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GPU processing power is not for free

Obstacle 1

Hard to implement

Obstacle 2

Hard to get efficiency
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» The potential peak performance is given by the
roofline model

- Computational Intensity of kernel determines whether
computation or memory bound.

» However, performance limiters will introduce
overhead and result in lower performances

- Deviations from the peak performance are due to lost
cycles: cycles during which other instructions could have
been executed, the pipeline is not used most efficiently

- ldle cycles, or
- Cycles of inefficient execution of instructions




vell Estimate overhead

» Estimate a performance bound for your kernel
- Compute bound- t, - #operations / #operations per second
(peak performance)

- Memory bound. t, = # memory accesses / #accesses per second
(bandwidth)

- Minimal runtime t_. = max(t,, t,)
expressed by roofline model

» Measure the actual runtime
o b .+t

actual = "min overhead

» Try to account for and minimize t_,_.1cqd




Performance Limiters

O. Limited
Parallelism
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Example: video decoding

Decoding 1080p video sequence

Stage CPU (s) CUDA (s)
1 MOTION_DECODE 0.64 0.64
2 MOTION _RENDER 16.16 1.33 <*+—12 %
3 RESIDUAL _DECODE 12.00 12.94
4 WAVELET_TRANSFORM 22.52 1.63 <+—14 %
5 COMBINE 11.27 0.39 «4—29 x
6 UPSAMPLE 14.53 0.85 «-—17 x
Total 77.13 17.76 <4+—4.3 X

> Time (s)
CPU l | | 7713
CUDA i 17.76
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Amdahl’s Law

¢ Limitations of inherent parallelism: a part s of

the algorithm is not parallelizable
(1-5s).T
D (T = (1- s).TSeq +8.T ¢, har = i S.T e
D D P
parallelizable not parallelizable
=>  |Speedup, = Toog _ Tseg ___ P Assume
Toor  (1=5)Tey 1+(p-1).s| no other
0 ! seq overhead




Amdahl’s Law

P .
= |Speedup< Efficiency <
P P 1+(p-1.s y 1+(p-1).s
s speedupn,,
1 10%
Speedup< — o
peetlp <~ 25% 4
50% 2
/5% 1.33

If the algorithm limits the amount of possible
parallel execution, then the speedup is limited.




Performance Limiters

1. Compute
Intensity



VRIJE
UNIVERSITEIT
BRUSSFI

What is taking longer: memory transfer or the computations?

See lesson 1

Depends on Computational Intensity (Cl)

Peak A
performance memory
bandwidth
Roofline model flops/s
Is determined by the hardware
>

Computational intensity
(#computations/#bytes communicates)

Equation of Memory line: peak performance = Cl * BW

10




Performance Limiters

2. Occupancy
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Keep all processing units busy

Enough parallelism (threads) is necessary
» For all cores ( = MultiProcessors)
» For all Scalar Processors (SPs)
- Hardware threads (warps) enable SIMT (lesson 3)

» To fill pipeline of scalar processor
- With instructions of different warps
- = Simultaneous multithreading (lesson 3)
> Results in Latency hiding

12



The effect of parallelism

] 100000 .
Runtime Vector addition

(ns) 90000 J
80000
70000 N
60000 I

50000
240000 Increasing array size
Running more and more threads
30000 -
20000
10000 Array size =
0 | | | | | | #threads
0 10000 20000 30000 40000 50000 60000 70000

Only when all pipelines are full, the runtime increases

i —_ 13



The effect of parallelism

- Processor needs sufficient threads to keep the system busy, to keep
all pipelines full; to get full performance.
- iIf GPU is not fully used, additional work can be scheduled without
cost
- see previous slide with graph of runtime in function of the
number of threads for a vector addition
- the runtime does not increases as long as GPU is not full.
@ function shaped as a staircase
- only just before the jump to the next step the GPU is fully busy

- Additionally, concurrent threads also needed for latency hiding.

14
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Hiding of Memory Latencies

] Memory period @ computation period

» 1 warp, without latency hiding

T ) ) ) S S S O

1

<€

8 Computation + 8 Memory

» 2 warps running concurrently

<€

5 Computation + 4 Memory
» 4 warps running concurrently: ful

latency hiding
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Maximize Parallelism & Occupancy

» A great number of thread blocks:

- A multiple of the number of cores times the occupancy in
thread block count

> |f each core can run 4 thread blocks simultaneously, the
number of thread blocks should be at least 4 * #cores

» Occupancy = Number of warps running
concurrently on a core

- Relative occupancy = occupancy divided by maximum
number of warps that can run concurrently on a core

> |s determined by 4 hardware resources, see lesson 3

16



Performance Limiters

3.ILP & MLP
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Dependent Code

» Well-known fact: latency is hidden by launching other threads

» Less-known fact: one can also exploit /nstruction Leve/
Parallelism (ILP) in one thread.

