
Lesson 3: Architecture &
Strategy

Jan Lemeire
2020-2021

http://parallel.vub.ac.be

The modern CPU

‘Sequential’ processor: super-scalar
out-of-order pipeline

Pipeline depth

Pipeline width

Different processing units

Out-of-order execution
Branch prediction
Register renaming
…

Algorithm

Implementation

Compiler

Automatic

optimization

Low latency of

each instruction!

Write once

Run everywhere

efficiently!

CPU computing

automatic

manual

GPU strategy for

massive computations

GPU architecture strategy

 Light-weight threads, supported by the hardware
◦ Thread processors, more than 1000 active threads per core

◦ Switching between threads can happen in 1 cycle!

 No caching mechanism, branch prediction, …
◦ GPU does not try to be efficient for every program, does not spend

transistors on optimization

◦ Simple straight-forward sequential programming should be
abandoned…

 Less higher-level memory:
◦ GPU: 16KB shared memory per SIMD multiprocessor

◦ CPU: L2 cache contains several MB’s

 Massively floating-point computation power

 RISC instruction set instead of CISC

 Transparent system organization
Modern (sequential) CPUs based on simple Von Neumann

architecture

 6-24 stages

 in-order execution!!

 no branch prediction!!

 no forwarding!!

 no register renaming!!

 Memory system:
◦ relatively small

◦ Until recently no caching

◦ On the other hand: much more registers (see later)

 No program call stack and no memory stack!
◦ All functions inlined

◦ No recursion possible

GPU processor pipeline

Optimization

Compiler

Algorithms

Implementation

performanceprogrammability

portability

Challenges of GPU computing

GPUs has several pipelines which will be filled
with instructions from different kernel threads
through:

1. Running workgroups on the different
compute units

2. Simultaneous multithreading: several
threads active at the same time

◦ Discussed next

3. Single Instruction Multiple Threads (SIMT)
◦ Discussed at the end of chapter

Fill the pipelines

Architecture

GPU Architecture

Streaming MultiProcessor (Nvidia)

Compute Unit (OpenCL)

global memory partitioned

Every controller can serve 1 request

1 Streaming Multiprocessor
= a pipeline

Multiple warps (hardware threads)

are simultaneously active

The Same Instruction is

executed on Multiple work items/

Threads

(SIMT)

Number of processing elements

(width of pipeline):

8 – 32 – 192 - 128

Warps waiting for
data

Device/GPU ± 1TFLOPS

Global Memory (1GB)

Multiprocessor 1

Local Memory (16/48KB)

Scalar

Processor

± 1GHz

Private

16K/8

Scalar

Processor

Private

Multiprocessor 2

Local Memory

Scalar

Processor

Private

Scalar

Processor

PrivateHost/

CPU

Constant Memory (64KB)

Major GPU Concepts

Texture Memory (in global memory)

R

A

M

Grid (1D, 2D or 3D)

Group

(0, 0)

Group

(1, 0)

Group

(0, 1)

Group

(1, 1)

Group

(2, 0)

Group

(2, 1)

Work group

Work item

(0, 0)

Work item

(1, 0)

Work item

(2, 0)

Work item

(0, 1)

Work item

(1, 1)

Work item

(2, 1)

Work item

(0, 2)

Work item

(1, 2)

Work item

(2, 2)

kernel

Max #work items per work group: 1024
Executed in warps/wavefronts of 32/64 work items
Max work groups simultaneously on MP: 8
Max active warps/wavefronts on MP: 24/48

get_local_size(0)

g
e
t
_
l
o
c
a
l
_
s
i
z
e
(
1
)

W
o
r
k

g
r
o
u
p

s
i
z
e

S
y

Work group size Sx

(get_local_id(0), get_local_id(1))

(get_group_id(0),get_group_id(1))

