
Lesson 4: The Pipeline
Model and Occupancy

Jan Lemeire

2024-2025

http://parallel.vub.ac.be/education/gpu

Intro

Goal

 Predict performance

 Understand performance
◦ Identify bottlenecks

◦ Estimate the effect of changes

 Pedagogical tool

The Philosophy of the model

 The GPU is modeled with pipelines: one for each
susbsystem
◦ Basically: the computational and the memory subsystem

 To understand several aspects influencing the
performance, one should understand the behavior
of pipelined processors

 Our performance analysis is based on the
simulation of a dual pipeline model
◦ It does not intend to reflect a hardware-accurate model nor

a cycle-accurate simulation

4

http://parallel.vub.ac.be/pipeline/

Pipeline simulator

 Semi-abstract model of a GPU multiprocessor: 1
pipeline for computional subsystem and 1 pipeline
for memory subsystem

 Based on instruction dependency graph of program
and the latencies of the hardware

Pipeline Analogy

A processing pipeline

Issue latency (λ)

= inverse of throughput

Completion latency (Λ)

= end-to-end latency

Time for 1 stage

Is called a cycle

Is equal for all stages

Time to complete all stages

Here: Λ = 4 * λ

Single pipeline

 See text of
Lesson 3

 Kernel has 3
dependent
computations

1 thread

2 threads

4 threads

8 threads

L
a
te

n
c
y
-b

o
u

n
d

th
ro

u
g

h
p

u
t-

b
o

u
n

d

Full latency hiding

due to simultaneous

multithreading

Single Pipeline

 One warp and only dependent instructions

➢Completion latency (Λ) determines performance

= length of the pipeline

 Increase occupancy:

➢ latency hiding

➢ Issue latency (λ) determines performance

= 1 cycle for simple pipeline

Determines the peak performance

9

Software ‘3 computations (all dependent)’ & GPU ‘Latencies_1_and_4’

Increase #Threads (warps)

Occupancy roofline
Issue latency (λ)

C
o

m
p

le
tio

n
 la

te
n

c
y
 (Λ

)

Hardware Parameters: Latencies

 Issue latency (λ): the number of cycles required
between issuing two consecutive independent
instructions
◦ inversely proportional to the peak performance

 Completion latency (Λ): the number of cycles until the
result of an instruction is available for use by a
subsequent instruction

 Both may depend on context: instructions may be
executed inefficiently, resulting in longer latencies

11

Running A simple
ADDITION kernel

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 10000 20000 30000 40000 50000 60000 70000

Run more and more threads

#work items

Runtime

(ns)

12

Peak performance

13

Cycles Per Instruction

 The reversed graph

Completion latency

Issue latency

14

Bandwidth

15

 Consider a kernel which has 2 series of 3
independent instructions

 Less concurrent warps needed for full latency
hiding

Instruction-Level Parallelism (ILP)

Model ‘3 computations (two independent instructions)’

Dual Pipeline

 Computation and memory

 Memory access is modeled as a single pipeline

 Λmem >> Λcomp and λmem >> λcomp

➔ More concurrency needed for peak performance

 Communication vs memory bound

 The cost of barrier synchronization

17

Model ‘3 computations and memory (all dependent)’

Compare models with and without barrier

Models ‘balanced graph’, ‘communication-bound graph’ and

‘computation-bound graph’

 Since the scheduling unit is a warp (hardware thread)
consisting of 32 kernel threads, the simulator is based
on warps and not on individual work items.

 We are interested in the issue and completion latency of
instructions of warps
◦ It will generate 32 executions of the same instruction for all the

32 work items of the warp

◦ In the microbenchmarks we have to divide the CPI by the warp
size (32 for Nvidia)

1 warp applies SIMT

Real GPU is not a simple pipeline

 NVIDIA generations (Processing Elements per
Compute Unit)
◦ Tesla: 8 PEs/CU ➔ 1 warp instruction every 4 clock cycles

◦ Fermi: 32 PEs/CU ➔ 1 warp instruction every clock cycle

◦ Kepler: 192 PEs/CU ➔ 6 warp instructions every clock cycle

◦ Maxwell: 128 PEs/CU ➔ 4 warp instructions every clock cycle

 Pipeline model:
◦ One computation pipeline λcomp = f(generation)

