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LAST TIME - TODAY

= Last Time:
= Shared Memory
= Convolution

= This Time:

= Efficient memory access
= Coalescence
= Bank Conflict

= Matrix multiplication
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HOW TO SPEED THE MEMORY BANDWIDTH

= Remember the memory hierarchy?

= We want fastjf CPU €-> GPU |(Global Memory)
transfers

= Use cudaMalloc, cudaMemCpy, etc.

= Accessing speed of the Global Memory on the GPU
depends on the access pattern

= Latency 400-600 clock cycles

= Likely the performance bottleneck

= Tryto have|coalesced globaljmemory accesses

m = |less read/write per operation!

= |f possible, improve further by using the
shared memory fat the block level

=  Try to avoid bank conflicts

7,32 MB

19,87 MB

120,75 kB

11.78 MB

S T B ean o] B arasana: ekl an o o
Global Memory|Access Patterns

SRR R an e anannnanaannnnnnunammm m

4byte Aligned Sequential Access 1 Transaction per Request

ibyte Unaligned Sequential Access 2 Transactions per Request

4byte Strided Access [2..32] Transactions per Request

We want to avoid too many read/writes by warp
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COALESCENCE

® K-th thread must access k-th word in the segment (or k-th word in 2
contiguous 128B segments for 128-bit words), not all threads need to
participate

Coalesces — 1 transaction
This happens when your

threads try to access an array
without order.

A transaction is a « load » of the
corresponding 128B of data

Out of sequence — 16 transactions Misaligned — 16 transactions

You want to reduce the number
of « load » commands

slow

© NVIDIA Corporation 2008



DIVERGENCES

= Control structures (if/else) can be dangerous.

= You want every thread in a wrap to finish computations at approximately the same time

Avoid splitting threads in the same kernel on two tasks of different computational sizes

X; Y;
B; Z;

(In case you wonder why | say to avoid divergent if/else in shaders :) (INFO-H502) )
| //\/—/ p =00
1 1

< . sggggﬁpﬁl——zo:z 0.1 =10

90% parallel 10% sequential

if (threadidx.x < 4) {
A;
B;
} else {
X3
Y

End of branch

}
z

» Time

=  Thisis due to Amdahl’s law!
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GLOBAL MEMORY - WHEN THE ACCESS ARE COALESCED

= Simultaneous global memory access by each thread of a half-warp during the execution of a single read/write
instruction will be coalesced into a single access if:

= The size of the memory element accessed by each thread is either 4, 8 or 16 bytes
. 1Al
= The elements form a contiguous block of memory Importa ntslide!

= The Nth element is accessed by the Nth thread in the half-warp

= The address of the first element is aligned to 16 times the element’s size Non-coalesced
to t1 t2 t3 t14 t15 t14 t15 t2 3 t13 t14 t15

LT i I DTN N

128 132 136 140 144 188 128 132 136 140 144 184 188 192 128 132 136 140 144 184 188 192

Coalesced £1oat memory access Non-sequential £1oat memory access Non-contiguous £loat memory access

t14 t15 t0 t1 t2 3 t13 t14 t15 to t1 t2 3 t14 t15
| D S S S R i

128 132 136 140 144 184 188 192 136 76 296 308 320

Coalesced float memory access Misaligned starting address Non-coalesced £1loat3 memory access
(divergent warp)

144 184 188 192 1

More info: https://www.slideshare.net/angelamm2012/nvidia-cuda-tutorialnondaaprO8
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https://www.slideshare.net/angelamm2012/nvidia-cuda-tutorialnondaapr08

GLOBAL MEMORY - HOW TO AVOID NON-COALESCED ACCESSES?

= For irregular read patterns - texture fetches (texture memory - Cached + Read only - Look at the doc)
= |f all threads read the same location = constant memory

= Sequential access pattern BUT the structure size & {4, 8, 16} bytes:
= Use Structure of Arrays (SoA) instead of Array of Structures (AoS)

struct AoS { struct SohA {
Array of Structs (AoS) e e Struct of Arrays (SoA) ont L0015 /) 1004 bytes
float y[100]; // 100x4 bytes

float y; // 4 Dbytes
float z; // 4 bytes float z[l00]; // 100x4 bytes

} }

struct SoA positions;
// 1x[100x4 + 100x4 + 100x4]
s = 1200 bytes

struct AoS position[l00];
J/ 100x (4+44+44) 100x12 bytes
v 1200 bytes

= Or force structure alignment

= _ align(X) where X =4, 8 or 16 (see documentation) . .
important slide!
= Or use shared memory!

More info: https://www.slideshare.net/angelamm2012/nvidia-cuda-tutorialnondaaprO8
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https://www.slideshare.net/angelamm2012/nvidia-cuda-tutorialnondaapr08

GLOBAL MEMORY - HOW TO AVOID NON-COALESCED ACCESSES?

= 1 thread process 1 element of the array

double3 a = d_in[index];

a.x += k; ‘ o ‘
a.y += k; d_out[index] = d_in[index] + k;
a.z += k;
d_out[index] = a;

to t1 t2 t0  t1 2

T T T T T T T T ) ) e

Uncoalesced access Coalesced access
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EXERCISE: (UN)COALESCED GLOBAL ACCESS

=  Compile and run the code in
uncoalescedGlobalAccesses.cu

= Profile for the two kernels, use additional
analysis

= Analyze the load/store efficiency for both
kernel

= Perform Memory Bandwidth Analysis

®»  Check the number of read/write in the device
memory for each kernel

= Unguided analysis can also be usefull

EWENG

addConstDouble 3(int, double 3%, double, « ™

W * 'I'P Results

1. CUDA Application Analysis

2. Performance-Critical Kernels

g
should select an entry from the table and thefgde
kerniel analysis to discover additional optimiza®
opportunities,

i, Perform Kernel &nalysis

S=lecta karnelfrom the @bl at right or from the tim eline to emable kernel
amalysis. This amalysis requires detailed profiling data, soyour application
will b2 run anoe tocollect that data for the kernel i it = not already
avaibble.