100GB/s 200 cycles

40GB/s few cycles

4-8 GB/s

OpenCL terminology

Properties of
different

architectures

#LD/STO units = 16 32 32 32

GPUs of our lab and architecture

N(П) = #compute units
|ω| = warp size

Group & Warp slots: maximum #
work groups or warps

The different Nvidia architectures

1st generation: Tesla

2 SMs (Compute
Units) are grouped

into one TPC

NVIDIA Compute Capability is

linked to architecture

2nd generation: Fermi

Kepler
Maxwell

This is only half of an SM

3rd generation: Kepler
4rd generation: Maxwell

5th generation: Pascal

6th generation: Volta & Turing5th generation: Pascal

Without double precision (DP) units

Simultaneous

multithreading

 Performing multiple threads of execution
in parallel
◦ Replicate registers, PC, etc.
◦ Fast switching between threads

 Fine-grain multithreading
◦ Switch threads after each cycle
◦ Interleave instruction execution
◦ If one thread stalls, others are executed

 Coarse-grain multithreading
◦ Only switch on long stall (e.g., L2-cache miss)
◦ Simplifies hardware, but doesn’t hide short

stalls (eg, data hazards)

Multithreading

§
7
.5

 H
a
rd

w
a
re

 M
u
ltith

re
a
d
in

g

 1 process/thread active per core

 When activating another thread: context switch
◦ Stop program execution: flush pipeline (let all

instructions finish)

◦ Save state of process/thread into Process Control
Block : registers, program counter and operating
system-specific data

◦ Restore state of activated thread

◦ Restart program execution and refill the pipeline

 Processor ‘sees’ only 1 threads

Multithreading on CPU

O
ve

rh
e
ad

 In several modern CPUs
◦ typically 2 HW threads (Intel: hyperthreading)

 Devote extra hardware for keeping process
state

 Thread switching by hardware
◦ (almost) no overhead

◦ within 1 cycle!

◦ Instructions in flight from different threads

Fine multi-threading:
Hardware threads

 In multiple-issue dynamically scheduled
processor
◦ Schedule instructions from multiple threads
◦ Instructions from independent threads execute

when function units are available
◦ Within threads, dependencies handled by

scheduling and register renaming

 Example: Intel Pentium-4 HyperThreading
◦ Two threads: duplicated registers, shared function

units and caches

Simultaneous Multithreading

 Independent instructions (no bubbles)

 More time between instructions: possibility
for latency hiding
◦ Hide memory accesses

 If pipeline full
◦ Forwarding not necessary

◦ Branch prediction not necessary

Benefits of fine-grained multithreading

Running a simple addition kernel

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 10000 20000 30000 40000 50000 60000 70000

Run more and more
threads

#threads

Runtime
(ns)

27

Runtime increases only when all pipelines are full (8000 threads)

What determines the

occupancy

Occupancy

 Occupancy = #𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑤𝑎𝑟𝑝𝑠 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑜𝑛 𝑎 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑈𝑛𝑖𝑡

 A higher occupancy means that more work can be scheduled
and in general a higher performance

 Limited resources will limit the number of work groups that
can be simultaneously active and run concurrently:

1. Registers needed per work group

 Each kernel’s local variables are stored in register memory

2. Local memory needed per work group

3. Maximum number of concurrent work groups

4. Maximum number of work items

 The most constrained resource determines the occupancy

◦ Each Compute Unit has resources (depends on architecture, can
be queried)

 For Pascal architecture: 256KB registers, 96KB local memory,
max. 32 work groups, max. 2048 work items

29

The execution on a GPU

 Work groups are scheduled on compute units (cores).

 Warps of active work groups are scheduled on the core

30

execution time

Compute Unit

execution time

timeOfRun

Work group Warp

The pipeline model

Pipeline concepts

Occupancy roofline

Peak performance in function of
occupancy

34

Cycles Per Instruction

 The reversed graph

Completion latency

Issue latency

35

Bandwidth

36

occupancy

Vector processors & SIMD

One way to do several computations at the same
time

Vector processors

 All processing elements execute the same instruction
at the same time
◦ Multiple data elements in 128-bit or 256-bit wide

registers (vector registers)
◦ MMX and SSE instructions in x86

 Instead of iterating over the vector (for-loop), one
instruction is sufficient

Instructions are performed at once

on all elements of the vector registers

7 8 2 -1

3 -3 5 -7

10 5 7 -8

128-bit vector registers

+

Vector processors

 Simplifies synchronization

 Reduced instruction control hardware: an instruction
has to be read only once for x number of calculations

 Works best for highly data-parallel applications

 Has long be viewed as the solution for high-
performance computing

◦ Why always repeating the same instructions (on
different data)? => just apply the instruction
immediately on all data

 However: difficult to program, since less flexible
◦ Is OpenCL/SIMT easier?

