
GPU Computing Course – Jan Lemeire 

Lesson 3: Architecture and Strategy 
 

In this chapter we will discuss how a GPU manages to get superior computation performance 

although having the same number of transistors as a CPU! 

1 The modern CPU 
In 1989 Intel released a pipelined processor with the Pentium CPUs. Later it turned it into an out-of-

order superscalar pipeline (having a certain width). The depth of a pipeline enables shorter cycles 

(and a higher clock frequency), the width enables multiple instructions to be issued together. In 

short, the performance is multiplied with (depth x width). Note that there are (depth x width) 

instructions active at the same time. We say that the pipeline is completely filled. 

However, this is only possible when there are enough independent instructions within the same 

program (called Instruction Level Parallelism), because a CPU is only processing 1 program (or 2 see 

later) at the same time. With dependent instructions or conditional branches, this is no longer true, 

because the result of previous instructions is needed to begin new instructions. When no novel 

instruction can be launched (issued), a ‘bubble’ will be inserted into the pipeline. We say that the 

pipeline is idling and that cycles are ‘lost’ because an instruction could have been issued. 

To counter this problem, a modern CPU performs several optimizations to minimize the end-to-end 

latency of instructions: 

• Forwarding: the outcome of a computation (in the ALU) is immediately fed into the input of 

the ALU for calculating the following instruction 

• Branch prediction: the outcome of a branch is guessed so that following instructions (of the 

branch) can be issued. For incorrect guesses, the calculated values are rolled back. 

• Caching: data is copied for reuse into faster memory. 

Needless to say, a lot of additional transistors are needed to perform these runtime optimizations. A 

CPU is devoted to optimally run a sequential program. 

2 GPU strategy for massive computations 
The GPU abandons this strategy and uses most transistors for computations. To fill the pipelines and 

minimize the lost cycles, the GPU enables the parallel execution of thousands of threads. This will 

result in highly performant execution of fine-grained parallel programs.  

The GPU as massive thread processor is based on (1) simultaneous multithreading and (2) SIMT 

processing. This happens on 1 compute unit (streaming multiprocessor). On top of that, a GPU has 

multiple compute units, each capable of executing several work groups at the same time. 

2.1 Simultaneous multithreading 
A typical CPU executes only one thread at a time. On modern processors 2 threads can run 

simultaneously (called hyperthreading by Intel): a dual core with hyperthreading is said to have 4 

logical cores (which can be seen in the Task Manager when you open the Resource Monitor). The 

other threads with alternately get processor time. The change of the active thread is called a context 

switch which takes time since the processor state should be saved and the other one reloaded. The 



thread scheduling is managed by the operating system. Therefore, these threads are called software 

threads. 

GPUs can have more than 1000 kernel threads simultaneously active on a single compute unit or 

core! These are part of hardware threads since the scheduling and ‘switching’ is completely done by 

the hardware. Actually, the switching is for free: instructions of different threads can be mixed 

together without any cost. This is called simultaneous multithreading. The benefit of simultaneous 

multithreading is latency hiding. While one instruction is being handled by the processor but not 

finished, the processor starts executing instructions of other threads. In absence of synchronization 

between both threads, the instructions are independent. This mainly happens in a pipeline fashion. 

The computational subsystem is a pipeline, but also the memory system (RAM & caches) can be 

regarded as pipelines. An instruction starts (is issued), enters the pipeline, and new instructions can 

be started. 

In this way the pipelines are filled with instructions of different threads and there is less need of CPU 

optimizations: long latencies are hidden by instructions of other threads. When one of the pipelines, 

computational or memory, is almost always full, we say that the GPU kernel is respectively 

computation- or memory-bound. In chapter 1 this was modelled by the roofline model. 

On the other hand, when none of the pipelines is completely filled, i.e. there are a considerable 

amount of idle cycles in each subsystem, we say that the kernel is latency-bound. To understand 

this, we introduce the pipeline model. 

2.1.1 The pipeline model 
 

Consider the following code: 

__kernel void scale( __global float * array, float factor) 
{ 
        int index = get_global_id(0); 
        float r = array[index ]; 
        r = factor * r; 
        array[ index] = r; 
} 

If we want to know how long it takes to execute one instruction sequence or thread of this code, it is 
necessary to know how long it takes to execute every individual instruction. Because every 
instruction but the first depends on its predecessor, the execution time is simply the sum of the 
execution times of the individual instructions. 
On modern processors multiple independent instructions from different threads running 
simultaneously can execute at the same time: instructions are executed by pipelined hardware, 
while multiple memory requests caused by memory instructions can be in flight at the same time. 
Thus, to determine the time needed to process multiple threads, it is necessary to model this ability 
of the processor. We do so by representing a GPU by a set of independent pipelines. 
 
