
INFO-H-503 – GPGPU PROGRAMMING – 05

GAUTHIER LAFRUIT – JAN LEMEIRE

ELINE SOETENS - DANIELE BONATTO

LAST TIME – TODAY

 Last Time:

 Shared Memory

 Convolution

 This Time:

 Efficient memory access

 Coalescence

 Bank Conflict

 Matrix multiplication

17/03/2023

HOW TO SPEED THE MEMORY BANDWIDTH

 Remember the memory hierarchy?

 We want fast CPU → GPU (Global Memory)

transfers

 Use cudaMalloc, cudaMemCpy, etc.

 Accessing speed of the Global Memory on the GPU

depends on the access pattern

 Latency 400-600 clock cycles

 Likely the performance bottleneck

 Try to have coalesced global memory accesses

 = Less read/write per operation!

 If possible, improve further by using the

shared memory at the block level

 Try to avoid bank conflicts

17/03/2023

We want to avoid too many read/writes by warp

COALESCENCE

 This happens when your

threads try to access an array

without order.

 A transaction is a « load » of the

corresponding 128B of data

 You want to reduce the number

of « load » commands

 slow

3/17/2023

DIVERGENCES

 Control structures (if/else) can be dangerous.

 You want every thread in a wrap to finish computations at approximately the same time

 Avoid splitting threads in the same kernel on two tasks of different computational sizes

 This is due to Amdahl’s law! (In case you wonder why I say to avoid divergent if/else in shaders :) (INFO-H502))

3/17/2023

90% parallel 10% sequential

W
R

A
P

𝑝 = 0.90

max
𝑠𝑝𝑒𝑒𝑑𝑢𝑝

1

1 − 𝑝
=

1

0.1
= 10

GLOBAL MEMORY – WHEN THE ACCESS ARE COALESCED

 Simultaneous global memory access by each thread of a half-warp during the execution of a single read/write

instruction will be coalesced into a single access if:

 The size of the memory element accessed by each thread is either 4, 8 or 16 bytes

 The elements form a contiguous block of memory

 The Nth element is accessed by the Nth thread in the half-warp

 The address of the first element is aligned to 16 times the element’s size

17/03/2023
More info: https://www.slideshare.net/angelamm2012/nvidia-cuda-tutorialnondaapr08

Non-coalesced

important slide!

https://www.slideshare.net/angelamm2012/nvidia-cuda-tutorialnondaapr08

 For irregular read patterns → texture fetches (texture memory – Cached + Read only – Look at the doc)

 If all threads read the same location → constant memory

 Sequential access pattern BUT the structure size ∉ {4, 8, 16} bytes:

 Use Structure of Arrays (SoA) instead of Array of Structures (AoS)

 Or force structure alignment

 __align(X) where X = 4, 8 or 16 (see documentation)

 Or use shared memory!

17/03/2023

GLOBAL MEMORY – HOW TO AVOID NON-COALESCED ACCESSES?

More info: https://www.slideshare.net/angelamm2012/nvidia-cuda-tutorialnondaapr08

important slide!

https://www.slideshare.net/angelamm2012/nvidia-cuda-tutorialnondaapr08

 double3 array1 [N]

 double array2 [3*N]

 1 thread process 1 element of the array

17/03/2023

t0 t1 t2 t0 t1 t2

Coalesced accessUncoalesced access

GLOBAL MEMORY – HOW TO AVOID NON-COALESCED ACCESSES?

