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The modern CPU



IX¥Sequential’ processor: super-scalar
out-of-order pipeline

Pipeline depth
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CPU computing

manual

automatic

Algorithm
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Implementation
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Compiler

Write once
Run everywhere
efficiently!

Automatic
optimization

¥

Low latency of
each instruction!




GPU strategy for
massive computations



£ GPU architecture strategy

» Light-weight threads, supported by the hardware

> Thread processors, more than 1000 active threads per core
- Switching between threads can happen in 1 cycle!

» No caching mechanism, branch prediction, ...

- GPU does not try to be efficient for every program, does not spend
transistors on optimization

- Simple straight-forward sequential programming should be
abandoned...

» Less higher-level memory:

> GPU: 16KB shared memory per SIMD multiprocessor
> CPU: L2 cache contains several MB’s

» Massively floating-point computation power
» RISC instruction set instead of CISC

» Transparent system organization
¢ Modern (sequential) CPUs based on simple Von Neumann




L5 GpU processor pipeline
» 6-24 stages
» in-order execution!!
» no branch prediction!!
» no forwarding!!
» ho register renaming!!

» Memory system:
> relatively small
- Until recently no caching
> On the other hand: much more registers (see later)

» No program call stack and no memory stack!
- All functions inlined
> No recursion possible




Challenges of GPU computing

programmability

Algorithms
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Compiler
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Z5 Fill the pipelines

GPUs have several pipelines which will be filled
with instructions from different kernel threads
through:

1. Running thread blocks on the different
multiprocessors

2. Simultaneous multithreading: several
hardware threads active at the same time
o Discussed next

3. Single Instruction Multiple Threads (SIMT)
o Discussed later
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GPU Architecture

. Custom kernel
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global memory partitioned
Every controller can serve 1 request

Streaming MultiProcessor (Nvidia)
Compute Unit (OpenCL)
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Properties of
different
architectures

N(M) = #multiprocessors
lw| = warp size
Group & Warp slots: maximum #
thread blocks or warps

GPUs of our lab and architecture

“Full name

Abbreviated name

NIVDIA Tesla C2050

NIVDIA GeForce GTX 650 Ti

NIVDIA Quadro K620

NIVDIA GeForce GTX 1060 6GB

| AMD Radeon RO 380

Fermi
Kepler
Maxwell
Pascal
Tonga

= & —_
= ) g = =
2| 2| 2| &[] =
N (II) 14 + 3 10 28
fetocr (MHz) 1147 | 1032 | 1058 | 1506 | 1010
issue limit 1 4 4 4 1
|| 32 32 32 32 64
Resources
Group slots 8 16 32 32 16
Warp slots 48 64 64 64 40
Local memory (KB) 48 48 64 96 64
Registers (KB) 128 | 256 | 256 | 256
= ot —
sl g 2| =f| 3
= - = A~ =
mazx(|y]) 1024 | 1024 | 1024 | 1024 | 256
max(local memory) (KB) 48 48 48 48 32
ALU count 32 | 192 | 128 [ 128 64
SFU count 8 32 32 32 -
RAM Bandwidth (GB/s) 144 | 86.4 201 1921 176
L2 Cache size (KB) 768 | 256 | 2048 | 1536 | 512
L2 Cache line size (B) 128 | 128 | 128 | 128 64
L1 Cache size (KB) 16 16 64 48 16
max(global memory) (MB) | 1024 | 672 | 512 | 1536 | 2880
RAM Size (MB) 2688 | 2048 | 2048 | 6144 | 4096
#LD/STO units =16 32 32 32
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The different Nvidia architectures

Host CPU System memory

Host Interface

Input View port/ clip/
Assembler raster/ z-cull

Vertex Work Pixel Work Compute Work
Distribution Distribution Distribution

SM SM
P

2 SMs (Compute
Units) are grouped
into one TPC

c o | 5 3

CUDA Compute Capability 1*t generation: Tesla
can be queried, also in GPU

Caps Viewer

Compute Capability = 1.x

S——y
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2"d generation: Fermi

Compute Capability = 2.x
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4'd generation: Maxwell

