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The modern CPU



‘Sequential’ processor: super-scalar 
out-of-order pipeline 

Pipeline depth

Pipeline width

Different processing units

Out-of-order execution
Branch prediction
Register renaming
…
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Low latency of 

each instruction!

Write once

Run everywhere

efficiently!

CPU computing

automatic

manual



GPU strategy for 

massive computations



GPU architecture strategy

 Light-weight threads, supported by the hardware
◦ Thread processors, more than 1000 active threads per core

◦ Switching between threads can happen in 1 cycle!

 No caching mechanism, branch prediction, …
◦ GPU does not try to be efficient for every program, does not spend 

transistors on optimization

◦ Simple straight-forward sequential programming should be 
abandoned…

 Less higher-level memory:
◦ GPU: 16KB shared memory per SIMD multiprocessor

◦ CPU: L2 cache contains several MB’s

 Massively floating-point computation power

 RISC instruction set instead of CISC

 Transparent system organization
Modern (sequential) CPUs based on simple Von Neumann 

architecture



 6-24 stages 

 in-order execution!!

 no branch prediction!!

 no forwarding!!

 no register renaming!!

 Memory system: 
◦ relatively small

◦ Until recently no caching

◦ On the other hand: much more registers (see later)

 No program call stack and no memory stack!
◦ All functions inlined

◦ No recursion possible

GPU processor pipeline



Optimization

Compiler

Algorithms

Implementation

performanceprogrammability

portability

Challenges of GPU computing



GPUs has several pipelines which will be filled 
with instructions from different kernel threads 
through:

1. Running workgroups on the different 
compute units

2. Simultaneous multithreading:  several 
threads active at the same time

◦ Discussed next

3. Single Instruction Multiple Threads (SIMT)
◦ Discussed at the end of chapter

Fill the pipelines



Architecture



GPU Architecture

Streaming MultiProcessor (Nvidia)

Compute Unit (OpenCL)

global memory partitioned

Every controller can serve 1 request



1 Streaming Multiprocessor
= a pipeline

Multiple warps (hardware threads) 

are simultaneously active

The Same Instruction is 

executed on Multiple work items/ 

Threads 

(SIMT)

Number of processing elements 

(width of pipeline):

8 – 32 – 192 - 128

Warps waiting for 
data



Device/GPU  ± 1TFLOPS
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Major GPU Concepts
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Max #work items per work group: 1024
Executed in warps/wavefronts of 32/64 work items
Max work groups simultaneously on MP: 8
Max active warps/wavefronts on MP: 24/48
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100GB/s    200 cycles

40GB/s     few cycles

4-8 GB/s

OpenCL terminology



Properties of 
different 

architectures

#LD/STO units        = 16    32     32     32

GPUs of our lab and architecture

N(П) = #compute units
|ω| = warp size

Group & Warp slots: maximum # 
work groups or warps



The different Nvidia architectures

1st generation: Tesla

2 SMs (Compute 
Units) are grouped 

into one TPC



NVIDIA Compute Capability is 

linked to architecture

2nd generation: Fermi



Kepler
Maxwell

This is only half of an SM

3rd generation: Kepler
4rd generation: Maxwell

5th generation: Pascal



6th generation: Volta & Turing5th generation: Pascal

Without double precision (DP) units



Simultaneous 

multithreading



 Performing multiple threads of execution 
in parallel
◦ Replicate registers, PC, etc.
◦ Fast switching between threads

 Fine-grain multithreading
◦ Switch threads after each cycle
◦ Interleave instruction execution
◦ If one thread stalls, others are executed

 Coarse-grain multithreading
◦ Only switch on long stall (e.g., L2-cache miss)
◦ Simplifies hardware, but doesn’t hide short 

stalls (eg, data hazards)

Multithreading

§
7
.5

 H
a
rd

w
a
re

 M
u
ltith

re
a
d
in

g



 1 process/thread active per core

 When activating another thread: context switch
◦ Stop program execution: flush pipeline (let all 

instructions finish)

◦ Save state of process/thread into Process Control 
Block : registers, program counter and operating 
system-specific data

◦ Restore state of activated thread

◦ Restart program execution and refill the pipeline

 Processor ‘sees’ only 1 threads

Multithreading on CPU
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 In several modern CPUs 
◦ typically 2 HW threads (Intel: hyperthreading)

 Devote extra hardware for keeping process 
state

 Thread switching by hardware
◦ (almost) no overhead

◦ within 1 cycle!

