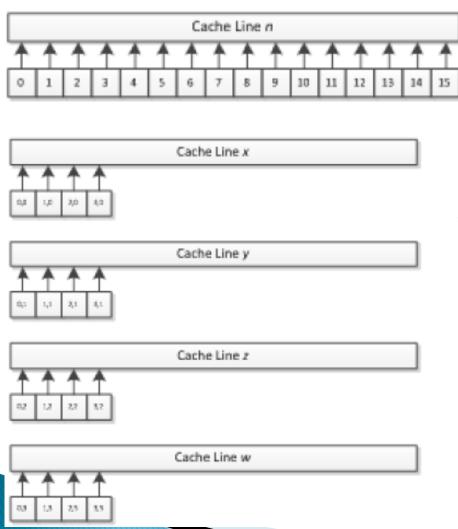
Global memory

- Divided into partitions
 - 1. NVIDIA GPUs typically have 8 partitions
 - 2. Memory controller can serve 1 segment at a time (\approx cache line of 4x32 Bytes)
- 1: Active warps of different cores/multiprocessors simultaneously access global memory
 - Partition camping when they access the same partition => serialization of memory requests
 - This is difficult to control and overcome...
- 2: Memory coalescing for warps
 - Accessed elements of a warp should belong to same aligned segment (≈ cache line)
 - if not (uncoalesced access), memory requests are serialized
 => will take more time

Global Memory Access

- Global memory is organized in segments (cache line), a memory controller can serve 1 segment at a time.
- Memory requests of warp are handled together
 - Data elements of the same segment are grouped and will be served together
- Ideal situation:
 - All bytes of necessary segments are needed
 - The number of bytes that need to be accessed to satisfy a warp memory request is equal to the number of bytes actually needed by the warp for the given request
- A few examples will clarify this

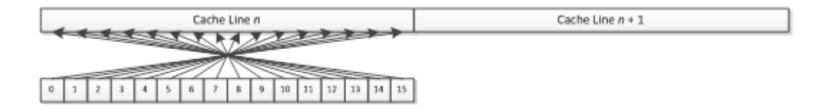
Concurrent data access



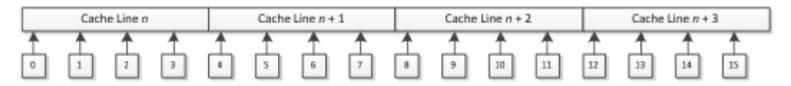
Access is grouped per cache line Reads of cache lines are serialized => Penalty if multiple cache lines are needed for 1 warp memory request

Cache Line n+1

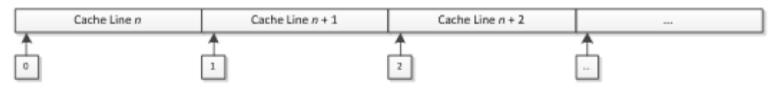
Concurrent data access



Stride of 4 => 1/4th of performance



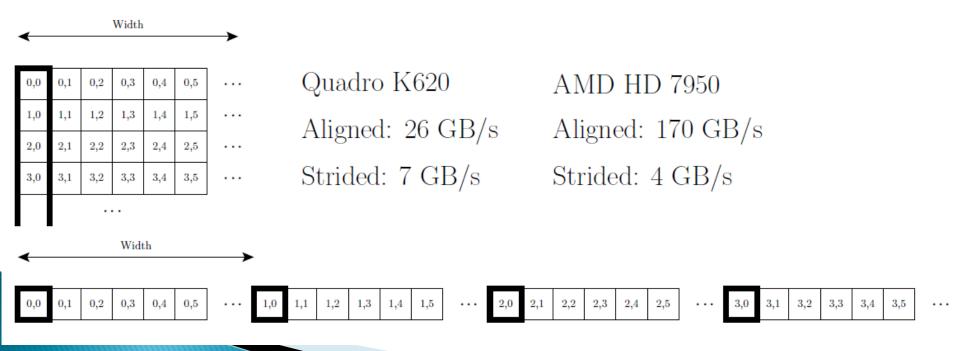
Stride of 16 => 1/16th of performance



Global Memory Access

Impact of strided access

- 2-D and 3-D data stored in flat memory space
 - Strided access is not a good idea (e.g. access columns of a matrix)



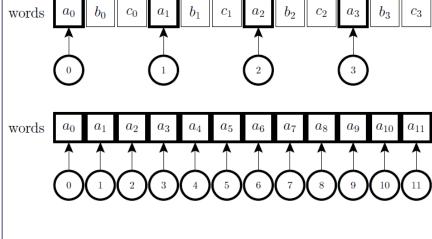
Global Memory

Global Memory Access

Array of struct vs struct of arrays

```
typedef struct {
       float a, b, c;
} triplet_t;
 kernel void aos(__global triplet_t
*triplets) {
    float a =
triplets[get_global_id(0)].a;
 _kernel void soa(___global float *as,
                    _global float *bs,
                  __global float *cs)
    float a = as[get_global_id(0)];
```