- Data level parallelism in one thread.

» Performance limiter is absence of ILP or MLP:
- Dependent instructions can not be parallelized.
- Dependent memory accesses can not be parallelized.

20



Maximize parallelism on the multiprocessor

» Occupancy = Thread-Level Parallelism (TLP)
> Scheduler has more choice to fill the pipeline
» Instruction Level Parallelism (ILP)
> Independent instructions within one warp
- Can be executed concurrently
» Memory Level Parallelism (MLP)
- Independent memory requests for one warp
> Can be serviced concurrently

Peak performance is reached for lower occupancies (fewer
concurrent warps) if the ILP and MLP are increased.

21
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TLP versus ILP and MLP

Thread-Level Parallelism

»

thread 1

Independent threads

thread 2 thread 3 thread 4

X=X+C y=y+c Zz=z+C W=WwW+cC
X=X+b y=y+b z=z+b w=w+b

| xX=x+a y=y+a z=z+a w=w+a |

TSN S

4 independent operations

Memory-Level Parallelism

One thread reading / writing 2, 4, 8, 16, ...

Instruction-Level Parallelism
» Independent instructions

thread
i w=w+Dbhb
I z=z+Db
B y=y+b
2 Xx=x+Db
7p} _—
c wW=w+a
; ;:2:\4 independent
17 operations
v =xXx+a

floating point values

22
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Computational Performance
A function of TLP and ILP

100% -

80% -

60% -

40% -

20% -

fraction of peak

O% I I I I I | | |
0 128 256 384 512 640 768 896 1024

TLP: threads per MultiProcessor

Occupancy roofline
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Memory throughput
A function of TLP and MLP

» MLP: 1 float, 2 float, 4 float, 8 float, 8 float2, 8 float4 and 14 float4
» TLP: occupancy

100% -
80% -
60% -

40% -

20% -

fraction of peak

O% I I I I |

0% 20% 40% 60% 80% 100%
occupancy
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Performance Limiters

4. Synchronization
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Local and global
synchronization

» Local synchronization
- threads of the same group can synchronize:

__syncthreads();
> threads that reach the barrier must wait

- Cannot be chosen by the scheduler
- =» Less potential for latency hiding

» Global synchronization should happen across
kernel calls

> A new kernel must be launched to ensure synchronization
(thread blocks have all reached the same spot in the
algorithm)

> Qverhead!

26
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Lost cycles due to
local synchronization

Additional delay

3 3
4 4

1 (—)|

Synchromzatlon Synchronization

] 1= Memory period @ 1t Computation period

2nd Memory period 2 Computation period

No synchronization Barrier after each
memory period

27
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Minimize synchronization
overhead

» Local synchronization:

- Keep workgroups small = less effect

- with multiple concurrent workgroups latency hiding is
still possible

- No synchronization is needed within a warp because
they run in lockstep anyway!

28
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Minimize synchronization
overhead

» Global synchronization
- Exchange computations for memory access
- E.g. Hotspot: simulate heat flow (e.g. on a chip)

: Heatpoint = f(heatneighbors)
- Points are partitioned over the thread blocks, each thread
block simulates NxN points

- Calculate for NxN points and globally synchronize after each
time step?

- No: calculate different iterations independently with
overlapping borders for each thread block

- Iteration 0: (N+k)x(N+k) points

- |teration k-1: NxN points

29



Performance Limiters

5. Memory
hierarchy
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Architecture - Memory Model

SM-0

SM-1

SM-(N-1)

L2 Cache (40 MB in A100)

l

Global Memory (DRAM, 40 GB in A100)
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Exploit memory hierarchy

» Data placement is crucial for performance

» Maximally use local memory and private
memory (registers)
o Copy shared data to local memory

- See examples of Convolution or Matrix
Multiplication

32
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Memory Levels

» Global memory
> Share data between GPU and CPU
- Large latency and low throughput

- = Access should be minimized
> Cached in L2-cache on modern GPUs

» Constant memory
> Share read-only data between GPU and CPU
> |s cached in L1 cache
> Limited size. Typically 64 KB
- Prefer it to local memory for small read-only data

33
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Memory Levels

» Local memory
- Share data within a work group
- Use it if the same data is used by multiple threads
in the same work group
» Private memory (registers)
- Lowest latency highest throughput