Compute Capability = 4.x or 5.x
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Simultaneous
multithreading



Multithreading

» Performing multiple threads of execution
in parallel
- Replicate registers, PC, etc.
> Fast switching between threads
» Fine—grain multithreading
- Switch threads after each cycle
> Interleave instruction execution
- If one thread stalls, others are executed

» Coarse-grain multithreading

> Only switch on long stall (e.g., L2-cache miss)

> Simplifies hardware, but doesn’t hide short
stalls (eg, data hazards)




Multithreading on CPU

» 1 process/thread active per core

» When activating another thread: context switch

r . . .
> Stop program execution: flush pipeline (let all
instructions finish)

- Save state of process/thread into Process Control
Block : registers, program counter and operating
system-specific data

- Restore state of activated thread
~ ° Restart program execution and refill the pipeline

» Processor ‘sees’ only 1 thread
» Called Software threads

Overhead
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Running threads on same CPU core

Processor
core

thread
creation

T1

saving
T1's state

restoring
T2's state

T2

Process/Thread pool

Thread 1
Thread 2
Thread 3

Operating
system’s

scheduler

Context switch
(overhead)

» Executed one by one

» Context switch

- Thread’s state in core:
instruction fetch buffer,
return address stack,
register file, control
logic/state, ...

> Supported by hardware

» Takes time!

Coarse-grain multithreading
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Fine multi-threading:
Hardware threads

» In several modern CPUs
> typically 2 HW threads (Intel: hyperthreading)

» Devote extra hardware for keeping process
state

» Thread switching by hardware
> (almost) no overhead
> within 1 cycle!
o Instructions in flight from different threads




Simultaneous Multithreading

» In multiple-issue dynamically scheduled
processor
> Schedule instructions from multiple threads

> Instructions from independent threads execute
when function units are available

> Within threads, dependencies handled by
scheduling and register renaming
» Example: Intel Pentium-4 HyperThreading

- Two threads: duplicated registers, shared function
units and caches
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Multi-Threading (MT) possibilities

Issue slots ——

Thread A Thread B

Time

Issue slots ——
Coarse MT Fine MT

Time

Thread C

Thread D

smt — > Simultaneous MultiThreading

|

Fine-grained parallelism: see chapter on GPUs
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Benefits of fine—-grained multithreading

» Independent instructions (no bubbles)

» More time between instructions: possibility
for latency hiding
- Hide memory accesses

» If pipeline full

- Forwarding not necessary
- Branch prediction not necessary




Running a simple addition kernel

100000 —=———

Runtime Run more and more
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Runtime increases only when all pipelines are full (8000 thread's)
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The execution on a GPU

il

\ MultiProcessor

il

timeOfRun

execution time -

A

» Thread blocks are scheduled on MultiProcessors .
» Warps of active threads are scheduled on the multiprocessor
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Concurrency

» Keep all processing units busy!
- Enough threads

» All Multiprocessors (MPs)
» All Scalar Processors (SPs)

» Full pipeline of scalar processor
> Pipeline of up to 24 stages




What determines the
occupancy



Occupancy

» Occupancy = #concurrent warps running on a Multiprocessor

» A higher occupancy means that more work can be scheduled
and in general a higher performance

» Limited resources will limit the number of work groups that
can be simultaneously active and run concurrently:
1. Registers (private memory) needed per work group
- Each kernel’s local variables are stored in register memory
2. Local memory needed per work group
3. Maximum number of concurrent work groups
4. Maximum number of threads (work items)

» The most constrained resource determines the occupancy

> Each Multiprocessor has resources (depends on architecture, can
be queried)

- For Pascal architecture: 256KB registers, 96KB local memory,
~Jax. 32 work groups, max. 2048 threads(=64 warps)




The effect of
occupancy will be
studied with the
Pipeline Model
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