I iy, Perform Additional Analysis I

“fousan collect additiora | inform ation to belp identify ket with potental
performance problem =, After running this a ma kisis, sskect anmy of the new

results at right to highlight the individwal kernaks for which the amkisis

apolies. va

t Global Memory Alignment and Access Pattern

Memory banduidth is used most efficiently when each global mernary load and stare has proper aligr

Kernel Perfo..ance Limiter | il

pet assembly instruction,

Cptimization: Seizct sach entry below to open the sourcs code to g global logd or stors within the kemsl

Kernel Latency i

Kernel Compute 1'% w _ine [ File
a0

Kernel Memory il 30

30

| Global Memo...ess Pattern m g | 34
34

na

aocess pattemn, For sach load or stors improve the alignment and qocess pattem of the mermony gooess.

uncoalescedGlobaldccesses.cu - \serst MEO-H-50Desktopitestifraphtestiiap

Global Load L2 Transactionsffccess = 24, Ideal Transactions/Access = 8[ 786432 L2 tran:
Global Load L2 Transactions/fccess = 24, ldeal Transactions/Access = B[ 786432 L2 tran:
Global Load L2 Transactions/Access = 24, ldeal TransactionsfAccess = 8[ 780432 L2 tran:
Global Store L2 Transactions/Access = 24, |deal Transactions/Access = 8 786432 L2 tran:
Global Store L2 TransactionsfAccess = 24, Ideal TransactionsfAccess = 8 786432 L2 tran:

U e A v Aa 0 T v AT TAsARA L A
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BANK CONFLICTS

= Shared memory is divided into equally-sized memory modules: memory banks
=  memory banks can only access stored data sequentially

= Bank conflicts arise due to specific memory access patterns

= There are 32 banks in the shared memory*

= The memory is split in words (4bytes): int (32 bits = 4*8 bit = 4 bytes), float, half, double, ...

= word[O] is in bank[O]
word[1] is in bank[1]

*The programming guide indicates 16 banks for compute capability 1.x, and 32 banks for compute capability 2.x and 3.x. 17/03/2023


http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory-1-x
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory-2-x
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory-3-0

BANK CONFLICTS

= |f several threads of a warp request the same word:
= Broadcasting

= |f several threads request the same value from a bank:
= Multicasting

= Eg:
= 5 threads reading bank 2 word 2

= 5 threads reading bank 30 word 30

= Same word for each 5 threads

= When two or more threads reads different words from
the same bank, we have a bank conflict.
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BANK CONFLICTS - PATTERNS

Shared Memory Layout

=  Broadcast

= Every expression which results in a single value
for all threads in each warp

= data[threadldx.x * O]
= data[threadldx.x * O]
= data[12]
= data[blockldx.x * 3]
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BANK CONFLICTS - PATTERNS

Shared Memory Layout

= Each thread requests a word based on its
threadldx

= arr[threadldx.x]

= Each bank is only accessed for a single value

17/03/2023



BANK CONFLICTS - PATTERNS

Shared Memory Layout

= Threads of a warp request words which are
double of their threadldx

= Eg: We are working with doubles

= Double = 8 bytes data

= arr[threadldx.x * 2]
= 2 way bank conflict

= Twice as slow accesses

17/03/2023



BANK CONFLICTS - PATTERNS

Shared Memory Layout

= When we work with 12 bytes data
= Eg: spatial points: p = (X,Y,2)

= We don’t have bank conflicts!

= With the doubles, we can add an extra padding
to avoid bank conflicts!

= This is not always the case, some architectures
work with double without any bank conflict

= Always profile!
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BANK CONFLICTS - PATTERNS

= 4 way bank conflict (12 bytes apart)
= arr[threadldx.x * 12]

= We can solve:

= Adding a padding of 1

Shared Memory Layout Shared Memory Laycut



BANK CONFLICTS - FINAL WORDS

= Latency hiding

= Even with bank conflicts, if many threads are running on a SM, the scheduler can switch to another warp while the bank access the data

= |f you suspect a bank conflict

= Profile the code

= Try different paddings

17/03/2023



APPLICATION: MATRIX MULTIPLICATION

€11 = aq1b11 + ay2byq + ay3b3;

const int M = 100, K= 100, N = 200; _
int A[M] [K]: Ca2 = Qp1b15 + Az3b2; + ay3bs;
int BIK][N]:
int C[M] [N]: b b
for (int i = 0; i < M; ++1) a1 Qi Qg3 11 12 €11 C1p
for (int J = 0; J < N; ++]) (a a a ) b21 b22 = (C c )
for (int k = 0; k < K; ++k) 21 22 23 b b 21 22
CLi1[j]1 += A[il1[k] * BIkI[jl:; 31 M32
2x3 3x2 2x2
b b
11 12
(a11 aip Qag3 ) b b _ (C11 Clz)
Y kpJ az1 Gz dzs b21 b22 €21 C22
c; = Xra;b; 31 D32

®  For simplicity, in today’s lecture: M = K = N (square matrices)
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APPLICATION: MATRIX MULTIPLICATION - NAIVE C++