AOS introduces strides
If elements are visited at different
moments



SOA removes strides

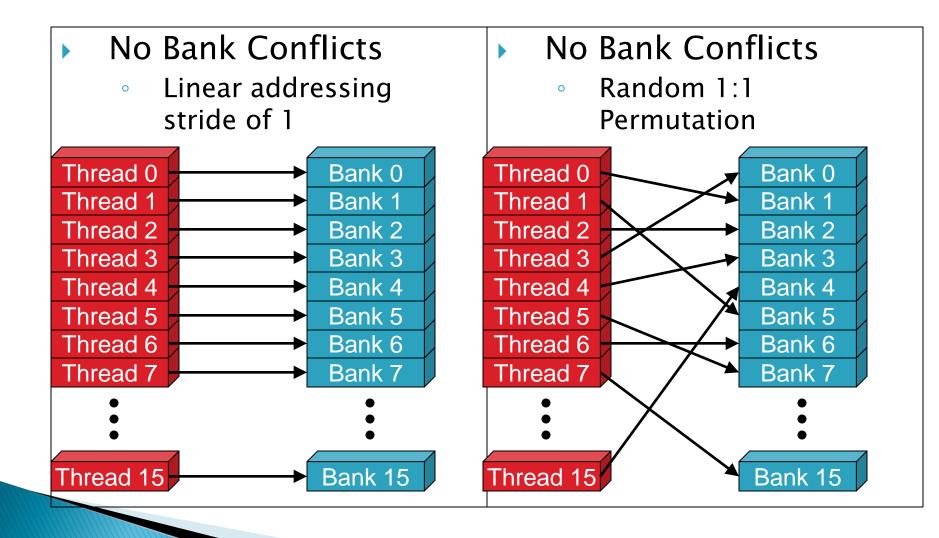
shared Memory access

- shared memory is divided into banks
- Each bank can service one address per cycle
- Multiple simultaneous accesses to a bank result in a bank conflict
 - Conflicting accesses are serialized
 - Cost = max # simultaneous accesses to single bank
 - No bank conflicts when
 - All threads of warp access another bank
 - All threads of warp read the same address

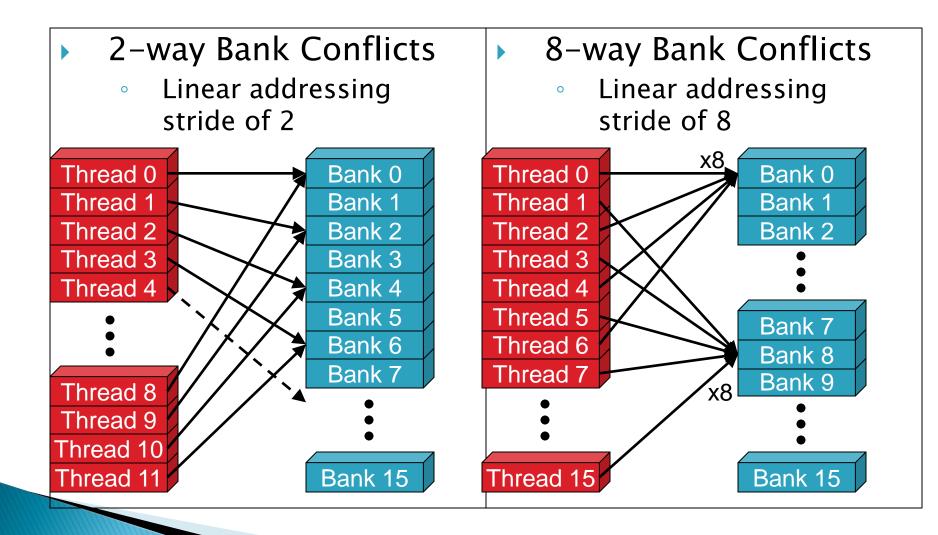
Bank 0
Bank 1
Bank 2
Bank 3
Bank 4
Bank 5
Bank 6
Bank 7