EXERCISE: (UN)COALESCED GLOBAL ACCESS

 Compile and run the code in

uncoalescedGlobalAccesses.cu

 Profile for the two kernels, use additional

analysis

 Analyze the load/store efficiency for both

kernel

 Perform Memory Bandwidth Analysis

 Check the number of read/write in the device

memory for each kernel

 Unguided analysis can also be usefull

17/03/2023

vs

BANK CONFLICTS

 Shared memory is divided into equally-sized memory modules: memory banks

 memory banks can only access stored data sequentially

 Bank conflicts arise due to specific memory access patterns

 There are 32 banks in the shared memory*

 The memory is split in words (4bytes): int (32 bits = 4*8 bit = 4 bytes), float, half, double, …

 word[0] is in bank[0]

word[1] is in bank[1]

…

17/03/2023*The programming guide indicates 16 banks for compute capability 1.x, and 32 banks for compute capability 2.x and 3.x.

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory-1-x
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory-2-x
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory-3-0

BANK CONFLICTS

 If several threads of a warp request the same word:

 Broadcasting

 If several threads request the same value from a bank:

 Multicasting

 Eg:

 5 threads reading bank 2 word 2

 5 threads reading bank 30 word 30

 Same word for each 5 threads

 When two or more threads reads different words from

the same bank, we have a bank conflict.

17/03/2023

BANK CONFLICTS - PATTERNS

 Broadcast

 Every expression which results in a single value

for all threads in each warp

 data[threadIdx.x * 0]

 data[threadIdx.x * 0]

 data[12]

 data[blockIdx.x * 3]

17/03/2023

Shared Memory Layout

BANK CONFLICTS – PATTERNS

 Each thread requests a word based on its

threadIdx

 arr[threadIdx.x]

 Each bank is only accessed for a single value

17/03/2023

Shared Memory Layout

BANK CONFLICTS – PATTERNS

 Threads of a warp request words which are

double of their threadIdx

 Eg: We are working with doubles

 Double = 8 bytes data

 arr[threadIdx.x * 2]

 2 way bank conflict

 Twice as slow accesses

17/03/2023

Shared Memory Layout

BANK CONFLICTS – PATTERNS

 When we work with 12 bytes data

 Eg: spatial points: p = (x,y,z)

 We don’t have bank conflicts!

 With the doubles, we can add an extra padding

to avoid bank conflicts!

 This is not always the case, some architectures

work with double without any bank conflict

 Always profile!

17/03/2023

Shared Memory Layout

BANK CONFLICTS – PATTERNS

 4 way bank conflict (12 bytes apart)

 arr[threadIdx.x * 12]

 We can solve:

 Adding a padding of 1

17/03/2023Shared Memory Layout Shared Memory Layout

BANK CONFLICTS – FINAL WORDS

 Latency hiding

 Even with bank conflicts, if many threads are running on a SM, the scheduler can switch to another warp while the bank access the data

 If you suspect a bank conflict

 Profile the code

 Try different paddings

17/03/2023

APPLICATION: MATRIX MULTIPLICATION

 𝑐𝑖
𝑗
= σ𝑘 𝑎𝑖

𝑘𝑏𝑘
𝑗

 For simplicity, in today’s lecture: M = K = N (square matrices)

17/03/2023

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23

𝑏11 𝑏12
𝑏21 𝑏22
𝑏31 𝑏32

=
𝑐11 𝑐12
𝑐21 𝑐22

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23

𝑏11 𝑏12
𝑏21 𝑏22
𝑏31 𝑏32

=
𝑐11 𝑐12
𝑐21 𝑐22

𝑐11 = 𝑎11𝑏11 + 𝑎12𝑏21 + 𝑎13𝑏32
𝑐22 = 𝑎21𝑏12 + 𝑎22𝑏22 + 𝑎23𝑏32

2x3 3x2 2x2

APPLICATION: MATRIX MULTIPLICATION – NAÏVE C++

 Let’s code with the linearization in C++

 We only have one thread working

 For each element of C, it computes the dot product of a line
of A and a column of B

17/03/2023

A B C

On your machines:

N = 1024

Processing time: 4225 ms

GFLOPS: 0,508

i,j in C

MATRIX MULTIPLICATION – PERFORMANCE COMPARISONS (N=1024)