“II=

vold matMult naive (float const * A, float const * B, float* C, size t N)

{

= Let’s code with the linearization in C++
=  We only have one thread working

= For each element of C, it computes the dot product of a line
of Aand a column of B

for (size t@ = 0; i < N; ++i) { .
: for (size t @ = 0; j < N; ++3) { l,J IN C
] double sum = 0.0;
for {size t @= 0; k < N; ki+) { On your machines:
sum += (double)A[MI(@), ®, N)] * BIMI(K, @) N)1;
} N = 1024
, C0E® @ W1 - {float)sum; Processing time: 4225 ms
} GFLOPS: 0,508

fdefine MI(r, c, width) ((r) * (width) + (<)) 17/03/2023



MATRIX MULTIPLICATION - PERFORMANCE COMPARISONS (N=1024)

Name | ProcessingTime (ms) GFLOPS

Naive CPU 4225,00 0,508

17/03/2023




APPLICATION: MATRIX MULTIPLICATION - NAIVE CUDA

= Rewrite as a kernel Create a grid over the matrix
= Each thread compute an element of C TN i) fmerlm o0z
dim3 Ehread_size{N_threads * N threads, 1, 1); // 16 * 16 = 256 threads
= Let's use 256 threads for a 1024% elements matrix dim3 block_size(
(M + (thread size.x - 1)) / thread size.x,
(N + (thread size.y - 1)) / thread size.y,

1y /S (4, 1024, 1)

The grid cover the matrix C 2 1 thread per output

A thread point of view:

__global  wvoid matMult naive gpu(flcat* <, float* A, float* B, int N)
{

xI'=

vold matMult naive (float const * A, float const * B, float* C, size t N)

{

int 1 = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdxz.y;

if (1 >= N || ] >= N)

for (size t i = 0; i < N; ++i) {
: return;

for (size t j = 0; j < N; ++3) {

double sum = 0.0; o
for (size t k = 0; k < N; k++) { cllzeis Hh = 0

sum += (double)A[MI(i, k, N)] * B[MI(k, j, N)1; for (int k = U; k < N; ki+) |

} sum += A[MI(i, k, N)] * B[MI(k, j, N)I;

CIMI(i, j, N)]1 = (float)sum; }
}
} C++ CIMI(i, j, M)] = sum; CUDA
} }

fdefine MI(r, c, width) ((r) * (width) + (<)) 17/03/2023



MATRIX MULTIPLICATION - PERFORMANCE COMPARISONS (N=1024)

Name | ProcessingTime (ms) GFLOPS

Naive CPU 4225,00 0,508
Naive GPU 36,91 58,178

Let’s profile the kernel !

GPU/CPU speed-up: % = 114.4 X
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APPLICATION: MATRIX MULTIPLICATION - NAIVE CUDA ANALYSIS

matMult_naive_gpulfloat®, float*, float®, int]

Utilization

Visual studio profiler:

= The occupancy is quite good! Every thread is working

= The bottleneck is the memory (L2 cache)!

= We see we have problems with Load and Store

100
a0
a0
Fl-
B0
B0 < 1 O%

40 -

a0

a0

10

Function Unit [Single]

Compute

~ 50%

Felemiory (L2 Cache)

Memory

Queued n/a
Subrmnitted nia
Start 261,60425 ms ...
End 29245118 ms ...
Curation 36,3693 ms (.
Strearn Default
Grid Size [4,1024,1]
Block Size [2361,1]
Registers/Thread 32
Shared Mermory/Block 0B
Launch Type Marmal
s Efficiency
iGlobal Load Efficiency & 125%
Global Stare Efficiency #125%
Shared Efficiency rfa
Warp Execution Efficiency 10024
Mot-Predicated- Off Warp Executi 99,9%
w Occupancy
Achieved [
Theaoretical 100 24
w Shared Memory Configuration
Shared Mermory Executed QB
Shared Mermory Bank Size 4B
L2 Cache
Reads 11079074%4 | 1,107.441 GB/s
Widrites 1048589 1.048 GB/s
Total 1108956083 | 1,108.480 GB/s Irile e P — M!ax
Device Mermory
Reads 68571273 68,542 GB/s
rites 1465209 1.465 GB/s
Total 70036482 70.007 GB/s Iéle —— ——— TG M.'ax



APPLICATION: MATRIX MULTIPLICATION - NAIVE CUDA ANALYSIS

- P 2 Global Load Efficiency 13,2 %
Why do we have so bad load/store efficiency” bl St Effciancs e

= Let’s look carefully at the indices used

int N = 1024; // |mat| = 1024x=1024
int N _threads = 1¢;
dim3 thread size(N_threads * N _threads, 1, 1); // 16 * 16 = 256 threads
dim3 block_size(
(N + (thread size.x - 1)) / thread size.x,
(M + (thread size.y - 1)) / thread size.y,
Ly, /7 (4, 1024, 1)

= Wrap0=1{(0,0),(1,0),(2,0),---,(31,0)}

= The threads have the samey, and a consecutive x value

=  Which address do the access
Block Thread | (i,)) MI(i,j,N)
= Threads access the same i and consecutive j (X,y) (X,y)
(0,0) (0,0) (0,0) 0

blockIdx.x * blockDim.x + threadIdx.=x;
blockIdx.y * blockDim.y + threadIdx.y;

4 blocks

o
>

int i
int j

= MIGi,j,N)=iXN+j

(0,0) (1,0) (1,0) N

» The threads are accessing memory at a stride of N
floats
|C| = 1024 x 1024

= 1 load + 1 write per thread - No coalescence!
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APPLICATION: MATRIX MULTIPLICATION - NAIVE CUDA ANALYSIS

Global Load Efficiency 13,2 %

Global Stare Efficiency 12,5 %
int(i = blockIdx.x * blockDim.x + threadIdxi(x;

int(j = blockIdx({y * blockDim(y + threadIdx(y;

Block Thread
l (X,y) (x,y) 4 blocks

int (i = blockIdxly * blockDim.y + threadIdx.(y; >
int (J = blockIdx!=x * blockDim!/x + threadId=z(x=; (O O) (1 O (O O

(0,0) (1,0) (0,1) 1

= How to have coalescent accesses?

