VRIJE —
pUB UNIVERSITETRRL O o g e
BRUSSEL

GPU

education/gpu

The modern CPU

IX¥Sequential’ processor: super-scalar
out-of-order pipeline

Pipeline depth

1 Different processing units

Out-of-order execution
Branch prediction
Register renaming

(out of order] _ .

Pipeline wi!th

| ll |
' !
T U T
- J
—
U, {in order)
{out of order)
Y Y Y
ALL MEMI FFPI BR
MEM2 I FP2
FP3
|
Y L]
ﬂ (in order)
I I

CPU computing

manual

automatic

Algorithm

J

Implementation

J

Compiler

Write once
Run everywhere
efficiently!

Automatic
optimization

¥

Low latency of
each instruction!

GPU strategy for
massive computations

£ GPU architecture strategy

» Light-weight threads, supported by the hardware

> Thread processors, more than 1000 active threads per core
- Switching between threads can happen in 1 cycle!

» No caching mechanism, branch prediction, ...

- GPU does not try to be efficient for every program, does not spend
transistors on optimization

- Simple straight-forward sequential programming should be
abandoned...

» Less higher-level memory:

> GPU: 16KB shared memory per SIMD multiprocessor
> CPU: L2 cache contains several MB’s

» Massively floating-point computation power
» RISC instruction set instead of CISC

» Transparent system organization
¢ Modern (sequential) CPUs based on simple Von Neumann

L5 GpU processor pipeline
» 6-24 stages
» in-order execution!!
» no branch prediction!!
» no forwarding!!
» ho register renaming!!

» Memory system:
> relatively small
- Until recently no caching
> On the other hand: much more registers (see later)

» No program call stack and no memory stack!
- All functions inlined
> No recursion possible

Challenges of GPU computing

programmability

Algorithms

J

Implementation

J

Optimization

Compiler

performance

Z5 Fill the pipelines

GPUs have several pipelines which will be filled
with instructions from different kernel threads
through:

1. Running thread blocks on the different
multiprocessors

2. Simultaneous multithreading: several
hardware threads active at the same time
o Discussed next

3. Single Instruction Multiple Threads (SIMT)
o Discussed later

Architecture

vus

VRIJE
UNIVERSITEIT
BRUSSEL

GPU Architecture

. Custom kernel
Application libcuda PTX code
CPU Shader Cores l
Core| |Core| |Core| |Core| |Core
Memory R |
A ‘ Interconnection Network ‘
i B : B
Memory Memory .. | Memory
Controller || Controller Controller
\ > | pram | DRaM | | DRAM |
cudaMemcpy

global memory partitioned
Every controller can serve 1 request

Streaming MultiProcessor (Nvidia)
Compute Unit (OpenCL)

& &=~ 1 Streaming Multiprocessor
= a pipeline

g
Shader Core v ']

«——— Multiple warps (hardware threads)

[Thread Warp |

are simultaneously active

Scheduler

g

SIMD i i
Pipeline The Same Instruction is

Y

Fetch |- executed on Multiple work items/
& Threads

[Decode } (S | MT)
;ocaf/gfoba)f access \?E'&L E{‘LF ‘E{%‘\E{% .
or L1 miss N texiyre SRS
or const cache miss S 7 \ Sca|ar Processors (Wldth Of

\ o N
. : L | L o Sheed | | pipeline).
ex cons :global: ennl.

To interconpect 8-32-192-128

All threads
Data] hitin L1?

MSHRs

.. [Writeback J
Warps waiting for I)

data)

VRIJE
UNIVERSITEIT
BRUSSEL

Properties of
different
architectures

N(M) = #multiprocessors
lw| = warp size
Group & Warp slots: maximum #
thread blocks or warps

GPUs of our lab and architecture

“Full name

Abbreviated name

NIVDIA Tesla C2050

NIVDIA GeForce GTX 650 Ti

NIVDIA Quadro K620

NIVDIA GeForce GTX 1060 6GB

| AMD Radeon RO 380

Fermi
Kepler
Maxwell
Pascal
Tonga

= & —_
=) g = =
2| 2| 2| &[] =
N (II) 14 + 3 10 28
fetocr (MHz) 1147 | 1032 | 1058 | 1506 | 1010
issue limit 1 4 4 4 1
|| 32 32 32 32 64
Resources
Group slots 8 16 32 32 16
Warp slots 48 64 64 64 40
Local memory (KB) 48 48 64 96 64
Registers (KB) 128 | 256 | 256 | 256
= ot —
sl g 2| =f| 3
= - = A~ =
mazx(|y]) 1024 | 1024 | 1024 | 1024 | 256
max(local memory) (KB) 48 48 48 48 32
ALU count 32 | 192 | 128 [128 64
SFU count 8 32 32 32 -
RAM Bandwidth (GB/s) 144 | 86.4 201 1921 176
L2 Cache size (KB) 768 | 256 | 2048 | 1536 | 512
L2 Cache line size (B) 128 | 128 | 128 | 128 64
L1 Cache size (KB) 16 16 64 48 16
max(global memory) (MB) | 1024 | 672 | 512 | 1536 | 2880
RAM Size (MB) 2688 | 2048 | 2048 | 6144 | 4096
#LD/STO units =16 32 32 32