Name Processing Time (ms) GFLOPS

Naïve CPU 4225,00 0,508

17/03/2023

APPLICATION: MATRIX MULTIPLICATION – NAÏVE CUDA

 Rewrite as a kernel

 Each thread compute an element of C

 Let’s use 256 threads for a 10242 elements matrix

17/03/2023

A B C

A thread point of view:

Create a grid over the matrix

The grid cover the matrix C → 1 thread per output

C++ CUDA

MATRIX MULTIPLICATION – PERFORMANCE COMPARISONS (N=1024)

Name Processing Time (ms) GFLOPS

Naïve CPU 4225,00 0,508

Naïve GPU 36,91 58,178

17/03/2023

GPU/CPU speed-up:
4225

36,91
= 114,4 ×

Let’s profile the kernel !

APPLICATION: MATRIX MULTIPLICATION – NAÏVE CUDA ANALYSIS

 Visual studio profiler:

 The occupancy is quite good! Every thread is working

 The bottleneck is the memory (L2 cache)!

 We see we have problems with Load and Store

3/17/2023

Compute Memory

≤ 10%

≈ 50%

Menu:

Examine Inidividual Kernels

>Perform additional Analysis

Menu:

Examine Inidividual Kernels

>Perform Kernel Analysis

Menu:

Examine Inidividual Kernels

>Perform Kernel Analysis

>Perform Memory Bandwidth Analysis

 Why do we have so bad load/store efficiency?

 Let’s look carefully at the indices used

 Wrap 0 = { 0, 𝟎 , 1, 𝟎 , 2, 𝟎 ,⋯ , (31, 𝟎)}

 The threads have the same y, and a consecutive x value

 Which address do the access

 Threads access the same i and consecutive j

 𝑀𝐼 𝑖 , 𝑗, 𝑁 = 𝑖 × 𝑁 + 𝑗

 The threads are accessing memory at a stride of N

floats

 1 load + 1 write per thread→ No coalescence!

APPLICATION: MATRIX MULTIPLICATION – NAÏVE CUDA ANALYSIS

17/03/2023

A B C

WARP

C1024 blocks

2
5

6

th
re

a
d

s

/
b

lo
c
k

4 blocks

𝐶 = 1024 × 1024

Block

(x,y)

Thread

(x,y)

(i,j) MI(i,j,N)

(0,0) (0,0) (O,0) 0

(0,0) (1,0) (1,0) N

APPLICATION: MATRIX MULTIPLICATION – NAÏVE CUDA ANALYSIS

 How to have coalescent accesses?

 We transpose which elements of the wrap we access!

 The threads are accessing memory at a stride of 1 float

 1 load + 1 write per wrap→ Coalescence!

17/03/2023

A B C

WARP

C1024 blocks

2
5

6

th
re

a
d

s

/
b

lo
c
k

4 blocks

𝑎00 𝑎01 𝑎02 𝑎03

𝑎10 𝑎11 𝑎12 𝑎13

𝑎20 𝑎21 𝑎22 𝑎23

Memory layout

𝐶 = 1024 × 1024

Block

(x,y)

Thread

(x,y)

(i,j) MI(i,j,N)

(0,0) (1,0) (O,0) 0

(0,0) (1,0) (0,1) 1

APPLICATION: MATRIX MULTIPLICATION – NAÏVE CUDA ANALYSIS

 Visual studio profiler:

 The occupancy is quite good! Every thread is working

 The bottleneck is the memory (L2 cache)!

 We see we have problems with Load and Store

3/17/2023

 Just by changing the indices:

 Kept same occupancy

 GPU able to do coalescence

 Increased load/store efficiency

APPLICATION: MATRIX MULTIPLICATION – NAÏVE CUDA ANALYSIS

 Visual studio profiler:

 The occupancy is quite good! Every thread is working

 The bottleneck is the memory (L2 cache)!