=  We transpose which elements of the wrap we access! -
—

= The threads are accessing memory at a stride of 1 float Memory layout

= 1 load + 1 write per wrap = Coalescence!
Aoo Ap1 Qg2 A3

Ai0 A11 A12 Aq3 |C| = 1024 x 1024

17/03/2023




APPLICATION: MATRIX MULTIPLICATION - NAIVE CUDA ANALYSIS

Visual studio profiler:

The occupancy is quite good! Every thread is working
The bottleneck is the memory (L2 cache)!

We see we have problems with Load and Store

Just by changing the indices:

Kept same occupancy
GPU able to do coalescence

Increased load/store efficiency

matMult_naive_gpulfloat®, float*, float®, int]

Queued
Subrnitted
Start
End
Duration
Strearn
Grid Size
Black Size
Registers/Thread
Shared Mermory/Block
Launch Type

w Efficiency

Global Load Efficiency
Global Stare Efficiency

Shared Efficiency

Warp Execution Efficiency
Mot-Predicated-Off Warp Executi

w Dccupancy
Achieved
Theoretical

w Shared Memory Configuration
Shared Memory Executed
Shared Memaory Bank Size

na
na

261, 60425 ms ...
20245118 ms ...
36,84693 ms (.,

Default
[4,1024,1 ]
[ 256,1,1]
32

0B
Mormal

12,5 %
12,5 %
nia
100%
09,9 %

02,2 %
100%

0B
4B

matfult_naive_gpu_coalescing(float®, float*, float*, int)

Queued
Submitted
Start
End
Duration
Strearn
Grid Size
Block Size
Registers/Thread
Shared Mermorg/Block
Launch Type

w Efficiency

Global Load Efficiency
Global Stare Efficiency

Shared Efficiency

Wiéarp Execution Efficiency
Mot-Predicated-Off Warp Executi

w Occupancy
Achiewed
Thearetical

w Shared Memory Configuration
Shared Mermory Executed
Shared Memory Bank Size

3/17/2023

hia

hia

321,09868 ms ...
32712283 ms ..
6,02415 s (6.,
Default
[4,1024,1]

[ 236,1,1]

32

0B

Marrmal

82,5 %%
100 %
nia

100 %%
09,9 %

a1 1%
100 %

0B
4B



Visual studio profiler:

= The occupancy is quite good! Every thread is working
= The bottleneck is the memory (L2 cache)!

= We see we have problems with Load and Store

Just by changing the indices:

= |t automatically changed the kind of memory in use

for a faster one .

= We perform more computations

= Exploiting vectorized instructions (Compute)

= SIMD

Utilization

Litilization

00

APPLICATION: MATRIX MULTIPLICATION - NAIVE CUDA ANALYSIS

~ 50%

Felemiory (L2 Cache)

Memory

@)
~ 55%

A0 .
a0
T
B
g0 0
= 10%
a0
20
10
EE—
Function Unit [Single]
Compute
LIl
a0z
O
B0
A0z
< 30%
402
a0
202
0
Compute

Memory [Texture)

3/17/2023



APPLICATION: MATRIX MULTIPLICATION - NAIVE CUDA ANALYSIS

Visual studio profiler:

The occupancy is quite good! Every thread is working
The bottleneck is the memory (L2 cache)!

We see we have problems with Load and Store

Just by changing the indices:

40% less L2 Cache operations (= texture memory)
Texture memory used more with faster accesses

Faster transfers with Device Memory

What is the final performance?

L2 Cache

Feads
Writes

Total

Device Memary
Reads
Wirites

Total

L2 Cache

Reads
Wirites

Total

Unified Cache

Local Loads
Local Stores
Global Loads
Global Stares
Texture Reads

Unified Total

Dewvice bernory

Reads
Wiftites

Total

1107307424
1048589

1108356033

68371273
1465209

T003e452

167814002
131085

167345093

0

0
1073741826
131072
265435456

1342308354

24126438
166287

24292725

1,107.441 GBfs
1,048 GBfs

1,108.489 GB/s

088,542 GB/s
1.465 GB/s

F0.007 GB/s

1,075,686 GB/s
840,253 MEB/s

1,076,526 GB/s

0B/s

QE/fs
1,075.418 GB/s
240,17 ME/s
1,720,668 GB/s

2,796,926 GB/s

154,65 GB/s
1,066 GE/s

155,716 GB/s

Idle Law Mediurn High M
! . . - 1
Idle Ly fdediurm High hlax
L - - - 1
Idle L o Mediurm High [
. 1
Idle L o hdediurm High Bl
L - - - 1
Idle L o Mediurm High Pl
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MATRIX MULTIPLICATION - PERFORMANCE COMPARISONS (N=1024)

Name | ProcessingTime (ms) GFLOPS

Naive CPU 4225,00 0,508
Naive GPU 36,91 58,178
Naive GPU Coalescing 6,02 356,412

36,91
GPU speed-up: —— = 6,1 X GPU/CPU speed-up: 462—(?; = 701,8 x
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MATRIX MULTIPLICATION - TILING

= Previously: 1 thread 2 1 Cij

= Problem: Entire matrix does not fit local cache!