- Watch out: private arrays will be stored in global
memory, but cached in L1-cache

34



Performance Limiters

6. Branch
divergence



SIMT Conditional Processing

» Unlike threads in a CPU-based program, SIMT threads cannot
follow different execution paths

o All threads of a warp/wavefront are executing the same
instruction, they are executed in lockstep

» Program flow diverged is solved by instruction predication
» Example kernel: if (x < 5) y = 5; else y = -5;

o

The SIMT warp performs all 3 instructions

-y = 5; is only executed by threads for which x < 5
-y = -5; is executed by all others

a bit is used to enable/disable actual execution

See lesson 3

o

(o)

» Warp branch divergence decreases performance: cycles are |ost

386
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Example: tree traversal

» Given: a (search) tree

» Each thread does a lookup in the tree: follows a
(different) path in a tree, from root to leave.
> Implemented with a while-loop

» If not all leaves are at the same depth: the highest
depth determines the execution time of a
warp/wavefront

» Imbalances in the tree result in many lost cycles

37
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Branch Divergence Remedies

» Static thread reordering

- Group threads which will follow the same execution
path

- Typical in reduction operations, see extended
example at the end of lesson

» Dynamic thread reordering
- Reorder at runtime, e.g. using a lookup table

- OK if time lost reordering < time won due to
reordering

38



Performance Limiters

/. Concurrent
memory access



Concurrent Memory Access

» Each Multiprocessor has active threads:
» Simultaneous access of global memory

» Each hardware thread (warp) executes 32/64
kernel threads
» Simultaneous access of global memory
» Simultaneous access of shared memory

» But: concurrent memory access is limited by
the hardware!

o Efficient access depends on memory organization
- Let’s discuss this for global and shared memory

40
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Global memory

» Divided into partitions

1. NVIDIA GPUs typically have 8 partitions
2. Memory controller can serve 1 segment at a time (= cache

line of 4x32 Bytes)
» 1: Active warps of different cores/multiprocessors
simultaneously access global memory
- Partition camping when they access the same partition =>

serialization of memory requests
> This is difficult to control and overcome...

» 2: Memory coalescing for warps
- Accessed elements of a warp should belong to same aligned

segment (= cache line)
- if not (uncoalesced access), memory requests are serialized

=> will take more time

42
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Global Memory Access

» Global memory is organized in segments (cache
line), a memory controller can serve 1 segment at a
time.

» Memory requests of warp are handled together

- Data elements of the same segment are grouped and will
be served together

» ldeal situation:

- All bytes of necessary segments are needed

- The number of bytes that need to be accessed to satisfy a
warp memory request is equal to the number of bytes
actually needed by the warp for the given request

» A few examples will clarify this
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Concurrent data access

i —_

Cache Lirse n CacheLlinenr+1
e e e e e O O 1
Cache Lire x
Frrt
aall il s Access is grouped per cache line
T Reads of cache lines are serialized
FX X ¥ => Penalty if multiple cache lines
o [ [ [ are needed for 1 warp memory
Cache Line 2 requeSt
tt11
Cachie Line w
Frrs

44




Concurrent data access

Cache Line n Calhe Linea+ 1

Stride of 4 => 1/4th of performance

Cache Line rr Cache linen+ 1 Cache Lir= n+ 2 Cache Lin=rn+ 3

L 1 2 3 L ] G ¥ 3 ] n 11 é 13 14

Stride of 16 => 1/16th of performance

Cache Line n Cache Linen+ 1 Cache Linen+ 2

f t 1 T

(=]
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Global Memory Access

Impact of strided access

» 2-D and 3-D data stored in flat memory
space

- Strided access is not a good idea (e.g. access
columns of a matrix)

Width

Rl Bl I I Quadro K620 AMD HD 7950
. Aligned: 26 GB/s Aligned: 170 GB/s
32|33 | 3| 35 | - Strided: 7 GB/s Strided: 4 GB/s

Width

. 2,1 22 | 23|24 |25]| --- §30f31] 32

3,3 | 34 3.5

47
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Global Memory Access
Array of structvs struct of arrays

typedef struct {

float a, b, c; AQOS introduces strides
} triplet_t; If elements are visited at different
moments

__kernel void aos(__global triplet_t
7':-tr--i p'| etS) { words | @o | bo || Co ‘l ay & ‘l az || bo || €2 ‘l az || b3 || €3

float a = (%) (%) (%)
triplets[get_global_id(0)].a;

words ﬂo 01 3 I g I (14 I Qg I fls I g ICH 011

kernel void soa(__global float *as, éééééééééééé
__global float *bs,

__global float *cs)

{ SOA removes strides
float a = as[get_global_id(0)];