 λcomp(Tesla) = 4 clock cycles

 λcomp(Fermi) = 1 clock cycles

 λcomp(Kepler) = 1/6 clock cycles

 λcomp(Maxwell) = 1/4 clock cycles

◦ One memory pipeline
 Latencies depend on type of memory request

 Longer for non-ideal memory access

19

Measuring the

parameters with

microbenchmarks

www.gpuperformance.org

See paper Lemeire 2016:

Jan Lemeire, Jan G. Cornelis, Laurent Segers, Microbenchmarks for GPU

characteristics: the occupancy roofline and the pipeline model, Procs of 24th

Euromicro International Conference on Parallel, Distributed and Network-based

Processing (PDP), Heraklion, Greece, 2016

http://www.gpuperformance.org/
http://parallel.vub.ac.be/~jan/papers/Lemeire2016_Microbenchmarks_for_GPU_characteristics_forPDP2016.pdf
http://parallel.vub.ac.be/~jan/papers/Lemeire2016_Microbenchmarks_for_GPU_characteristics_forPDP2016.pdf

 In the advanced
level, also de
lambdas are
measured.

Benchmark app

Latencies for different memory
types

caching

The Pipeline Model

Additional information about the Pipeline Model.

Will not be discussed in the course.

Just for those interested.

What happens inside a kernel?

?

Nvidia Visual Profiler

computations

communication

A. Peak Performance

1 TeraFlops

B. Non-overlap

115 GB/s

computations

communication (local)

Resource-bound

Non-overlap

C. Anti-parallel interactions

synchronization point

computations

communication (local)

non-concurrent memory access

branching amdahl

Anti-parallel patterns
& model for latency hiding

Approach

Software characteristics Hardware characteristics

Pipeline Simulator

Issue latencies (λ)

Completion latencies (Λ)
instruction dependency graph

Execution Profile

Efficiency report

Execution Configuration

Model input: (1) Software

 Instruction dependency graph (IDG):
◦ An IDG is a Directed Acyclic Graph in which each vertex of

the graph corresponds to a single executed instruction
(type of instruction). The edges between the vertices
represent the dependences between the instructions. They
can be either data dependences or control dependences.

Green node: computation

Orange node: memory request

Yellow node: barrier instruction (on the

work group level)

Model input:
(2) Hardware

 Core count (#Compute Units)

 Clock frequency fclock

 Subsystem set S: the subsystems that can be modelled
by an independent pipeline

 Scheduler: see later

 Issue limit: number of instructions that can be issued
within one cycle

 Available resources Rav: a mapping from R (all types of
resources) to the natural numbers, how much of r is
available on a single core.

Model input:
(2) Hardware continued

 Context set C: A set of all possible contexts.

 Context mapper f: A function that determines the
context in which an instruction i ∈ I is executed given
software characterization and the execution
configuration

 Subsystem and latencies mapper g: A mapping from
(instruction, context) to subsystem, issue and
completion latency

Hardware Parameters: Latencies

 Issue latency (λ): the number of cycles required
between issuing two consecutive independent
instructions
◦ Determines peak performance

 Completion latency (Λ): the number of cycles
until the result of an instruction is available for
use by a subsequent instruction

They should not be constants!
◦ E.g.: Non-coalesced memory reads or bank conflicts

➢Larger latency

30

Model input:
(3) Execution configuration

 Group size: The number of work items (kernel threads)
of the group.

 Group count: The total number of work groups. The
total number of kernel threads is the product of group
count and group size.

 Resource requirements Rreq of a work group: A mapping
from R to the natural numbers.

 We simulate 1 core/compute unit

 #Work groups to be executed on each core:
= ⌈Group count/Core count⌉

 #Concurrent work groups on a core

 Simulation starts with #Concurrent work groups.
Once all threads of work group have finished, a
new work group is started.