Bank 15

Bank Addressing Examples



Bank Addressing Examples

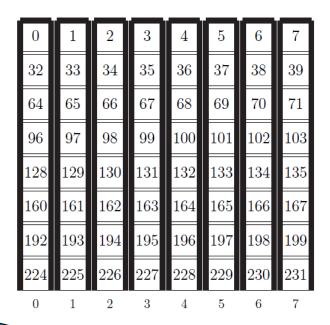


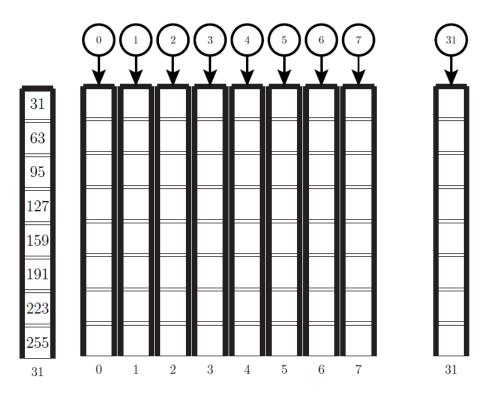
shared Memory access

- Word storage order:
 - Banks are 4 bytes wide

Row access

__shared float sh[32][32];





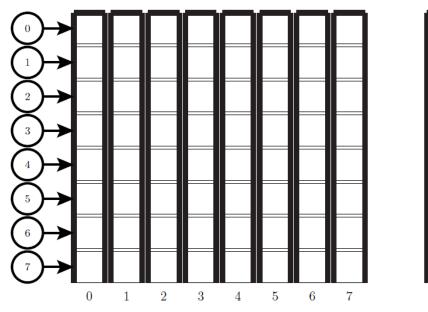
shared Memory access

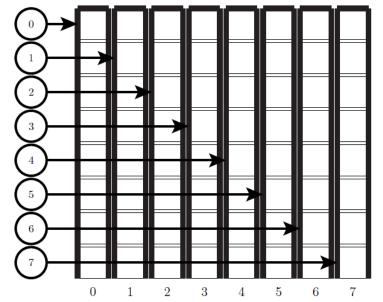
Column access

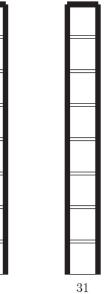
__shared float sh[32][32];

Column access

__shared float sh[32][33];







Worst case: Threads of the same warp accessing the same column of a matrix having a width of a multiple of 32

Solution: 'pad' matrix with an extra column => no more bank conflicts

Performance Limiters

8. Other Performance Considerations

Other performance considerations

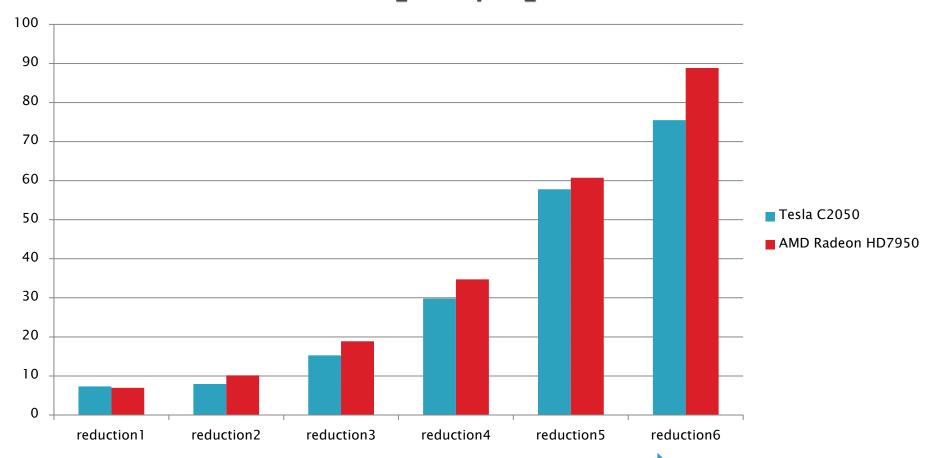
- Unroll loops with a fixed number of iterations
 - Removes loop overhead
 - Index computations and tests
 - Increases ILP and MLP
 - Use #pragma unroll
- Vectorization
 - Use build-in vector types: float2, float4, int2, int4
 - Especially for AMD GPUs

Other performance considerations

- Let one thread process multiple data items
 - Thread index calculation overhead is amortized
 - ILP and MLP will increase
 - Extra potential for loop unrolling
 - Increased data reuse (e.g. through private memory)

Example: Reduction (Parallel Sum)

Resulting Performance [GB/s]



Optimization

See white paper Mark Harris (NVIDA): Optimizing Parallel Reduction in CUDA

Conclusions

Overview

- Effect of the inefficiencies
 - 1. Occupancy ~ idling
 - 2. ILP ~ idling
 - 3. Branching ~ instruction inefficiency
 - Synchronization ~ idling & synchronization instruction overhead
 - 5. Memory level ~ latencies
 - 6. Memory access pattern ~ concurrent memory access ~ latencies

Programming for Performance

Minimizing the overall run time

- Minimize idle time
 - Maximize parallelism
 - Minimize dependencies
 - Minimize synchronization
- Minimize software and hardware overheads
 - Memory access
 - Data placement
 - Global memory access patterns
 - shared memory access patterns
 - Computation
 - Minimize excess computations
 - Minimize branching
- Remembering data access is slow and computation fast

Tips for programming

Program step-by-step, gradually add instructions, verify subresults

- Debug
 - An individual kernel thread can be executed stepby-step
- 2. Print
 - Supported in CUDA?
- 3. Write subresults to output array
 - Add an additional array in which you store subresults which you can then print on the CPU

Tips for optimization

- Make program variants
 - Start with naïve version, gradually add optimized versions
 - Tip: use same signature (parameters) for each kernel!
- Make compute-only and memory-only versions to identify main bottleneck
 - Compute-only: put memory access in a conditional as with the microbenchmarks (to trick the compiler)
 - Memory-only: outcomment calculations
 - Ideal memory access pattern: check the influence of the memory access pattern by creating a version with ideal, coalesced bank-conflict-free access