48



shared Memory access

» shared memory is divided into banks
» Each bank can service one address per cycle

» Multiple simultaneous accesses to a bank
result in a bank conflict
> Conflicting accesses are serialized
o Cost = max # simultaneous accesses to single bank
» No bank conflicts when

- All threads of warp access another bank
- All threads of warp read the same address

50
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shared Memory

Bank Addressing Examples

» NoO

o

Thread O
Thread 1
Thread 2
Thread 3
Thread 4

Thread 5
Thread 6
Thread 7

Thread 15

Bank Conflicts

Linear addressing
stride of 1

» No Bank Conflicts

o Random 1:1
Permutation

Bank 15

Thread O
Thread 1
Thread 2

Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 15

Bank 15




Bank Addressing Examples

» 2-way Bank Conflicts |» 8-way Bank Conflicts

> Linear addressing > Linear addressing
stride of 2 stride of 8

Thread O
Thread 1

Thread 2 ~‘
Thread 3 ~"
Thread 4 "r

Thread 8 /

Thread 9

Thread 10
Thread 11 Bank 15

Thread O
Thread 1
Thread 2
Thread 3
Thread 4

Thread 5 ¥

Thread 6 »

Thread 7

4

Thread 15

52
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shared Memory access
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» Word storage order:
> Banks are 4 bytes wide

» Row access
__shared float sh[32][32];

= .
(o] (=] (I

—
w
=}

191

[S]
]
Lo

]
o
[

(==
—
]
w
=
ot
(=]
~1
W
—
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shared Memory access

» Column access » Column access
__shared float sh[32][32]; __shared float sh[32][33];
(2) () l
() (U m
() () ‘
= HH
= S \
= SEEEE
= SHH
0 1 2 3 4 5 6 7 31 0
Worst case: Threads of the same warp Solution: ‘pad’ matrix with an extra
accessing the same column of a matrix column => no more bank conflicts

having a width of a multiple of 32

L >4




Performance Limiters

8. Other
Performance
Considerations
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Other performance considerations

» Unroll loops with a fixed number of iterations

- Removes loop overhead
- Index computations and tests
> Increases ILP and MLP

- Use #pragma unroll

» Vectorization

- Use build-in vector types: float2, float4, int2, int4
- Especially for AMD GPUs
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Other performance considerations

» Let one thread process multiple data items
- Thread index calculation overhead is amortized
o ILP and MLP will increase
- Extra potential for loop unrolling
> Increased data reuse (e.g. through private memory)

57



Example: Reduction
(Parallel Sum)
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Resulting Performance
[GB/s]

90

80

70

60

50
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30

20

reduction] reduction2 reduction3 reduction4 reduction5 reduction6

—
Optimization

m Tesla C2050
m AMD Radeon HD7950
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See white paper
Mark Harris (NVIDA):

Optimizing Parallel
Reduction in CUDA



Conclusions
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Overview

» Effect of the inefficiencies

1.

2
3.
4

o) Ui

Occupancy ~ idling

. ILP ~ idling

Branching ~ instruction inefficiency

. Synchronization ~ idling & synchronization

instruction overhead

. Memory level ~ latencies

Memory access pattern ~ concurrent memory
access ~ latencies
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Programming for Performance
Minimizing the overall run time
» Minimize idle time
- Maximize parallelism
> Minimize dependencies
> Minimize synchronization

» Minimize software and hardware overheads
- Memory access

- Data placement
- Global memory access patterns

- shared memory access patterns
- Computation

- Minimize excess computations
* Minimize branching

» Remembering data access is slow and computation fast
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Tips for programming

Program step-by-step, gradually add
instructions, verify subresults

1. Debug

- An individual kernel thread can be executed step-
by-step
2. Print
> Supported in CUDA?

3. Write subresults to output array

- Add an additional array in which you store subresults which
you can then print on the CPU

64



Tips for optimization

» Make program variants

> Start with naive version, gradually add optimized
versions

- Tip: use same signature (parameters) for each kernel!

» Make compute-only and memory-only versions
to identify main bottleneck
- Compute-only: put memory access in a conditional as
with the microbenchmarks (to trick the compiler)
- Memory-only: outcomment calculations

- ldeal memory access pattern: check the influence of
the memory access pattern by creating a version with
ideal, coalesced bank-conflict-free access

65
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