

GPU Computing

Lesson 1: The Power of GPUs

Jan Lemeire 2020-2021

http://parallel.vub.ac.be/education/gpu

Course Assignments

- Mini-project 30%
 - Small kernel with variations
 - Performance experiments
- Project 70%
 - With defense

versus

2010 350 Million triangles/second 3 Billion transistors GPU

1995

5.000 triangles/second 800.000 transistors GPU

2016

14.000 Million triangles/second 15 Billion transistors GPU

Graphical Processing Units (GPUs)

Supercomputing for free

FASTRA at university of Antwerp

http://fastra.ua.ac.be

Collection of 8 graphical cards in PC

FASTRA 8 cards = 8x128 processors = 4000 euro

Similar performance as University's supercomputer (512 regular desktop PCs) that costed 3.5 million euro in 2005

"Supercomputing in a box": a high-end GPU cost 500 to 2500 euro and has equivalent power as 40 quadcore CPUs

Why are GPUs faster?

GPU specialized for math-intensive highly parallel computation

So, more transistors can be devoted to data processing rather than data caching and flow control

Both, about 5 billion transistors

No branch prediction, out-oforder execution,

Devote transistors to... computation

GPU vs CPU: NVIDIA 280 vs Intel i7 860

	GPU	CPU ¹
Registers	16,384 (32-bit) / multi-processor ³	128 reservation stations
Peak memory bandwidth	141.7 Gb/sec	21 Gb/sec
Peak GFLOPs	562 (float)/ 77 (double)	50 (double)
Cores	240 (scalar processors)	4/8 (hyperthreaded)
Processor Clock (MHz)	1296	2800
Memory	1Gb	16Gb
Local/shared memory	16Kb/TPC ²	N/A
Virtual memory		

¹http://ark.intel.com/Product.aspx?id=41316
 ²TPC = Thread Processing Cluster (24 cores)
 ³30 multi-processors in a 280

Basic Architecture (more details in chapter 3)

Processing elements

- > The Processing Elements (PEs) of GPUs are called by Nvidia:
 - Scalar Processors (SPs): single-precision floating point operations
 - CUDA cores (in the data sheets)
- The PEs are grouped into Compute Units (CUs):
 - called by Nvidia as Streaming MultiProcessors (MPs or SMs)
 - Is what we would call a *core* (see later)
- The number of PEs per CU are fixed for each GPU generation
- The number of CUs varies per GPU (determines power & price)

A GPU consists of Compute Units /Streaming Multiprocessors (SMs)

Each Compute Unit consists of Processing Elements

CUDA Core

Doerund Collector

Result Queue

INT Unit

FP Unit

CS 354

Streaming Multiprocessor (SM)

- Multi-processor execution unit
 - 32 scalar processor cores
 - Warp is a unit of thread execution of up to 32 threads
- Two workloads
 - Graphics
 - Vertex shader
 - Tessellation
 - Geometry shader
 - Fragment shader
 - Compute

45

Nvidia GPU generations

Nvidia Architecture	Clock freq MHz	PEs per CU	SFUs per CU	DPs per CU	RAM band- width (GBs)	latency A _{SP} (cycles)
Tesla		8	?	-	141	24
Fermi	1147	32	8	-	144	18
Kepler	1032	192	32	64	86	9
Maxwell	1058	128	32			6
Pascal	1506	128	32	64	192	6
Turing		64	8	?		

PE: single-precision floating-point or integer

SFU: special function unit (cos, sin, ...)

DP: double-precision unit (not present in old GPUs)

GPU Peak Performance

- GPUs consist of Compute Units (CUs) or Streaming MultiProcessors (MPs) grouping a number of Processing Elements (PEs) or Scalar Processors (SPs)
- Nvidia GTX 280 (Tesla architecture):
 - 30MPs x 8 SPs/MP x 2FLOPs/instr/SP x 1 instr/clock x 1.3 GHz
 624 GFlops
- Nvidia Tesla C2050 (Fermi architecture):
 - 14 MPs x 32 SPs/MP x 2FLOPs/instr/SP x 1 instr/clock x 1.15 GHz (clocks per second)
 - = 1030 GFlops

Memory bandwidth

Other limit: bandwidth

- Nvidia GTX 280:
 - 1.1 GHz memory clock
 - 141 GB/s
- Nvidia Tesla C2050:
 - 1.5 GHz memory clock
 - 144 GB/s

Example: real-time image processing

CPU gives only 4 fps next generation machines need 50 fps GPUs deliver 70 fps

{

Example: pixel transformation (FPN)

usgn_8 **transform**(usgn_8 in, sgn_16 gain, sgn_16 gain_divide, sgn_8 offset)

```
sgn_32 x;
```

```
x = (in * gain / gain_divide) + offset;

if (x < 0)

x = 0;

if (x > 255)

x = 255;

return x;
```


Pixel transformation

- Performance on Tesla C2050
- I pixel is represented by 1 byte [0–255]
 - Per pixel: read 4 bytes (pixel & gain & offset) and write 1 byte
- Integer operations: performance is half of floating point operations
- Pixel transformation: typically 6 operations (1 index calculation, 3 integer calculations and 2 comparisons)

What is taking longer: memory transfer or the computations?

A. Peak Performance

NIVERSITEIT

Depends on Computational Intensity (CI)

Roofline model applied to pixel transformation

Computational microbenchmarks

<u>www.gpuperformance.org</u> See paper Lemeire 2016:

Jan Lemeire, Jan G. Cornelis, Laurent Segers, <u>Microbenchmarks for GPU</u> <u>characteristics: the occupancy roofline and the pipeline model</u>, Procs of 24th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP), Heraklion, Greece, 2016

Java app

🚳 Microbenchmarks: measure your GPU – 🗖 🗙							
platform 1, device 1: GeForce GTX 650 Ti							
Computational performance							
іТуре	Peak	lambda	Lambda	Ridge point			
SP	467.2	0.28	10.80	11264			
MADD	1001.9	0.13	5.89	11264			
INT	308.2	0.43	5.73	11264			
SF	nope	nope	nope	nope			
DP	nope	nope	nope	nope			
Memory performance							
Global	11.3	11.18					
Char	34.0	3.84	80.98	1024			
Char2	60.7	4.31	79.68	1024			
Float	69.0	7.56	81.93	512			
Float2	72.7	14.45	90.58	256			
Float4	74.0	28.24	173.09	256			
Local	200.0	0.66					
Constant	83.7	1.57					
Private	1820.0	0.07					

Memory benchmarks