 We see we have problems with Load and Store

3/17/2023

Compute Memory

≤ 10%

≈ 50%

 Just by changing the indices:

 It automatically changed the kind of memory in use

for a faster one

 We perform more computations

 Exploiting vectorized instructions (Compute)

 SIMD
≤ 30%

≈ 55%

APPLICATION: MATRIX MULTIPLICATION – NAÏVE CUDA ANALYSIS

 Visual studio profiler:

 The occupancy is quite good! Every thread is working

 The bottleneck is the memory (L2 cache)!

 We see we have problems with Load and Store

3/17/2023

 Just by changing the indices:

 40% less L2 Cache operations (→ texture memory)

 Texture memory used more with faster accesses

 Faster transfers with Device Memory

What is the final performance?

MATRIX MULTIPLICATION – PERFORMANCE COMPARISONS (N=1024)

Name Processing Time (ms) GFLOPS

Naïve CPU 4225,00 0,508

Naïve GPU 36,91 58,178

Naïve GPU Coalescing 6,02 356,412

17/03/2023

GPU speed-up:
36,91

6,02
= 6,1 × GPU/CPU speed-up:

4225

6,02
= 701,8 ×

17/03/2023

MATRIX MULTIPLICATION – TILING

 Previously: 1 thread → 1 𝑐𝑖𝑗

 Problem: Entire matrix does not fit local cache!

 Faster way to compute matrices?

 Idea: Split matrices into sub-matrices

 Sub-matrices FIT local cache

 Each thread is responsible for ONE block

 𝑐𝑖𝑗 ∈ 0, 𝐵𝐿𝑂𝐶𝐾 × [0, 𝐵𝐿𝑂𝐶𝐾]

A B C

A B C

𝑐𝑖
𝑗
= ෍

𝑘

𝑎𝑖
𝑘𝑏𝑘

𝑗

𝑐𝑖
𝑗
= ෍

𝑘

෍

𝑏𝑙𝑜𝑐𝑘

𝑎𝑖
𝑘𝑏𝑙𝑜𝑐𝑘𝑏𝑘𝑏𝑙𝑜𝑐𝑘

𝑗

 Why does tiling is promising?

 With the first approach we have a lot of L2 cache misses!

 We try to store a whole line of A () and several columns of B in L2

 At some points, older columns of B are “invalidated” to store new ones.

 When we reach the second line of A (),

 We would like to reuse all the column of B, but only the last ones are still in cache

 In the « tiled » version, we can store in cache both subA and subB , all slow computations are done within L2
17/03/2023

MATRIX MULTIPLICATION – TILING

A B C

A B C

Old New

B

B

B

Main Memory

L3

L2

CPU 0

L1

CPU 1

L1

A, B stored here

(malloc)

A line of A and some

columns of B only

MATRIX MULTIPLICATION – TILING – CPU

17/03/2023

C A B

A B

A B

A B

We accumulate in C

Loop over

blocks

Loop inside block

The 𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒 × 𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒 need to fit the CPU cache

Ci

j

bi

bj

MATRIX MULTIPLICATION – PERFORMANCE COMPARISONS (N=1024)

Name Processing Time (ms) GFLOPS

Naïve CPU 4225,00 0,508

Naïve GPU 36,91 58,178

Naïve GPU Coalescing 6,02 356,412

Tiled CPU 749,00 2,867

17/03/2023

CPU speed-up:
4225

749
= 5,6 × GPU speed-up:

36,91

6,02
= 6,1 × GPU/CPU speed-up:

749

6,02
= 124,4 ×

MATRIX MULTIPLICATION – TILING – GPU

3/17/2023

We accumulate in C

Loop over

blocks

Loop inside block

Set C to zero by block

Kernel lunch: 2D block of 2D threads

Each thread performs

more work

MATRIX MULTIPLICATION – TILING – GPU

3/17/2023

Kernel lunch: 2D block of 2D threads

Set C to zero by block

𝑁 = 64 × 16 = 1024
𝑁_𝑡ℎ𝑟𝑒𝑎𝑑𝑠 = 𝐵𝐿𝑂𝐶𝐾𝑆𝐼𝑍𝐸 = 16
𝑡ℎ𝑟𝑒𝑎𝑑_𝑠𝑖𝑧𝑒 = (16, 16)
𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒. 𝑥𝑦 = ((1024 + 15)/16) / 𝐵𝐿𝑂𝐶𝐾𝑆𝐼𝑍𝐸 = (64/16, 64/16) = (4, 4) Small number of blocks!

blockIdx ∈ 0, 3 × [0, 3] = 0, 3 × [0, 3]
blockIdx * blockDim ∈ 0, 3 ∗ 16 × [0, 3 ∗ 16] = 0, 48 × [0, 48]

(i,j) = blockIdx * blockDim + threadIdx ∈ 0, 48 + 15 × 0, 48 + 15 = 0, 63 × [0, 63]

i *= BLOCKSIZE;

j *= BLOCKSIZE;

i, j ∈ 0, 63 ∗ 16 × 0, 63 ∗ 16 = 0, 1008 × [0, 1008] BY STEPS OF BLOCKSIZE

i, j ∈ {0, 16, 32, 48, 64, … , 976, 992, 1008} WE MOVE BLOCK BY BLOCK

𝑘 ∈ [0, 1024 − 16] = [0, 1008] by steps of 16
𝑘 ∈ {0, 16, 32, 48, 64,… , 976, 992, 1008} USED FOR INNER COMPUTATIONS IN A AND B ONLY BY BLOCK

𝑏𝑖, 𝑏𝑗 ∈ [0, 16]
𝑏𝑘 ∈ [0, 16]
𝑘 + 𝑏𝑘 ∈ [0, 1008 + 16] = [0, 1024]

𝑖 + 𝑏𝑖 ∈ [0, 1008 + 16] = [0, 1024]
𝑗 + 𝑏𝑗 ∈ [0, 1008 + 16] = [0, 1024]

𝑖 + 𝑏𝑖, 𝑘 + 𝑏𝑘 ∈ 0, 1024 × [0, 1024] by steps of 1 element starting at (i, k)

𝑘 + 𝑏𝑘, 𝑗 + 𝑏𝑗 ∈ 0, 1024 × 0, 1024 by steps of 1 element starting at (k, j)

Conclusion:

For each of those blocks (i, j) we ITERATE through the inner block (Sub blocs of C, A and B)

and accumulate in C

We store independently each elements in the sub block of C (i + bi, j+bj) = sum;

MATRIX MULTIPLICATION – PERFORMANCE COMPARISONS (N=1024)

Name Processing Time (ms) GFLOPS

Naïve CPU 4225,00 0,508

Naïve GPU 36,91 58,178

Naïve GPU Coalescing 6,02 356,412

Tiled CPU 749,00 2,867

Tiled GPU 32,77 65,534

17/03/2023

CPU speed-up:
4225

749
= 5,6 × GPU speed-up:

6,02

32,77
= 0,18 × GPU/CPU speed-up:

749

6,02
= 124,4 ×

MATRIX MULTIPLICATION – PERFORMANCE COMPARISONS (N=1024)

Name Processing Time (ms) GFLOPS

Naïve CPU 4225,00 0,508

Naïve GPU 36,91 58,178

Naïve GPU Coalescing 6,02 356,412

Tiled CPU 749,00 2,867

Tiled GPU 32,77 65,534

17/03/2023

CPU speed-up:
4225

749
= 5,6 × GPU speed-up:

6,02

32,77
= 0,18 × GPU/CPU speed-up:

749

6,02
= 124,4 ×

Woops!

Naïve CPU/Tiled CPU → 5,6 speedup

Naïve GPU/Tiled GPU → 0,18 speedup = SLOWDOWN

 Do we have a coalescence problem?