VRIE https://en.wikipedia.org/wiki/CUDA

UNIVERSITEIT
BRUSSEL

The different Nvidia architectures

Host CPU System memory

Host Interface

Input View port/ clip/
Assembler raster/ z-cull

Vertex Work Pixel Work Compute Work
Distribution Distribution Distribution

SM SM
P

2 SMs (Compute
Units) are grouped
into one TPC

c o | 5 3

CUDA Compute Capability 1*t generation: Tesla
can be queried, also in GPU

Caps Viewer

Compute Capability = 1.x

S——y

VRIJE
UNIVERSITEIT
BRUSSEL

2"d generation: Fermi

Compute Capability = 2.x

NVIDIA Compute Capability is ;:p:iﬁ’:ﬂ []
linked to architecture Operant Collector

2 4
| FP Unit | [INT Unit|
¥ E 2

| Result Queue |

Special
Flﬁcﬁm
Unit

LD/ST
LD/ST
Core| |Core| Core @
Core| |Core| Core LD/ST]

DRAM
DRAM

Fermi | Fermi | Fermi | Fermi | Fermi | Fermi | Fermi | Fermi D/ST %g’é

SM SM SM | SM SM SM | sM SM Core| |Core| Core| 25T |35
LD/ST
st [|

Core| |Core||Core

DRAM
DRAM

L2 Cache

=
o
%
S
Function
UUnit

1HHHEHE

Core| |Coref Core| Fr/eT
Core

Core| Core

Fermi Fermi Fermi Fermi Fermi Fermi Femi Fermi Core || Core!| |CorelCore

SM SM SM SM SM SM SM SM

ol |
0|5
Special
Fu%‘
Unit

DRAM |Gigathread
DRAM | DRAM
—
0
@

16-SM Fermi GPU Fermi Streaming Multiprocessor (SM)

VRIJE
UNIVERSITEIT
BRUSSEL

PolyMorph Engine 2.0

Vertex Fetch ‘ I Tessellator] [Viewport Transform Palvlorph Engina 8.0

I Attribute Setup. | [Stroam Output | LD || et | [viewpont Transtorm

Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler

Dispatch Unit Dispaich Unit Disgeatch Urit Dispatch Unit
ry kS e +

‘Warp Scheduler

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch
I s - - s B - 4

c Care & C <
Register File (65,536 x 32-bit) _ - = =

S & ks
Com - wosr
Com - wst
=
Com - fres
=y - ppo
G - ot
Co - st
- B
<~ [l
o~ [l
o Hll
< [l
< [
e~
< [

s Core Core

-

Warp Scheduler | ‘Warp Scheduler

Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit
s e S ke

Core

|
ol
|
|
|
|
o Il
|
|
o Il
|
|
|
ol

v + &
e

Core Core.

Register File (32,768 x 32-bit) Register File (32,768 x 32-bit)

B o o Bl

Care Core.

Care Core.

g
i
g

i

Core Core.

Core Core.

‘Warp Scheduler

Dispateh Unit Dispatch Uit Dispatch Unit Dispatch Unit
+ * + +

Jllll1

EEEEEEE
T

Register File (16,384 x 32-bit) Register File (16,384 x 32.

Core Core

Core

Core

Core

Core

3
Corw.
Core.
Corw
Core.
Core.
Core.
Core.
Core.
Core.
Cora.
Core.
Core.
Core.
Core.
Core.
Core.

N -
Arrrrrrrrrrrrrgog
arrrrrrrrrrrrrgs

drrrrrrrrrrrrrr

Core

TE L 5th generation: Pascal

Core LoisT

ol d__|

Compute Capability = 6.x

4'd generation: Maxwell

Compute Capability = 4.x or 5.x

VRIJE
W e Compute Capability = 8.
if < 8.5: Volta

5th generation: Pascal | 6t" generation: Volta & Turing

Pascal SM Turing =1\%|

RT CORE

| Without double precision (DP) units | 7th generation: Ampere

\\\\ \ Compute Capability = 9.x

Simultaneous
multithreading

Multithreading

» Performing multiple threads of execution
in parallel
- Replicate registers, PC, etc.
> Fast switching between threads
» Fine—grain multithreading
- Switch threads after each cycle
> Interleave instruction execution
- If one thread stalls, others are executed

» Coarse-grain multithreading

> Only switch on long stall (e.g., L2-cache miss)

> Simplifies hardware, but doesn’t hide short
stalls (eg, data hazards)