= Faster way to compute matrices?

= |dea: Split matrices into sub-matrices

= Sub-matrices FIT local cache

k
“ -
“
= Each thread is responsible for ONE block

= ¢;; €[0,BLOCK] X [0,BLOCK] J — Kblock ,J
! € 4 bkbzock
k block

17/03/2023




MATRIX MULTIPLICATION - TILING

Old —> New

= Why does tiling is promising?

A, B stored here
(malloc)

~ Aline of Aand some
columns of B only

CPU 1

= With the first approach we have a lot of L2 cache misses!

= We try to store a whole line of A ( ) and several columns of Bin L2

= At some points, older columns of B are “invalidated” to store new ones.

),
=  We would like to reuse all the column of B, but only the last ones are still in cache

= When we reach the second line of A (

= |nthe «tiled » version, we can store in cache both subA . and subB - all slow computations are done within L2

17/03/2023



MATRIX MULTIPLICATION - TILING - CPU

void matMult blocked{float const* A, float const* B, float* C,
size t N, size t block size) {

et [C o, El * ]Sl * 51zeof(flt}at]], We accumulate in C
[ |
= fo:r_' (size £t 1 = 0; i <= N - block size; i += block size) {
for {512& t J=0; ] <=N - leCk_Slze; J += leck_size] {
' for (size t k = 0; k <= N - block size; k += block size) {
// Inner block loop
Loop aqver for (size t bi = 0; bi < block size; bi++) {

for (size t bj = 0; bj < block size; bj++) {
blOCkS float sum = 0.0;
for (size t bk = 0; bk < block size; bk++) {
sum += A[MI(i + bi, k + bk, N)]
1 8 * B[MI(k + bk, j + bj, N)1;
}
C[MI{i + bi, j + bj, N)] += sum;
}
}
+ - “ // We use extra loops here if it is not the case
} J
—
i |l
+ &3
The blockg;,. X blockg;,. need to fit the CPU cache
17/03/2023

}

// This code supposes block size divides N;




MATRIX MULTIPLICATION - PERFORMANCE COMPARISONS (N=1024)

Name | ProcessingTime (ms) GFLOPS

Naive CPU 4225,00 0,508
Naive GPU 36,91 58,178
Naive GPU Coalescing 6,02 356,412
Tiled CPU 749,00 2,867

CPU speed-up: % = 5,6 X GPU speed-up: % =6,1 X GPU/CPU speed-up: % = 124,4 X

17/03/2023




MATRIX MULTIPLICATION - TILING - GPU

|
volid matMult blocked(float const* A, float const* B, float* C, __global Vpid matMult_blocked gpu(float* C, float* A,
. size t N, size t block size) { ' float* B, int N)

_ We accumulate in C // 1 and j will represent the coordinates of a block

int 1 = blockIdx.x * blockDim.x + threadIdx.x;
int jJ = blockIdx.y * blockDim.y + threadIdx.y:

for (size t i = 0; 1 €<= N - block size; i += block size) {
for (size t j = 0; j <= N - block size; j += block size) {
for (size t k = 0; k <= N - block size; k += block size) {

// Inner block loop // We map the threads on submatrices!
Loop aver for (size_t bi = 0; bi < block _size; bi++) { i *= BLOCKSIZE;
for (size t bj = 0; bj < block size; bj++) { j *= BLOCKSIZE:;
blocks float sum = 0.0;
for (size t l;k T-i:l; 1];]{ <kblo;i_5i}z:]a; bk++) { Aif (i >=N [ § > N)
sum += A[MI{(1 + bi, == | .
* B[MI(k + bk, § + bj, N)1; ~ Teturn; Set C to zero by block
} H
C[MI{i + bi, j + bj, N)] += sum;
}
}

} Loop inside block

// This code supposes block size divides N;
[/ We use extra loops here if it is not the case

for (int k = 0; k <= N - BLOCKSIZE; k += BLOCEKSIZE) {

} for (int bi = 0; bi < BLOCESIZE; bi++) {
for (int bj = 0U; bj < BLOCESIZE; bj++) {
float sum = 0.0;
Kernel lunch: 2D block of 2D threads for (int bk — 0; bk < BLOCKSIZE: bk++) {

int N = 1024; // |mat| = 1024x1024 sum += A[MI(i + bi, k + bk, N)]
int N threads = 1&; * B[MI(k + bk, 7 + bj, NM)]:
dim3 thread size(N threads, N threads); // |(l¢, 1€)| = 256 threads }
dim3 block size( ) _ ) C[MI(i + bi, 7 + bj, N)]1 += sum;

(N + (thread size.x - 1)) / thread size.xz [/ BLOCESIZE, }

(N + (thread size.y - 1)) / thread size.y / BLOCESIZE,

1y // (e4/16, e4/1e, 1) = (4, 4, 1) }

Each thread performs }

more work



MATRIX MULTIPLICATION - TILING - GPU

Kernel lunch: 2D block of 2D threads
N = 64x16 = 1024

int N = 1024; // |mat| = 1024x1024
ir.lt N_threads.= 16; . . ) ] N_threads = BLOCKSIZE = 16
Zﬁg ;fizzidgiizt?m_thread& N_threads); // | (16, 16)| = 256 threads thread_size = (16,16)
(N + (thread size.x - 1)) / thread size.x / BLOCKSIZE, block_size.xy = ((1024 + 15)/16) / BLOCKSIZE = (64/16,64/16) = (4,4) Small number of blocks!
(N + (thread size.y - 1)) / thread size.y / BLOCKSIZE,
1); // (64/16, €4/16, 1) = (4, 4, 1)
__global  woid matMult blocked gpu(float* C, float* A, blockldx E[O,3]X KLS] =[D, 3]X KL 3]
float* B, int N) blockldx * blockDim € [0,3 x16] X [0,3 = 16] = [0,48] x [0, 48]
{ (i,j) = blockldx * blockDim + threadldx € [0,48 + 15] x [0,48 + 15] =[0,63] x [0, 63]

