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Intro



Goal

 Predict performance

 Understand performance
◦ Identify bottlenecks

◦ Estimate the effect of changes

 Pedagogical tool



The Philosophy of the model

 The GPU is modeled with pipelines: one for each 
susbsystem
◦ Basically: the computational and the memory subsystem

 To understand several aspects influencing the 
performance, one should understand the behavior 
of pipelined processors

 Our performance analysis is based on the 
simulation of a dual pipeline model
◦ It does not intend to reflect a hardware-accurate model nor 

a cycle-accurate simulation
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http://parallel.vub.ac.be/pipeline/



Pipeline simulator

 Semi-abstract model of a GPU multiprocessor: 1 
pipeline for computional subsystem and 1 pipeline 
for memory subsystem

 Based on instruction dependency graph of program 
and the latencies of the hardware



Pipeline Analogy



A processing pipeline

Issue latency (λ)

= inverse of throughput

Completion latency (Λ) 

= end-to-end latency

Time for 1 stage

Is called a cycle

Is equal for all stages

Time to complete all stages

Here: Λ = 4 * λ



Single pipeline

 See text of 
Lesson 3

 Kernel has 3 
dependent 
computations

1 thread

2 threads

4 threads

8 threads
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due to simultaneous 
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Single Pipeline

 One warp and only dependent instructions

➢Completion latency (Λ) determines performance

= length of the pipeline

 Increase occupancy:
 

➢ latency hiding

➢ Issue latency (λ) determines performance

= 1 cycle for simple pipeline

Determines the peak performance
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Software ‘3 computations (all dependent)’ & GPU ‘Latencies_1_and_4’ 

Increase #Threads (warps)



Occupancy roofline
Issue latency (λ)
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Hardware Parameters: Latencies

 Issue latency (λ): the number of cycles required 
between issuing two consecutive independent 
instructions
◦ inversely proportional to the peak performance 

 Completion latency (Λ): the number of cycles until the 
result of an instruction is available for use by a 
subsequent instruction

 Both may depend on context: instructions may be 
executed inefficiently, resulting in longer latencies
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Running A simple 
ADDITION kernel
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Peak performance
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Cycles Per Instruction

 The reversed graph

Completion latency

Issue latency
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Bandwidth
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 Consider a kernel which has 2 series of 3 
independent instructions

 Less concurrent warps needed for full latency 
hiding

Instruction-Level Parallelism (ILP)

Model ‘3 computations (two independent instructions)’



Dual Pipeline

 Computation and memory

 Memory access is modeled as a single pipeline

 Λmem >> Λcomp and λmem >> λcomp

➔ More concurrency needed for peak performance

 Communication vs memory bound

 The cost of barrier synchronization
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Model ‘3 computations and memory (all dependent)’

Compare models with and without barrier

Models ‘balanced graph’, ‘communication-bound graph’ and 

‘computation-bound graph’



 Since the scheduling unit is a warp (hardware thread) 
consisting of 32 kernel threads, the simulator is based 
on warps and not on individual work items.

 We are interested in the issue and completion latency of 
instructions of warps
◦ It will generate 32 executions of the same instruction for all the 

32 work items of the warp

◦ In the microbenchmarks we have to divide the CPI by the warp 
size (32 for Nvidia)

1 warp applies SIMT



Real GPU is not a simple pipeline

 NVIDIA generations (Processing Elements per 
Compute Unit)
◦ Tesla: 8 PEs/CU ➔ 1 warp instruction every 4 clock cycles

◦ Fermi: 32 PEs/CU ➔ 1 warp instruction every clock cycle

◦ Kepler: 192 PEs/CU ➔ 6 warp instructions every clock cycle

◦ Maxwell: 128 PEs/CU ➔ 4 warp instructions every clock cycle

 Pipeline model:
◦ One computation pipeline λcomp = f(generation)

 λcomp(Tesla) = 4 clock cycles

 λcomp(Fermi) = 1 clock cycles

 λcomp(Kepler) = 1/6  clock cycles

 λcomp(Maxwell) = 1/4 clock cycles

◦ One memory pipeline
 Latencies depend on type of memory request

 Longer for non-ideal memory access
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Measuring the 

parameters with 

microbenchmarks

www.gpuperformance.org

See paper Lemeire 2016:

Jan Lemeire, Jan G. Cornelis, Laurent Segers, Microbenchmarks for GPU 

characteristics: the occupancy roofline and the pipeline model, Procs of 24th 

Euromicro International Conference on Parallel, Distributed and Network-based 

Processing (PDP), Heraklion, Greece, 2016

http://www.gpuperformance.org/
http://parallel.vub.ac.be/~jan/papers/Lemeire2016_Microbenchmarks_for_GPU_characteristics_forPDP2016.pdf
http://parallel.vub.ac.be/~jan/papers/Lemeire2016_Microbenchmarks_for_GPU_characteristics_forPDP2016.pdf


 In the advanced 
level, also de 
lambdas are 
measured.

Benchmark app



Latencies for different memory 
types

caching



The Pipeline Model

Additional information about the Pipeline Model.

Will not be discussed in the course.

Just for those interested.



What happens inside a kernel?

?