Multithreading on CPU

» 1 process/thread active per core

» When activating another thread: context switch

r . . .
> Stop program execution: flush pipeline (let all
instructions finish)

- Save state of process/thread into Process Control
Block : registers, program counter and operating
system-specific data

- Restore state of activated thread
~ ° Restart program execution and refill the pipeline

» Processor ‘sees’ only 1 thread
» Called Software threads

Overhead

\ VRIJE
UNIVERSITEIT
BRUSSEL

Running threads on same CPU core

Processor
core

thread
creation

T1

saving
T1's state

restoring
T2's state

T2

Process/Thread pool

Thread 1
Thread 2
Thread 3

Operating
system’s

scheduler

Context switch
(overhead)

» Executed one by one

» Context switch

- Thread’s state in core:
instruction fetch buffer,
return address stack,
register file, control
logic/state, ...

> Supported by hardware

» Takes time!

Coarse-grain multithreading

Y VRIJE
UNIVERSITEIT
BRUSSEL

Fine multi-threading:
Hardware threads

» In several modern CPUs
> typically 2 HW threads (Intel: hyperthreading)

» Devote extra hardware for keeping process
state

» Thread switching by hardware
> (almost) no overhead
> within 1 cycle!
o Instructions in flight from different threads

Simultaneous Multithreading

» In multiple-issue dynamically scheduled
processor
> Schedule instructions from multiple threads

> Instructions from independent threads execute
when function units are available

> Within threads, dependencies handled by
scheduling and register renaming
» Example: Intel Pentium-4 HyperThreading

- Two threads: duplicated registers, shared function
units and caches

VRIJE
UNIVERSITEIT
BRUSSEL

Multi-Threading (MT) possibilities

Issue slots ——

Thread A Thread B

Time

Issue slots ——
Coarse MT Fine MT

Time

Thread C

Thread D

smt — > Simultaneous MultiThreading

|

Fine-grained parallelism: see chapter on GPUs

Y VRIJE
UNIVERSITEIT
BRUSSEL

Benefits of fine—-grained multithreading

» Independent instructions (no bubbles)

» More time between instructions: possibility
for latency hiding
- Hide memory accesses

» If pipeline full

- Forwarding not necessary
- Branch prediction not necessary

Running a simple addition kernel

100000 —=———

Runtime Run more and more

(ns) o000 thread's J
80000
70000 -
60000 I

50000

40000

30000 -

20000

10000

#threads

O T T T T T T 1
0 10000 20000 30000 40000 50000 60000 70000

Runtime increases only when all pipelines are full (8000 thread's)

W

The execution on a GPU

il

\ MultiProcessor

il

timeOfRun

execution time -

A

» Thread blocks are scheduled on MultiProcessors .
» Warps of active threads are scheduled on the multiprocessor

‘m

VRIJE
UNIVERSITEIT
BRUSSEL

Concurrency

» Keep all processing units busy!
- Enough threads

» All Multiprocessors (MPs)
» All Scalar Processors (SPs)

» Full pipeline of scalar processor
> Pipeline of up to 24 stages

What determines the
occupancy

Occupancy

» Occupancy = #concurrent warps running on a Multiprocessor

» A higher occupancy means that more work can be scheduled
and in general a higher performance

» Limited resources will limit the number of work groups that
can be simultaneously active and run concurrently:
1. Registers (private memory) needed per work group
- Each kernel’s local variables are stored in register memory
2. Local memory needed per work group
3. Maximum number of concurrent work groups
4. Maximum number of threads (work items)

» The most constrained resource determines the occupancy

> Each Multiprocessor has resources (depends on architecture, can
be queried)

- For Pascal architecture: 256KB registers, 96KB local memory,
~Jax. 32 work groups, max. 2048 threads(=64 warps)

The effect of
occupancy will be
studied with the
Pipeline Model

	Slide 1: GPU Computing
	Slide 2
	Slide 3: ‘Sequential’ processor: super-scalar out-of-order pipeline
	Slide 4
	Slide 5
	Slide 6: GPU architecture strategy
	Slide 7: GPU processor pipeline
	Slide 8
	Slide 9: Fill the pipelines
	Slide 10
	Slide 11: GPU Architecture
	Slide 12: 1 Streaming Multiprocessor = a pipeline
	Slide 14: Properties of different architectures
	Slide 15: The different Nvidia architectures
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Multithreading
	Slide 22: Multithreading on CPU
	Slide 23: Running threads on same CPU core
	Slide 24: Fine multi-threading: Hardware threads
	Slide 25: Simultaneous Multithreading
	Slide 26: Multi-Threading (MT) possibilities
	Slide 27: Benefits of fine-grained multithreading
	Slide 28: Running a simple addition kernel
	Slide 29: The execution on a GPU
	Slide 30: Concurrency
	Slide 31
	Slide 32: Occupancy
	Slide 33