◦ Instructions in flight from different threads

Fine multi-threading: 
Hardware threads



 In multiple-issue dynamically scheduled 
processor
◦ Schedule instructions from multiple threads
◦ Instructions from independent threads execute 

when function units are available
◦ Within threads, dependencies handled by 

scheduling and register renaming

 Example: Intel Pentium-4 HyperThreading
◦ Two threads: duplicated registers, shared function 

units and caches

Simultaneous Multithreading



 Independent instructions (no bubbles)

 More time between instructions: possibility 
for latency hiding
◦ Hide memory accesses

 If pipeline full
◦ Forwarding not necessary

◦ Branch prediction not necessary

Benefits of fine-grained multithreading



Running a simple addition kernel
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Runtime increases only when all pipelines are full (8000 threads)



What determines the 

occupancy



Occupancy

 Occupancy = #𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑤𝑎𝑟𝑝𝑠 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑜𝑛 𝑎 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑈𝑛𝑖𝑡

 A higher occupancy means that more work can be scheduled 
and in general a higher performance

 Limited resources will limit the number of work groups that 
can be simultaneously active and run concurrently:

1. Registers needed per work group

 Each kernel’s local variables are stored in register memory

2. Local memory needed per work group

3. Maximum number of concurrent work groups

4. Maximum number of work items

 The most constrained resource determines the occupancy

◦ Each Compute Unit has resources (depends on architecture, can 
be queried)

 For Pascal architecture: 256KB registers, 96KB local memory, 
max. 32 work groups, max. 2048 work items

29



The execution on a GPU

 Work groups are scheduled on compute units (cores).

 Warps of active work groups are scheduled on the core

30

execution time

Compute Unit

execution time

timeOfRun

Work group Warp



The pipeline model



Pipeline concepts



Occupancy roofline



Peak performance in function of 
occupancy
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Cycles Per Instruction

 The reversed graph

Completion latency

Issue latency
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Bandwidth

36

occupancy



Vector processors & SIMD

One way to do several computations at the same 
time



Vector processors

 All processing elements execute the same instruction 
at the same time
◦ Multiple data elements in 128-bit or 256-bit wide 

registers (vector registers)
◦ MMX and SSE instructions in x86

 Instead of iterating over the vector (for-loop), one 
instruction is sufficient

Instructions are performed at once

on all elements of the vector registers

7 8 2 -1

3 -3 5 -7

10 5 7 -8

128-bit vector registers 

+



Vector processors

 Simplifies synchronization

 Reduced instruction control hardware: an instruction 
has to be read only once for x number of calculations

 Works best for highly data-parallel applications

 Has long be viewed as the solution for high-
performance computing

◦ Why always repeating the same instructions (on 
different data)? => just apply the instruction
immediately on all data

 However: difficult to program, since less flexible
◦ Is OpenCL/SIMT easier?



Instruction and Data Streams

Data Streams

Single Multiple

Instruction 

Streams

Single SISD:

Intel Pentium 4

SIMD: SSE 

instructions of x86

Multiple MISD:

No examples today

MIMD:

Intel Xeon e5345

◼ Vector processing = Single Instruction on 

Multiple Data (SIMD)



Level 3

Hardware Threads 

& SIMT



1 Streaming Multiprocessor
= a pipeline

Multiple warps (hardware threads) 

are simultaneously active

The Same Instruction is 

executed on Multiple work items/ 

Threads 

(SIMT)

Number of processing elements 

(width of pipeline):

8 – 32 – 192 - 128

Warps waiting for 
data

Reading from 
global memory



Warp executes work items in lock step

 Hardware thread (called warp by Nvidia):
◦ Work items are executed together in groups, the 

instructions of the kernel are executed at the same time 
they will execute the same instruction

◦ Nvidia: 32; AMD: 64; Intel: variable number (8/16/24/32)

 Consequences:
1. Running 1 work item or 32 work items takes the same 

amount of time

 Thus: create workgroups which are multiples of 32 or 64 
(AMD)

2. Branching: if work items of the same warp take different 
branches, all branches will be executed after each other

 Performance loss
3. Concurrent memory access: if work items access memory, 

all work items of the same warp do it simultaneously

 Not all memory access can be done with the same speed



 Contiguous data access (See lesson 2)

 Warp execution of instructions on the data is 
similar to vector instructions operating on vector 
registers.

When is SIMT = vector processing?



 Vectors
◦ Data should be stored in vector register

◦ Instructions are performed onto these registers

◦ Harder to program

 SIMT
◦ Each thread of a warp can choose on which data it

works

◦ Easier to program: programmer does not have to
worry about work item-data mapping

Vectors versus SIMT
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Work items are sent into the pipeline grouped in a warp

ALUs all execute the same instruction in `lockstep’: Single 
Instruction, Multiple Threads (SIMT) 

Every cycle a new warp can issue an instruction
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Warp execution

MulMulMulMulMulMulMul0

Mul

On an Nvidia Kepler architecture, a single precision floating point 
instruction (add or multiplication) takes 9 cycles, which is the length 
of the pipeline. 

8 other warps can be scheduled in the mean time

After 9 cycles, the second instruction of the first warp 
(multiplication) can be issued, next the second warp and so on

With 9 warps the pipeline is completely filled, no stalling/idling, 
the completion latency of 9 cycles is completely hidden.

…

…
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AddAddAddAddAddAddAdd0

then
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If
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else

SIMT Conditional Processing
If work items of a warp follow different branches, the 

instructions of both branches have to be executed, but are 
desactivated for some threads. 

=> Performance loss!

Example: assume 8 threads, one instruction in if-clause, one in 
then-clause

3 cyles in which 24 instructions are executed, 8 lost cycles 
(66% usage)

Desactivated
instructions (red)

Desac-

tivated