// 1 and j will represent the coordinates of a block
blockIdx.x * blockDim.x + threadTdx.x; ]
blockIdx.y * blockDim.y + threadIdx.y; i *= BLOCKSIZE;

j *= BLOCKSIZE;

int i
int j

// We map the threads on submatrices!
i *= BLOCKSIZE;

o mrocmeree (i,j) € [0,63 x 16] X [0,63 * 16] = [0,1008] x [0,1008]  BY STEPS OF BLOCKSIZE

i,j € {0,16,32,48,64,...,976,992,1008} WE MOVE BLOCK BY BLOCK
if (i >=N || J >=N)
return; Set C to zero by block k €0,1024 — 16] = [0,1008] by steps of 16

k € {0,16,32,48,64,...,976,992,1008} USED FOR INNER COMPUTATIONS IN A AND B ONLY BY BLOCK
// Set all elements of C to O

for (int bi = 0; bi < BLOCKSIZE; bi++) {

for (int bj = 0; bj < BLOCKSIZE; bij++) { (bi,bj) €1[0,16]
f CIMI(i + bi, j + bj, N)] = 0; bk € [0,16]
o} k + bk €[0,1008 + 16] = [0,1024]
}
for (int k = 0; k <= N - BLOCKSIZE; k += BLOCKSIZE) { i."'bi. € [0,1008 + 16] = [0,1024]
for (int bi = 0; bi < BLOCKSIZE; bi++) { j+ bj € [0,1008 + 16] = [0,1024]
for (int bj = 0; bj < BLOCKSIZE; bj++) {
Et( Hean Ny P . ey 4 (i + bi, k + bk) €[0,1024] x [0,1024] by steps of 1 element starting at (i, k)
or int bk = ; bk < BLOCESIZE; bk++ . . . .
sum +— A[MI(i + bi k + bk, N)] (k + bk, j + bj) €[0,1024] x [0,1024] by steps of 1 element starting at (k, j)
* B[MI(k + bk, J + bj, N)1;
} Conclusion:
C[MI(i + bi, j + bj, N)] += sum; For each of those blocks (i, j) we ITERATE through the inner block (Sub blocs of C, A and B)
} and accumulate in C

We store independently each elements in the sub block of C (i + bi, j+bj) = sum;
3/17/2023



MATRIX MULTIPLICATION - PERFORMANCE COMPARISONS (N=1024)

Name | ProcessingTime (ms) GFLOPS

Naive CPU 4225,00 0,508
Naive GPU 36,91 58,178
Naive GPU Coalescing 6,02 356,412
Tiled CPU 749,00 2,867
Tiled GPU 32,77 65,534

CPU speed-up: % = 5,6 X GPU speed-up: % = (0,18 X GPU/CPU speed-up: % = 124,4 X
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MATRIX MULTIPLICATION - PERFORMANCE COMPARISONS (N=1024)

Name | ProcessingTime (ms) GFLOPS

Naive CPU 4225,00 0,508

Naive GPU 36,91 58,178

Naive GPU Coalescing 6,02 356,412

Tiled CPU 749,00 2,867

Tiled GPU 32,77 65,534
Woops!

Naive CPU/Tiled CPU = 5,6 speedup
Naive GPU/Tiled GPU - 0,18 speedup = SLOWDOWN

CPU speed-up: % = 5,6 X GPU speed-up: % = (0,18 X GPU/CPU speed-up: % = 124,4 X

17/03/2023



MATRIX MULTIPLICATION - TILING - GPU

= Do we have a coalescence problem?

oo

a0z

] Global Load Efficiency 5 12,5%
e Glabal Store Efficiency & 12,5%
0%
H B3
E 5z
S e Coalescing
30 ﬁ
203
103
EE— |
Function Unit [Single) Mlemorny (L2 Cache]

=  Yes and no..

=  We use 2D blocks now = Some threads in the wrap will be coalesced, but not all

=  What if we change the indices?

00

e

a0

btk

ik

ik

Litilization

4z

ik
20

Compute Memorny [L2 Cache)

= A little better.. 17/03/2023



MATRIX MULTIPLICATION - PERFORMANCE COMPARISONS (N=1024)

Name | ProcessingTime (ms) GFLOPS

Naive CPU 4225,00 0,508
Naive GPU 36,91 58,178
Naive GPU Coalescing 6,02 356,412
Tiled CPU 749,00 2,867
Tiled GPU 32,77 65,534
Tiled GPU Coalescing 27,01 79,495

CPU speed-up: % = 5,6 X GPU speed-up: % = 0,22 X GPU/CPU speed-up: % = 124,4 X

17/03/2023



MATRIX MULTIPLICATION - TILING - GPU

= The Tiling approach in GPU

= Not so nice..

= The idea of tiles is nice!