 Yes and no..

 We use 2D blocks now → Some threads in the wrap will be coalesced, but not all

 What if we change the indices?

 A little better..

MATRIX MULTIPLICATION – TILING – GPU

17/03/2023

C

Coalescing

MATRIX MULTIPLICATION – PERFORMANCE COMPARISONS (N=1024)

Name Processing Time (ms) GFLOPS

Naïve CPU 4225,00 0,508

Naïve GPU 36,91 58,178

Naïve GPU Coalescing 6,02 356,412

Tiled CPU 749,00 2,867

Tiled GPU 32,77 65,534

Tiled GPU Coalescing 27,01 79,495

17/03/2023

CPU speed-up:
4225

749
= 5,6 × GPU speed-up:

6,02

27,01
= 0,22 × GPU/CPU speed-up:

749

6,02
= 124,4 ×

MATRIX MULTIPLICATION – TILING – GPU

17/03/2023

 The Tiling approach in GPU

 Not so nice..

 The idea of tiles is nice!

 But, memory access is still a problem

 Let’s mix the design

 Each thread work on one output element

 We want to work in blocks (for cache)

 Even better:

 Let’s cache MANUALLY the blocks in shared memory

 So that every wrap has a fast access to it

 Faster load when non coalesced

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-c-runtime

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-c-runtime

MATRIX MULTIPLICATION – TILING – GPU

17/03/2023

Set C to zero by block

MATRIX MULTIPLICATION – TILING – GPU

17/03/2023

𝑁 = 64 × 16 = 1024
𝑁_𝑡ℎ𝑟𝑒𝑎𝑑𝑠 = 𝐵𝐿𝑂𝐶𝐾𝑆𝐼𝑍𝐸 = 16
𝑡ℎ𝑟𝑒𝑎𝑑_𝑠𝑖𝑧𝑒 = (16, 16)
𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒. 𝑥𝑦 = ((1024 + 15)/16) / 𝐵𝐿𝑂𝐶𝐾𝑆𝐼𝑍𝐸 = (64, 64)

blockIdx ∈ 0, 63 × [0, 63] = 0, 3 × [0, 3]
blockIdx * blockDim ∈ 0, 63 ∗ 16 × [0, 63 ∗ 16] = 0, 1008 × [0, 1008]

(i,j) = blockIdx * blockDim + threadIdx ∈ 0, 1008 + 15 × 0, 1008 + 15 = 0, 1023 × [0, 1023]

𝑏𝑖, 𝑏𝑗 ∈ [0, 16]

𝑘 ∈ [0, 1024] by steps of 16
𝑘 ∈ {0, 16, 32, 48, 64,… , 992, 1008} USED FOR INNER COMPUTATIONS IN A AND B ONLY BY BLOCK

𝑏𝑖, 𝑏𝑗 ∈ 0,15 × 0, 15
𝑘 + 𝑏𝑖, 𝑘 + 𝑏𝑗 ∈ 0, 1008 + 15 × 0, 1008 + 15 = 0, 1023 × [0, 1023]

𝑖 , 𝑘 + 𝑏𝑗 ∈ 0,1023 × 0, 1023
𝑘 + 𝑏𝑖, 𝑗 ∈ 0,1023 × 0, 1023

𝑏𝑘 ∈ 0, 16

Conclusion:

(𝑖, 𝑗) iterate again through all elements in C!

we use the thread indices (𝑏𝑖, 𝑏𝑗) to COPY the tiles of A and B in shared memory

We use the tiles to perform “non-memory friendly” sums and multiplications

We set the value in C (i, j) = sum;

MATRIX MULTIPLICATION – PERFORMANCE COMPARISONS (N=1024)