Nvidia Visual Profiler



computations

communication

A. Peak Performance

1 TeraFlops

B. Non-overlap

115 GB/s

computations

communication (local)

Resource-bound

Non-overlap

C. Anti-parallel interactions

synchronization point

computations

communication (local)

non-concurrent memory access

branching amdahl

Anti-parallel patterns
& model for latency hiding



Approach

Software characteristics Hardware characteristics

Pipeline Simulator

Issue latencies (λ) 

Completion latencies (Λ)
instruction dependency graph 

Execution Profile

Efficiency report

Execution Configuration



Model input: (1) Software

 Instruction dependency graph (IDG):
◦ An IDG is a Directed Acyclic Graph in which each vertex of 

the graph corresponds to a single executed instruction 
(type of instruction). The edges between the vertices 
represent the dependences between the instructions. They 
can be either data dependences or control dependences.

Green node: computation

Orange node: memory request

Yellow node: barrier instruction (on the 

work group level)



Model input: 
(2) Hardware 

 Core count (#Compute Units)

 Clock frequency fclock

 Subsystem set S: the subsystems that can be modelled 
by an independent pipeline

 Scheduler: see later

 Issue limit: number of instructions that can be issued 
within one cycle

 Available resources Rav: a mapping from R (all types of 
resources) to the natural numbers, how much of r is 
available on a single core.



Model input: 
(2) Hardware continued

 Context set C: A set of all possible contexts. 

 Context mapper f: A function that determines the 
context in which an instruction i ∈ I is executed given 
software characterization and the execution 
configuration

 Subsystem and latencies mapper g: A mapping from 
(instruction, context) to subsystem, issue and 
completion latency



Hardware Parameters: Latencies

 Issue latency (λ): the number of cycles required 
between issuing two consecutive independent 
instructions
◦ Determines peak performance

 Completion latency (Λ): the number of cycles 
until the result of an instruction is available for 
use by a subsequent instruction

They should not be constants!
◦ E.g.: Non-coalesced memory reads or bank conflicts

➢Larger latency
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Model input:
(3) Execution configuration

 Group size: The number of work items (kernel threads) 
of the group.

 Group count: The total number of work groups. The 
total number of kernel threads is the product of group 
count and group size.

 Resource requirements Rreq of a work group: A mapping 
from R to the natural numbers.



 We simulate 1 core/compute unit

 #Work groups to be executed on each core:
= ⌈Group count/Core count⌉

 #Concurrent work groups on a core

 Simulation starts with #Concurrent work groups.  
Once all threads of work group have finished, a 
new work group is started.

Work groups



 Context of each instruction is determined
◦ f : (i ∈ I, kernel code, execution parameters) → c ∈ C

◦ Added to the IDG for each instruction

Simulator preprocessing step 1



 Latencies & subsystem are determined
◦ g : (i ∈ I, c ∈ C) → (s ∈ S, λ, Λ)

 IDG is decorated with:
◦ Issue latency of the instruction

◦ Completion latency of the instruction

◦ Subsystem that executes the instruction

Simulator preprocessing step 2



 Discrete Event Simulation: the state of the system 
changes only at discrete moments in time, 
triggered by events.

 An instruction has one of the following states:
◦ Waiting: the instruction depends on instructions which have not 

yet completed execution.

◦ Ready: all instructions on which the instruction depends have 
completed, but the instruction has not been issued yet.

◦ Issued: the instruction has been issued to the appropriate 
subsystem, but it has not yet completed execution.

◦ Complete: the instruction has completed execution, its results are 
available for dependent instructions.

Simulation



Pipeline simulator

 Semi-abstract model of GPU: 1 pipeline for 
computional subsystem and 1 pipeline for 
memory subsystem

 Based on instruction dependency graph of 
program and the latencies of the hardware



 The scheduler determines which of the ready 
instructions is issued next 
◦ Priority to the first work groups? 

(=WG_PRECEDENCE)

◦ Or Round Robin (RR)?

 An important part of the scheduler is the issue 
limit, which determines the maximum number of 
instructions that can be scheduled in one cycle.

Instruction scheduler



Inefficiencies



 Will be longer for inefficient execution
◦ Examples

 Global vs local memory

 Bank conflicts

 Branching within a warp

◦ Is discussed in next lesson

 Is modelled by the context

Lambdas are not constants



Computational 

microbenchmarks

www.gpuperformance.org

See paper Lemeire 2016:

Jan Lemeire, Jan G. Cornelis, Laurent Segers, Microbenchmarks for GPU 

characteristics: the occupancy roofline and the pipeline model, Procs of 24th 

Euromicro International Conference on Parallel, Distributed and Network-based 

Processing (PDP), Heraklion, Greece, 2016

http://www.gpuperformance.org/
http://parallel.vub.ac.be/~jan/papers/Lemeire2016_Microbenchmarks_for_GPU_characteristics_forPDP2016.pdf
http://parallel.vub.ac.be/~jan/papers/Lemeire2016_Microbenchmarks_for_GPU_characteristics_forPDP2016.pdf


Kernel: fool the compiler
__kernel void independent1madd(

    __global float *src,

    __global float *dst,

    int flag)

  {

    unsigned int index = get_global_id(0);

    float r = src[index];

    float l = get_local_id(0);

    

    #pragma unroll

    for (int i = 0; i < N; ++i) {

      r = r * l - 0.5f;

    }

    if (flag * r)

    dst[index] = r;

  }
41



Java app

43
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