Instruction and Data Streams

Data Streams

Single Multiple

Instruction

Streams

Single SISD:

Intel Pentium 4

SIMD: SSE

instructions of x86

Multiple MISD:

No examples today

MIMD:

Intel Xeon e5345

◼ Vector processing = Single Instruction on

Multiple Data (SIMD)

Level 3

Hardware Threads

& SIMT

1 Streaming Multiprocessor
= a pipeline

Multiple warps (hardware threads)

are simultaneously active

The Same Instruction is

executed on Multiple work items/

Threads

(SIMT)

Number of processing elements

(width of pipeline):

8 – 32 – 192 - 128

Warps waiting for
data

Reading from
global memory

Warp executes work items in lock step

 Hardware thread (called warp by Nvidia):
◦ Work items are executed together in groups, the

instructions of the kernel are executed at the same time
they will execute the same instruction

◦ Nvidia: 32; AMD: 64; Intel: variable number (8/16/24/32)

 Consequences:
1. Running 1 work item or 32 work items takes the same

amount of time

 Thus: create workgroups which are multiples of 32 or 64
(AMD)

2. Branching: if work items of the same warp take different
branches, all branches will be executed after each other

 Performance loss
3. Concurrent memory access: if work items access memory,

all work items of the same warp do it simultaneously

 Not all memory access can be done with the same speed

 Contiguous data access (See lesson 2)

 Warp execution of instructions on the data is
similar to vector instructions operating on vector
registers.

When is SIMT = vector processing?

 Vectors
◦ Data should be stored in vector register

◦ Instructions are performed onto these registers

◦ Harder to program

 SIMT
◦ Each thread of a warp can choose on which data it

works

◦ Easier to program: programmer does not have to
worry about work item-data mapping

Vectors versus SIMT

AddAddAddAddAddAddAdd32

Add

Warp execution

1 2 3 4 5 6

AddAddAddAddAddAddAdd0

Add
…

Warp 1

Cycle

Work items are sent into the pipeline grouped in a warp

ALUs all execute the same instruction in `lockstep’: Single
Instruction, Multiple Threads (SIMT)

Every cycle a new warp can issue an instruction

AddAddAddAddAddAddAdd64

Add

Warp 2 Warp 3

global ID
of work item

AddAddAddAddAddAddAdd96

Add

AddAddAddAddAddAddAdd128

Add

Warp 4 Warp 5

Warp execution

MulMulMulMulMulMulMul0

Mul

On an Nvidia Kepler architecture, a single precision floating point
instruction (add or multiplication) takes 9 cycles, which is the length
of the pipeline.

8 other warps can be scheduled in the mean time

After 9 cycles, the second instruction of the first warp
(multiplication) can be issued, next the second warp and so on

With 9 warps the pipeline is completely filled, no stalling/idling,
the completion latency of 9 cycles is completely hidden.

…

…

MulMulMulMulMulMulMul32

Mul

AddAddAddAddAddAddAdd128

Add

Warp 9

9 10 11 12 13 14 15

Cycle

Warp 1 Warp 2

AddAddAddAddAddAddAdd0

then

AddAddAddAddAddAddAdd0

If

AddAddAddAddAddAddAdd0

else

SIMT Conditional Processing
If work items of a warp follow different branches, the

instructions of both branches have to be executed, but are
desactivated for some threads.

=> Performance loss!

Example: assume 8 threads, one instruction in if-clause, one in
then-clause

3 cyles in which 24 instructions are executed, 8 lost cycles
(66% usage)

Desactivated
instructions (red)

Desac-

tivated

