
Jan Lemeire
2019-2020

http://parallel.vub.ac.be

Lesson 4: The Pipeline
Model

Intro

Goal

 Predict performance

 Understand performance
◦ Identify bottlenecks

◦ Estimate the effect of changes

 Pedagogical tool

The Philosophy of the model

 The GPU is modeled with pipelines: one for each
susbsystem
◦ Basically: the computational and the memory subsystem

 To understand several aspects influencing the
performance, one should understand the behavior
of pipelined processors

 Our performance analysis is based on the
simulation of a dual pipeline model
◦ It does not intend to reflect a hardware-accurate model nor

a cycle-accurate simulation

4

http://parallel.vub.ac.be/pipeline/

Pipeline simulator

 Semi-abstract model of GPU: 1 pipeline for
computional subsystem and 1 pipeline for
memory subsystem

 Based on instruction dependency graph of
program and the latencies of the hardware

Pipeline Analogy

A processing pipeline

Issue latency (λ)

Completion latency (Λ) Time for 1 stage

Is called a cycle

Is equal for all stages

Time to complete all stages

Here: 4 * λ

Single pipeline

 See text of
Lesson 3

 Kernel has 3
dependent
computations

1 thread

2 threads

4 threads

8 threads

L
a

te
n

c
y
-b

o
u

n
d

th
ro

u
g

h
p

u
t-

b
o

u
n

d

Full latency hiding

due to simultaneous

multithreading

Single Pipeline

 One warp and only dependent instructions

➢Completion latency (Λ) determines performance

= length of the pipeline

 Increase occupancy:

➢ latency hiding

➢ Issue latency (λ) determines performance

= 1 cycle for simple pipeline

Determines the peak performance

9

Software ‘3 computations (all dependent)’ & GPU ‘Latencies_1_and_4’

Increase #Threads (warps)

Hardware Parameters: Latencies

 Issue latency (λ): the number of cycles required
between issuing two consecutive independent
instructions
◦ inversely proportional to the peak performance

 Completion latency (Λ): the number of cycles until the
result of an instruction is available for use by a
subsequent instruction

 Both may depend on context: instructions may be
executed inefficiently, resulting in longer latencies

10

Occupancy roofline

 Consider a kernel which has 2 series of 3
independent instructions

 Less concurrent warps needed for full latency
hiding

Instruction-Level Parallelism (ILP)

Model ‘3 computations (two independent instructions)’

Dual Pipeline

 Computation and memory

 Memory access is modeled as a single pipeline

 Λmem >> Λcomp and λmem >> λcomp

➔ More concurrency needed for peak performance

 Communication vs memory bound

 The cost of barrier synchronization

13

Model ‘3 computations and memory (all dependent)’

Compare models with and without barrier

Models ‘balanced graph’, ‘communication-bound graph’ and

‘computation-bound graph’

 Since the scheduling unit is a warp (hardware thread)
consisting of 32 kernel threads (work items), the
simulator is based on warps and not on individual work
items.

 We are interested in the issue and completion latency of
instructions of warps
◦ It will generate 32 executions of the same instruction for all the

32 work items of the warp

◦ In the microbenchmarks we have to divide the CPI by the warp
size (32 for Nvidia)

1 warp applies SIMT

Real GPU is not a simple pipeline

 NVIDIA generations (Processing Elements per
Compute Unit)
◦ Tesla: 8 PEs/CU ➔ 1 warp instruction every 4 clock cycles

◦ Fermi: 32 PEs/CU ➔ 1 warp instruction every clock cycle

◦ Kepler: 192 PEs/CU ➔ 6 warp instructions every clock cycle

◦ Maxwell: 128 PEs/CU ➔ 4 warp instructions every clock cycle

 Pipeline model:
◦ One computation pipeline λcomp = f(generation)

 λcomp(Tesla) = 4 clock cycles

 λcomp(Fermi) = 1 clock cycles

 λcomp(Kepler) = 1/6 clock cycles

 λcomp(Maxwell) = 1/4 clock cycles

◦ One memory pipeline
 Latencies depend on type of memory request

 Longer for non-ideal memory access

15

Model

Approach

Software characteristics Hardware characteristics

Pipeline Simulator

Issue latencies (λ)

Completion latencies (Λ)
instruction dependency graph

Execution Profile

Efficiency report

Model input: (1) Software

 Instruction dependency graph (IDG):
◦ An IDG is a Directed Acyclic Graph in which each vertex of

the graph corresponds to a single executed instruction
(type of instruction). The edges between the vertices
represent the dependences between the instructions. They
can be either data dependences or control dependences.

Green node: computation

Orange node: memory request

Yellow node: barrier instruction (on the

work group level)

Model input:
(2) Hardware

 Core count (#Compute Units)

 Clock frequency fclock

 Subsystem set S: the subsystems that can be modelled
by an independent pipeline

 Scheduler: see later

 Issue limit: number of instructions that can be issued
within one cycle

 Available resources Rav: a mapping from R (all types of
resources) to the natural numbers, how much of r is
available on a single core.

Model input:
(2) Hardware continued

 Context set C: A set of all possible contexts.

 Context mapper f: A function that determines the
context in which an instruction i ∈ I is executed given
software characterization and the execution
configuration

 Subsystem and latencies mapper g: A mapping from
(instruction, context) to subsystem, issue and
completion latency

Model input:
(3) Execution configuration

 Group size: The number of work items (kernel threads)
of the group.

 Group count: The total number of work groups. The
total number of kernel threads is the product of group
count and group size.

 Resource requirements Rreq of a work group: A mapping
from R to the natural numbers.

 We simulate 1 core

 #Work groups to be executed on each core:
= ⌈Group count/Core count⌉

 #Concurrent work groups on a core

 Simulation starts with #Concurrent work groups.
Once all threads of work group have finished, a
new work group is started.

Work groups

 Context of each instruction is determined
◦ f : (i ∈ I, kernel code, execution parameters) → c ∈ C

◦ Added to the IDG for each instruction

Simulator preprocessing step 1

 Latencies & subsystem are determined
◦ g : (i ∈ I, c ∈ C) → (s ∈ S, λ, Λ)

 IDG is decorated with:
◦ Issue latency of the instruction

◦ Completion latency of the instruction

◦ Subsystem that executes the instruction

Simulator preprocessing step 2

 Discrete Event Simulation: the state of the system
changes only at discrete moments in time,
triggered by events.

 An instruction has one of the following states:
◦ Waiting: the instruction depends on instructions which have not

yet completed execution.

◦ Ready: all instructions on which the instruction depends have
completed, but the instruction has not been issued yet.

◦ Issued: the instruction has been issued to the appropriate
subsystem, but it has not yet completed execution.

◦ Complete: the instruction has completed execution, its results are
available for dependent instructions.

Simulation

 The scheduler determines which of the ready
instructions is issued next

◦ Priority to the first work groups?
(=WG_PRECEDENCE)

◦ Or Round Robin (RR)?

 An important part of the scheduler is the issue
limit, which determines the maximum number of
instructions that can be scheduled in one cycle.

Instruction scheduler

Inefficiencies

 Will be longer for inefficient execution
◦ Examples

 Global vs local memory

 Bank conflicts

 Branching within a warp

◦ Is discussed in next lesson

 Is modelled by the context

Lambdas are not constants