A pipeline consists of multiple stages each performing a part of the execution of an instruction. An 
instruction should go through all stages. Each stage takes the same time, making it possible to 
execute multiple instructions concurrently. If the time needed by a stage to handle one instruction is 
equal to one clock cycle, then the time needed to execute an instruction or its latency in clock cycles 
is equal to the number of pipeline stages. Given sufficient independent instructions, however, the 
pipeline’s maximal throughput of one instruction per cycle can be attained. Because at each cycle a 
new instruction can be issued. 



2.1.2 The occupancy roofline 
 
The performance of a simple pipeline can be easily determined graphically. Consider a pipeline of 4 
stages processing respectively 1, 2, 4 and 8 threads, each thread consisting of a sequence of 3 
dependent instructions.  

 

 

 

 
 
In the first case 1 instruction completes every 4 cycles, in the second case 1 instruction completes 
every 2 cycles, while in the third and last case 1 instruction completes every cycle. In general, the 
performance of a pipeline of S stages executing N threads depends on N and S. 

IPCN≤S = S/N 
IPCN≥S = 1 

The following figure shows a plot of the performance of a pipeline with four stages in function of the 
number of threads.  



 
This plot resembles a roofline and is called the occupancy roofline. The term occupancy is a name 
for the number of threads that can execute concurrently on a processor. The ridge of the 
roofline is the number of threads necessary to hide the pipeline latency. The region below this point 
is called latency bound, while the region beyond this point is called throughput bound. 
The pipeline is chosen as the central abstraction used to represent the subsystems of a processor, 
given its ability to model concurrent execution with two simple parameters. Note that this 
abstraction should not necessarily reflect reality. For example, the memory access subsystem will 
behave more as a queueing system than as a pipeline. Each instruction is characterized by the 
subsystem on which it is executed and two numbers: the issue latency and the completion latency. 
The former is related to the peak performance of the instruction: it provides an upper bound on the 
instruction throughput. The latter is the time between the moment an instruction enters the 
pipeline and the moment it completes. As seen in the above equations, the instruction throughput is 
dominated by this time in the absence of sufficient independent instructions. 
 

2.1.3 The number of concurrent work groups 
 
A single work group will always be executed on one core (Compute Unit). If possible, multiple work 
groups can be active at the same time. This will lead to more instructions that can be scheduled and 
thus a higher occupancy. 
The number of concurrent work groups is determined by a number of limited hardware resources 
(typical numbers are given between brackets): 

1. The amount of local memory per core (e.g. 48KB). 
2. The amount of registers per core (e.g. 64KB). 
3. The maximum number of work items that may be active on one core (e.g. 2048). 
4. The maximum number of work groups that may be active on one core (e.g. 16). 

These numbers are matched with the requirements of the kernel (1 and 2) and execution 
configuration (3 and 4): the ratio of required and available determines how many work groups can 
be run simultaneously. The most restrictive ratio of the 4 will determine the actual concurrency. 
The first two resources depend on the kernel: the amount of local memory you allocate for each 
work group and the number of registers that the compiler allocates. 
The work group size (local size in openCL) determines how many work groups are possible by the 3rd 

resource. If local size = 256, then there are maximally (1024/256=) 4 work groups possible. If you 

allocate 5KB local memory, then only (16/5=) 3 work groups can run concurrently. 



 
 
We define the occupancy of a kernel as the number of warps that are concurrently active on a core. 
We also call this the number of concurrent warps. The relative occupancy is the occupancy relative 
to the maximum occupancy. 
 
 

2.1.4 Fixing the Occupancy 
 
The occupancy of a kernel can be fixed by reserving local memory for a work group by adding an 
extra argument to your kernel e.g.: 
 
__kernel void matrix_sum(__global float* A, __global float *B, __global 
float *C, float scale, __local float *dummy) 
 
Set this extra argument as follows in the host code: 
 
kernel.setArg<cl::LocalSpaceArg>(4, cl::__local(local_size)); 
 
The local_size corresponds to the number of bytes you want to reserve for shared memory. By 
varying local_size you can vary the occupancy. The following table shows some typical occupancy 
figures for different values of local_size and the work group size. It is assumed that the local memory 
available on one core is 16KB and that no other factors are limiting the occupancy: 
 

Local_size  
(Bytes) 

#Concurrent 
WGs 

Work group size #Concurrent 
warps/work items 

Relative occupancy = 
#work items/max 
(1024) 

4000 4 256 = 8 warps 32 / 1024 100 

5000 3 256 24 / 768 75 

8000 2 256 16 / 512 50 

16000 1 256 8 / 256 25 

2000 8 128 = 4 warps 32 / 1024 100 

2280 7 128 28 / 896 87.5 

2600 6 128 24 / 768 75 

3200 5 128 20 / 640 62.5 

4000 4 128 16 / 512 50 

5000 3 128 12 / 384 37.5 

8000 2 128 8 / 256 25 

16000 1 128 4 / 128 12.5 

 

2.2 Vector processors & SIMD 
Let’s first look at the vector instructions available in modern CPUs. They contain separate registers, 

called vector registers which each store several data elements. There are 128-bit or 256-bit and 

recently 512-bit wide registers.  