Name Processing Time (ms) GFLOPS

Naïve CPU 4225,00 0,508

Naïve GPU 36,91 58,178

Naïve GPU Coalescing 6,02 356,412

Tiled CPU 749,00 2,867

Tiled GPU 32,77 65,534

Tiled GPU Coalescing 27,01 79,495

Tiled GPU Coalescing Shared 1,54 1392,791

17/03/2023

CPU speed-up:
4225

749
= 5,6 × GPU speed-up:

6,02

1,54
= 3,9 × GPU/CPU speed-up:

749

1,54
= 486 ×

Best/Naïve: CPU speed-up:
4225

749
= 5,6 × GPU speed-up:

36,91

1,54
= 23,96 × GPU/CPU speed-up:

4225

1,54
= 2 743 ×

Name Time (ms) (1024) Time (ms) (2048) GFLOPS (1024) GFLOPS (2048)

Naïve CPU 4225,00 135365,00 0,508 0,126

Naïve GPU 36,91 621,84 58,178 27,627

Naïve GPU Coalescing 6,02 85,08 356,412 201,916

Tiled CPU 749,00 6291,00 2,867 2,730

Tiled GPU 32,77 242,97 65,534 70,707

Tiled GPU Coalescing 27,01 178,85 79,495 96,052

Tiled GPU Coalescing Shared 1,54 10,497 1392,791 1636,562

MATRIX MULTIPLICATION – PERFORMANCE COMPARISONS – 2×N

17/03/2023

Best/Naïve:

CPU speed-up:
4225

749
= 5,6 × GPU speed-up:

36,91

1,54
= 23,96 × GPU/CPU speed-up:

4225

1,54
= 2 743 ×

CPU speed-up:
135365

6291
= 21,5 × GPU speed-up:

621,84

10,497
= 59,23 × GPU/CPU speed-up:

135365

10,497
= 12 895 ×

(1024)

(2048)

= 8x problem size!

MATRIX MULTIPLICATION - TILED GPU COALESCING SHARED

 A matrix with 2048x2048 elements is STILL too small to hide memory access latency!

 We need bigger matrices

 N = 16384 → Threads = (16, 16) → Blocks = (1024, 1024) → 3Go memory

3/17/2023

Perform Kernel Analysis > Perform Latency Analysis

Name Processing Time (ms) (𝟏𝟎𝟐𝟒 × 𝟏𝟔) GFLOPS (𝟏𝟎𝟐𝟒 × 𝟏𝟔)

Naïve GPU 462 388,03 19,023

Naïve GPU Coalescing 68 271,06 128,840

Tiled GPU 552 576,00 15,918

Tiled GPU Coalescing 306 016,03 28,743

Tiled GPU Coalescing Shared 9 249,66 950,963

 The latency is hidden!

 The occupancy is high

 The shared memory is the limiting factor

 But we stop here the optimization!

17/03/2023

MATRIX MULTIPLICATION - TILED GPU COALESCING SHARED - ANALYSIS

HOW TO SOLVE A PROBLEM IN THE GPU?

 Think of a formula that represents each output point as a function of the input data 𝑓𝑖 𝐷 = 𝑜𝑖

 If the algorithm has multiple steps: 𝑓 = 𝑔 ∘ h ∘ i

 Write a function for each step

 The bottleneck one is the one you want to parallelize

 Thinking process: (in this order)

1. Think at the level of one thread – What does it do with its inputs

2. Think at the level of the wrap:

1. Which information can the thread share and how (shared memory - fast)

2. What are the race conditions between the threads to read/write the shared memory

3. Think at the level of the block:

1. Which information the blocks need to share (block memory – slow)

2. What are the race conditions between the blocks (read/write to the block memory)

3. Does one block depends on the output of another one, how to avoid?

4. Think at the level of the CPU:

1. Which data need to be sent to the VRAM (very slow)

2. How to divide the problem on a grid? (1D, 2D or 3D grid with 1D or 2D or 2D threads ?)

3. Take into account the limits of your GPU to select those variable and profile the running time

4. Advanced: Launch the threads in different queues
17/03/2023

Very important slide!