=  But, memory access is still a problem

= Let's mix the design
= Each thread work on one output element
= We want to work in blocks (for cache)

= Even better:

= Let’'s cache MANUALLY the blocks in shared memory

= So that every wrap has a fast access to it

= Faster load when non coalesced

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-c-runtime
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MATRIX MULTIPLICATION - TILING - GPU

__global  void matMult blocked gpu(flcat* C, float* A,

{

float* B, int N)

// 1 and j will represent the coordinates of a block
int 1 = blockId=Z.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;

// We map the threads on submatrices!
1 *= BLOCESIZE;
j *= BLOCESIZE:

if (L >N || J > N)
: return;

Set C to zero by block

for (int k = 0; k <= N - BLOCKSIZE; k += BLOCKSIZE) {

for (int bi = 0; bi < BLOCESIZE; bi++) {
for (int bj = 0; bj < BLOCESIZE; bj++) {
float sum = 0.0;
for (int bk = 0; bk < BLOCESIZE; bk++) |

sum += A[MI(i + bi, k + bk, N)]
* B[MI(k + bk, j + bj, N)1;
}
C[MI(i + bi, j + bj, N)] += sum;

// Each thread répreéent.again one oﬁtput c_ij
int i = blockIdx.v * blockDim.yv + threadIdx.y;
int j = blockIdx.x * blockDim.x + threadIdx.x;

if (1 >N || § > N)
: return;

?f Thread is mapped to a sub matrix
int bi = threadIdx.y;
int bj = threadIdx.x;

__shared  float subA[BLOCESIZE * BLOCEKSIZE];
__shared  float subB[BLOCESIZE * BLOCKSIZE];

float sum = 0.0;
// Each thread perform operations on all the blocks!
for (int k = 0; kK € N; k += BLOCESIZE) {

subA[MI(bi, bj, BLOCKSIZE)] = A[MI(i, k + bj, N)1;
subB[MI(bi, bj, BLOCKSIZE)] = B[MI(k + bi, j, N)1;

__syncthreads{() ;

// Each thread operate using the shared memory!
for (int bk = 0; bk < BLOCESIZE; bk++) {
sum 4= subA[MI({bi, bk, BLOCKSIZE)]
* subB[MI(bk, bj, BLOCKSIZE)]:

}
__syncthreads () ;

}
C[MI(i, j, N)] = sum;

17/03/2023

__gleobal  woid matMult blocked gpu coalescing shared(float* C,
: : : : : : : : : : : : . float* B,

float* A,
int N) {

// Each thread copy an element from global to shared in block



MATRIX MULTIPLICATION - TILING - GPU

L |
thread size = dim3(N_threads, N_threads); // (le, 1le, 1) N = 64%16 = 1024

block size = dim3(
(8 + (thread size.x - 1)) / thread size.x, N_threads = BLOCKSIZE = 16
(W + (thread size.y - 1)) / thread size.y, thread_size = (16,16)
1)z /7 {64, 64, 1) block_size.xy = ((1024 + 15)/16) / BLOCKSIZE = (64,64)

__global__ wvoid matMult_hlocked_gpu_coalescing_shared[Eiz:i: g, iiza;; }_?, blockldx € [0,63] % [0,63] _ [O, 3] v [O, 3]
// Each thread represent again one cutput c_ij blockldx * blockDim € [0, 63 * 16] X [0,63 * 16] = [0, 1008] X [O, 1008]
int i = blockIdx.y * blockDim.y + threadIdx.y; (i,j) = blockldx * blockDim + threadldx € [0,1008 + 15] x [0,1008 + 15] = [0,1023] x [0,1023]
int J = blockIdx.x * blockDim.x + threadIdx.x;
if (A >N [| § > N) (bi,bj) € [0,16]

return;
k € [0,1024] by steps of 16

// Thread is mapped to a sub matrix k € {0,16,32, 48,64, ...,992,1008} USED FOR INNER COMPUTATIONS IN A AND B ONLY BY BLOCK
int bi threadIdx.y;

int bj threadIdx.x;
(bi, bj) € [0,15] x [0, 15]

_shared_ float subA[BLOCKSIZE * BLOCKSIZEL, (k + bi, k + bj) € [0,1008 + 15] x [0,1008 + 15] = [0,1023] x [0,1023]
__shared  float subB[BLOCESIZE * BLOCESIZE];
float sum = 0.0; (i ) k + bj) € [0,1023] x [0,1023]
// Each thread perform operations on all the blocks! (k + bi, j ) €[0,1023] x [0,1023]
for (int k = 0; k € N; k += BLOCKSIZE) {

// Each thread copy an element from global to shared in block

A[MI(i, k + bj, N)1; bk € [0,16]
BIMI(k + bi, 3, N)1;

subA [MI (bi, bj, BLOCKSIZE)]
subB [MI (bi, bj, BLOCKSIZE)]

__syncthreads ()} ;

Conclusion:
// Each thread operate using the shared memory! (i,j) iterate again through all elements in C!
for (int bk = 0; bk < BLOCKSIZE; bk++) { we use the thread indices (bi, bj) to COPY the tiles of A and B in shared memory
FEC S e mnR he mmesees ] We use the tiles to perform “non-memory friendly” sums and multiplications
* subB[MI (bk, bj, BLOCKSIZE)]; . o
} We set the value in C (i, j) = sum;

___syncthreads() ;

}
C[MI(i, 3, N)] = sum;
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MATRIX MULTIPLICATION - PERFORMANCE COMPARISONS (N=1024)

Name | ProcessingTime (ms) GFLOPS

Naive CPU 4225,00 0,508
Naive GPU 36,91 58,178
Naive GPU Coalescing 6,02 356,412
Tiled CPU 749,00 2,867
Tiled GPU 32,77 65,534
Tiled GPU Coalescing 27,01 79,495
Tiled GPU Coalescing Shared 1,54 1392,791
CPU speed-up: %2; =56 X GPU speed-up: % = 3,9 X GPU/CPU speed-up: % — 486 X

Best/Naive: ~ CPU speed-up: % = 5,6 X GPU speed-up: 316—;3: = 23,96 X  GPU/CPU speed-up: 412—5245 = 2743 X
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MATRIX MULTIPLICATION - PERFORMANCE COMPARISONS - 2XN

= 8x problem size!