 

Vector instructions are performed at once on all elements of the vector registers. Instead of iterating 

over the vector (for-loop), one instruction is sufficient. This way of processing is called Single 

Instruction on Multiple Data (SIMD). 

The way to program them is with specific datatypes used for reading data from memory into vector 

registers and specific vector operations to execute vector instructions on the vector registers. It is 

quite tedious to program and less flexible than OpenCL which is based on SIMT. 

2.3 Hardware threads & SIMT (Level 3 of GPU programming) 
The pipeline of a GPU core also has a certain width. There are 8, 32, 128 or 192 Processing Elements 

(PEs, called RF in the diagram) on a Nvidia core (called Streaming Multiprocessor by Nvidia). 

 

As can be seen in the diagram, there is only 1 instruction fetch and decode unit, meaning that one 

instruction is issued and executed simultaneously by all PEs. This looks like SIMD processing as with 

vector processors. We will however call it Single Instruction Multiple Thread (SIMT) because there 

are subtle differences with vector processing. 

The kernel that you program will be executed by each work item. In most cases each work item 

works on different data elements. For instance, by using its global ID as index, but this can also be 

more complex mappings from work items onto the data (see chapter 2). But: a number of work 

items will be executed in lock step all executing the same instruction, very similar to vector 

processing. The main difference is that we do not have to worry about the data layout or vector 

instructions. We program a work item as if it will be executed in an independent thread. This is not 

the case; a hardware thread will execute a number of work items together at the same time. Nvidia 

7 8 2 -1

3 -3 5 -7

10 5 7 -8

128-bit vector registers 

+



GPUs execute 32 work items, called a warp, while AMD GPUs execute 64 work items in lock step 

(called wavefronts). For Intel GPUs it is more complicated, it can be 8/16/24/32 work items. Other 

OpenCL compilers (e.g. for CPUs) will try to vectorize groups of work items, which is only possible in 

case of contiguous data access. We will use both terms hardware thread and warp; they mean 

exactly the same. 

While programming you might see a work item as a kernel thread, but since it is not a real thread, it 

has several consequences for the performance of your GPU program. 

1. Running 1 work item or 32 work items takes the same amount of time, therefore create 

work groups which are multiples of 32 or 64 for AMD GPUs. 

2. If the code contains branches and threads of the same warp follow different branches, then 

the execution of these branches is serialized. Both the then- and else-part are executed. 

Some threads will only commit in the then-part and others to the else-part (called 

conditional processing). This results in lost cycles, because on average only half of the work 

items are active. This is even worse for a larger number of branches. A kernel with a while-

loop might result in different iterations for each work item of the warp. The warp will 

execute the maximal number of iterations. So, if one work item has to do 1000 iterations 

and all other threads only a few iterations, 31 over 32 cycles are lost. The efficiency is then 

only 3%! 

3. Some memory access patterns cannot be served at the full bandwidth. This will be discussed 

in lesson 5. ‘Nice’, contiguous memory access is fine, but other patterns will lead to longer 

latencies. To understand this, the notion of a warp is essential. 

Concluding, the GPU will schedule the work groups among the GPU cores (work group scheduler). 

The number of work groups that can run together is bounded. This amount is scheduled on each 

core and each time a work group finishes; another work group is launched. Until all work groups of 

the workspace have been executed. Within a core, all warps of the concurrent work groups are 

active at the same time. The warp scheduler will choose among those warps which instructions are 

issued. 

3 Measuring the lambdas of the pipeline model 
The computational or memory performance is measured in GOps or GBs. More interesting, however, 

is the Cycles Per Warp Instruction (CPWIcore) because it reflects what’s happening within the GPU: a 

core schedules an instruction of an active warp. How many cycles does it take? In the best case 

(maximal throughput) it is the issue latency, in the worst case it is the completion latency. 

Calculating CPWIcore: 

#Warp Instructions = #instructions/# cores/warp size 

CPWIcore = #cycles / #Warp Instructions = #cycles/#instructions * #cores * warp size 

#cycles is the total number of cycles of executing the kernel (run time * clock frequency). 

#instructions is the total number of instructions of the kernel. 

 