Work groups

 Context of each instruction is determined
◦ f : (i ∈ I, kernel code, execution parameters) → c ∈ C

◦ Added to the IDG for each instruction

Simulator preprocessing step 1

 Latencies & subsystem are determined
◦ g : (i ∈ I, c ∈ C) → (s ∈ S, λ, Λ)

 IDG is decorated with:
◦ Issue latency of the instruction

◦ Completion latency of the instruction

◦ Subsystem that executes the instruction

Simulator preprocessing step 2

 Discrete Event Simulation: the state of the system
changes only at discrete moments in time,
triggered by events.

 An instruction has one of the following states:
◦ Waiting: the instruction depends on instructions which have not

yet completed execution.

◦ Ready: all instructions on which the instruction depends have
completed, but the instruction has not been issued yet.

◦ Issued: the instruction has been issued to the appropriate
subsystem, but it has not yet completed execution.

◦ Complete: the instruction has completed execution, its results are
available for dependent instructions.

Simulation

Pipeline simulator

 Semi-abstract model of GPU: 1 pipeline for
computional subsystem and 1 pipeline for
memory subsystem

 Based on instruction dependency graph of
program and the latencies of the hardware

 The scheduler determines which of the ready
instructions is issued next
◦ Priority to the first work groups?

(=WG_PRECEDENCE)

◦ Or Round Robin (RR)?

 An important part of the scheduler is the issue
limit, which determines the maximum number of
instructions that can be scheduled in one cycle.

Instruction scheduler

Inefficiencies

 Will be longer for inefficient execution
◦ Examples

 Global vs local memory

 Bank conflicts

 Branching within a warp

◦ Is discussed in next lesson

 Is modelled by the context

Lambdas are not constants

Computational

microbenchmarks

www.gpuperformance.org

See paper Lemeire 2016:

Jan Lemeire, Jan G. Cornelis, Laurent Segers, Microbenchmarks for GPU

characteristics: the occupancy roofline and the pipeline model, Procs of 24th

Euromicro International Conference on Parallel, Distributed and Network-based

Processing (PDP), Heraklion, Greece, 2016

http://www.gpuperformance.org/
http://parallel.vub.ac.be/~jan/papers/Lemeire2016_Microbenchmarks_for_GPU_characteristics_forPDP2016.pdf
http://parallel.vub.ac.be/~jan/papers/Lemeire2016_Microbenchmarks_for_GPU_characteristics_forPDP2016.pdf

Kernel: fool the compiler
__kernel void independent1madd(

 __global float *src,

 __global float *dst,

 int flag)

 {

 unsigned int index = get_global_id(0);

 float r = src[index];

 float l = get_local_id(0);

 #pragma unroll

 for (int i = 0; i < N; ++i) {

 r = r * l - 0.5f;

 }

 if (flag * r)

 dst[index] = r;

 }
41

Java app

43

	Slide 1: GPU Computing
	Slide 2
	Slide 3: Goal
	Slide 4: The Philosophy of the model
	Slide 5: Pipeline simulator
	Slide 6
	Slide 7: A processing pipeline
	Slide 8: Single pipeline
	Slide 9: Single Pipeline
	Slide 10: Occupancy roofline
	Slide 11: Hardware Parameters: Latencies
	Slide 12: Running A simple ADDITION kernel
	Slide 13: Peak performance
	Slide 14: Cycles Per Instruction
	Slide 15: Bandwidth
	Slide 16: Instruction-Level Parallelism (ILP)
	Slide 17: Dual Pipeline
	Slide 18: 1 warp applies SIMT
	Slide 19: Real GPU is not a simple pipeline
	Slide 20
	Slide 21: Benchmark app
	Slide 22: Latencies for different memory types
	Slide 23
	Slide 24: What happens inside a kernel?
	Slide 25
	Slide 26: Approach
	Slide 27: Model input: (1) Software
	Slide 28: Model input: (2) Hardware
	Slide 29: Model input: (2) Hardware continued
	Slide 30: Hardware Parameters: Latencies
	Slide 31: Model input: (3) Execution configuration
	Slide 32: Work groups
	Slide 33: Simulator preprocessing step 1
	Slide 34: Simulator preprocessing step 2
	Slide 35: Simulation
	Slide 36: Pipeline simulator
	Slide 37: Instruction scheduler
	Slide 38
	Slide 39: Lambdas are not constants
	Slide 40
	Slide 41: Kernel: fool the compiler
	Slide 43: Java app

