INFO-H-503 - GPGPU PROGRAMMING - 06

GAUTHIER LAFRUIT - JAN LEMEIRE

ELINE SOETENS - DANIELE BONATTO

— B, e =
b _&

= OO?’-‘:3=§§=° e

LAST TIME - TODAY

= Last Time:

= Efficient memory access
= Coalescence
= Bank Conflict
= Matrix multiplication
= This Time:

= Transpose

23/03/2023

APPLICATION: MATRIX TRANSPOSE

= Matrix transpose is extremely useful

= |tis not immediate how to parallelize

(g1 Qg2\! Ai10 QAo
A0 ain = | Qo1 azq
Ao QA2q Aoz QAq2

3/23/2023

APPLICATION: MATRIX TRANSPOSE - NAIVE - CPU

vold matTrans naive(float const* A, float* At, size t N)

_ {
= N=8192 for (size t i = 0; 1 < N; ++1i) {
for (size t J = 0; j < N; ++3) {
= 413 ms @ 332,781 GFLOPS At[MI(j, i, N)1 = A[MI(i, j, M) 1;
}
= Not bad already }

23/03/2023

APPLICATION: MATRIX TRANSPOSE - NAIVE - GPU

volid matTrans naive(float const* A, float* At,
{
for (size t i = 0; 1 < N; ++i) {
for (size t j = 0; J < N; ++Jj) {
At[MI(j, 1, N)] = A[MI(i,], N)];
}
}
}
100%
a0z
80%
0%
E B3
E B0
L
30%
205
10
—

size t N)

Compute

__global wvoid matTrans naive gpu({float* At, float* A, int N)

int 1 = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;

if (1 >N || J >= N)
return;

At[MI(i, j, N)] = A[MI(j, i, N)1;

B remony operations

I Contral-flow operations We have a memory aCCGSS ISSue

- Arithmetic operations
Jul
Memory [Device
4

Mlemory [Device)

23/03/2023

__glcbal woid matTrans naive gpu{flcat* At,

{

APPLICATION: MATRIX TRANSPOSE - COALESCENCE

int (1 = blockIdx.x * blockDim.x + threadIdxi(x;
int (§ = blockIdx.y * blockDim.y + threadIdxz.y;

if (i >= N || j >= N)
return;

Rt[MI(i, j, N)] = A[MI(j, 1, N)1:

= We have a problem..

= Read a row in one direction

= Write as a column in the other direction = Non-Coalesced

float* A,

int N)

- Coalesced

__global wvoid matTrans naive gpu 2 (float* At, float* A, int N)

{

int (1 blockIdx.y * blockDim.y + threadIdx.y;
int (3 = blockIdx(x * blockDim./x + threadIdx(x;

if (L >N || j >= N)
return;

Rt[MI(i, j, N)]1 = A[MI(], i, N)1;

= Even if we change the indices we will have non-coalesced accesses

int (a1
int (]

blockIdx.x * blockDim.x + threadIdxix;
blockIdx(y * blockDim.y + threadIdx(y;

* Trick does not work anymore

int (4 = blockIdx.y * blockDim.y + threadIdx.y;
int (J = blockIdx!(x * blockDim./x + threadIdx(=;

Global Load Efficiency 10024
Global Store Efficiency #125%
Global Load Efficiency 12,5 %
Global Stare Efficiency 10024

23/03/2023

https://developer.nvidia.com/blog/efficient-matrix-transpose-cuda-cc/

APPLICATION: MATRIX TRANSPOSE - TILING

= We can use the shared memory and tiling to avoid this problem!

Coalesced read
ﬁ

/4134‘
B0 Coalesced write
——

Non-coalesced
read

Ap

Coalesced write

Global Memory Shared Memory Global Memory

= Now, the non-coalesced read happens only in the shared memory! Very fast

= We read and write in global memory with coalesced accesses only!
3/23/2023

https://developer.nvidia.com/blog/efficient-matrix-transpose-cuda-cc/

https://developer.nvidia.com/blog/efficient-matrix-transpose-cuda-cc/

EXERCISE: MATRIX TRANSPOSE - TILING

= Use the same template as Matrix Multiplication
= Write the CPU version
= Write the GPU Naive versions

= Write the shared memory version

= Use stb_image or OpenCV to transpose a picture

Check the efficiency for each version ! Profile everything!
Hint: There are bank confilcts ;)
Coaleﬁced read
Ab’4
BO Coalescgd write
Non- 413’
coalesced B

read

Coalesced write

Global Memory Shared Memory Global Memory 3/23/2023

https://developer.nvidia.com/blog/efficient-matrix-transpose-cuda-cc/

	Diapositive 1 INFO-H-503 – GPGPU Programming – 06
	Diapositive 2 Last time – Today
	Diapositive 3 APPLICATION: Matrix TransposE
	Diapositive 4 APPLICATION: Matrix TRANSPOSE – Naïve – CPU
	Diapositive 5 APPLICATION: Matrix TRANSPOSE – Naïve – GPU
	Diapositive 6 APPLICATION: Matrix TRANSPOSE - Coalescence
	Diapositive 7 Application: Matrix Transpose – Tiling
	Diapositive 8 Exercise: Matrix Transpose – Tiling