Name ____________|Time(ms) ____|Time(ms)(2048) | GFLOPS GFLOPS (2048)

Naive CPU 4225,00 135365,00 0,508 0,126
Naive GPU 36,91 621,84 58,178 27,627
Naive GPU Coalescing 6,02 85,08 356,412 201,916
Tiled CPU 749,00 6291,00 2,867 2,730
Tiled GPU 32,77 242,97 65,534 70,707
Tiled GPU Coalescing 27,01 178,85 79,495 96,052
Tiled GPU Coalescing Shared 1,54 10,497 1392,791 1636,562
Best/Naive:

4225 36,91
(1024) CPU speed-up: o T 5,6 X GPU speed-up: Tei = 23,96 X GPU/CPU speed-up: %245 = 2 743 X

=59,23 X GPU/CPU speed-up: —— = 12 895 x
17/03/2023

135365 621,84
o1 21,5 x GPU speed-up: 0497

(2048) CPU speed-up:




MATRIX MULTIPLICATION - TILED GPU COALESCING SHARED

# Grid Size Too Small To Hide Compute And Memory Latency

The kernel does not execute enough blocks to hide memory and operation latency, Typically the kernel grid size must be large enough to fill the GPU with
rultiple “wawves" of blocks, Based on theoretical occupancy, device "GeForce GTX 1080 Ti" can simultaneously execute 3 blocks on each of the 28 5hs, 50
the kernel may need to execute a multiple of 224 blocks to hide the cormpute and memory latency, If the kernel is executing concurrenthy with other
kernels then fewer blocks will be required because the kernel is sharing the 5Ms with those kernels,

Cwtimization: Increass the number of blocks exscuted by the kemel Mare..,

= A matrix with 2048x2048 elements is STILL too small to hide memory access latency!

= We need bigger matrices

= N =16384 - Threads = (16, 16) = Blocks = (1024, 1024) - 3Go memory

Name | ProcessingTime (ms) (1024 x 16) | GFLOPS (1024 X 16)

Naive GPU 462 388,03 19,023
Naive GPU Coalescing 68 271,06 128,840
Tiled GPU 552 576,00 15,918
Tiled GPU Coalescing 306 016,03 28,743
Tiled GPU Coalescing Shared 9 249,66 950,963
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MATRIX MULTIPLICATION - TILED GPU COALESCING SHARED - ANALYSIS

=  The latency is hidden!

mathult_blocked_gpu_coalescing_shared(float®, float®, float®, int)

=  The occupancy is high Queved nfa
Subrnitted nia
= The shared memory is the limiting factor Start (22080 I e
End 775,9847 ms (.
= But we stop here the optimization! puration #1315 ms (2.
Strearn Default
Grid Size [84841]
Block Size [16,18,1 ]
Registers/Thread £}
1002 Shared Mermony/Block 2 KiB
A Launch Type Marrnal
- w Efficiency
Global Load Efficiency 10024
e Glabal Stare Efficiency 100 %
E B0 I r=mony operations Shared Efficiency o 42,3 %
E Bl B Control-flow operations Warp Execution Efficiency 100 %
§ . Il #rithmetic aperations Mot-Predicated- Off Warp Executi 100%
B raemary [Shared) w Occupancy
A Achieved 93,1 %
20 Theoretical 100%
1% w Shared Mermory Configuration
Shared Mermory Executed 16 KiB
Compute tlemaony [Shared) Shared Mermaory Bank Size 4B
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HOW TO SOLVE A PROBLEM IN THE GPU?

= Think of a formula that represents each output point as a function of the input data f;(D) = o;

= |f the algorithm has multiple steps: f = gohoi

= Write a function for each step

= The bottleneck one is the one you want to parallelize Ve ry Im pO rtant SI |d e'

=  Thinking process: (in this order)

1. Think at the level of one thread - What does it do with its inputs
2. Think at the level of the wrap:
1. Which information can the thread share and how (shared memory - fast)
2. What are the race conditions between the threads to read/write the shared memory
3. Think at the level of the block:
1. Which information the blocks need to share (block memory - slow)
2. What are the race conditions between the blocks (read/write to the block memory)
3. Does one block depends on the output of another one, how to avoid?

4.  Think at the level of the CPU:

1. Which data need to be sent to the VRAM (very slow)

2. How to divide the problem on a grid? (1D, 2D or 3D grid with 1D or 2D or 2D threads ?)

3. Take into account the limits of your GPU to select those variable and profile the running time
4. Advanced: Launch the threads in different queues
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EXERCISE: MATRIX MULTIPLICATION

= |mplement all the matrix multiplication functions/kernels

® You can use the template on the uv
= Profile everything with the CUDA Profiler B

= Compare your results with the slides!

= Extra:
= Adapt your code for non square matrices = A B .
E ik™k3j
C k
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RESSOURCES

= CMU 15-418/15-618 - 2020 - GPU Programming with CUDA
= CUDA Crash Course: Matrix Multiplication, 2019, CoffeeBeforeArch, Youtube
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