EXERCISE: MATRIX MULTIPLICATION

 Implement all the matrix multiplication functions/kernels

 You can use the template on the uv

 Profile everything with the CUDA Profiler

 Compare your results with the slides!

 Extra:

 Adapt your code for non square matrices

3/17/2023

RESSOURCES

 CMU 15-418/15-618 – 2020 – GPU Programming with CUDA

 CUDA Crash Course: Matrix Multiplication, 2019, CoffeeBeforeArch, Youtube

17/03/2023

	Diapositive 1 INFO-H-503 – GPGPU Programming – 05
	Diapositive 2 Last time – Today
	Diapositive 3 How to speed the memory bandwidth
	Diapositive 4 Coalescence
	Diapositive 5 Divergences
	Diapositive 6 Global Memory – When the access are coalesced
	Diapositive 7
	Diapositive 8
	Diapositive 9 Exercise: (un)coalesced global access
	Diapositive 10 Bank Conflicts
	Diapositive 11 Bank Conflicts
	Diapositive 12 Bank Conflicts - Patterns
	Diapositive 13 Bank Conflicts – Patterns
	Diapositive 14 Bank Conflicts – Patterns
	Diapositive 15 Bank Conflicts – Patterns
	Diapositive 16 Bank Conflicts – patterns
	Diapositive 17 Bank conflicts – Final Words
	Diapositive 18 APPLICATION: Matrix Multiplication
	Diapositive 20 APPLICATION: Matrix Multiplication – Naïve C++
	Diapositive 21 Matrix Multiplication – Performance comparisons (N=1024)
	Diapositive 22 APPLICATION: Matrix Multiplication – NaïVE CUDA
	Diapositive 23 Matrix Multiplication – Performance comparisons (N=1024)
	Diapositive 24 APPLICATION: Matrix Multiplication – Naïve Cuda Analysis
	Diapositive 26 APPLICATION: Matrix Multiplication – Naïve Cuda Analysis
	Diapositive 27 APPLICATION: Matrix Multiplication – Naïve Cuda Analysis
	Diapositive 28 APPLICATION: Matrix Multiplication – Naïve Cuda Analysis
	Diapositive 29 APPLICATION: Matrix Multiplication – Naïve Cuda Analysis
	Diapositive 30 APPLICATION: Matrix Multiplication – Naïve Cuda Analysis
	Diapositive 31 Matrix Multiplication – Performance comparisons (N=1024)
	Diapositive 32 Matrix Multiplication – TILING
	Diapositive 33 Matrix Multiplication – TILING
	Diapositive 34 Matrix Multiplication – TILING – CPU
	Diapositive 35 Matrix Multiplication – Performance comparisons (N=1024)
	Diapositive 36 Matrix Multiplication – TILING – GPU
	Diapositive 37 Matrix Multiplication – TILING – GPU
	Diapositive 38 Matrix Multiplication – Performance comparisons (N=1024)
	Diapositive 39 Matrix Multiplication – Performance comparisons (N=1024)
	Diapositive 40 Matrix Multiplication – TILING – GPU
	Diapositive 41 Matrix Multiplication – Performance comparisons (N=1024)
	Diapositive 42 Matrix Multiplication – TILING – GPU
	Diapositive 43 Matrix Multiplication – TILING – GPU
	Diapositive 44 Matrix Multiplication – TILING – GPU
	Diapositive 45 Matrix Multiplication – Performance comparisons (N=1024)
	Diapositive 46 Matrix Multiplication – Performance comparisons – 2×N
	Diapositive 47 Matrix Multiplication - Tiled GPU Coalescing Shared
	Diapositive 48 Matrix Multiplication - Tiled GPU Coalescing Shared - Analysis
	Diapositive 49 How to solve a problem in the GPU?
	Diapositive 50 Exercise: Matrix Multiplication
	Diapositive 62 RESSOURCES

