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LAST TIME – TODAY

 Last Time:

 Shared Memory

 Dot product

 Histogram

 This Time:

 Convolution

 Supplemental : Integral Image
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WHY? CONVOLUTIONS

 Convolutions are everywhere in science

 1D: sound processing

 2D: Image processing

 3D: Medical/Volumetric data

 nD: Neural Networks

 Basic idea:

 « Convolve » a signal with a specific kernel

 𝑓 ∗ 𝑔 𝑡 ≔ ∞−
∞

𝑓 𝜏 𝑔 𝜏 − 𝑡 𝑑𝜏
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1D: statistics 2D: Image filtering

3D: MRI/CT-Scans

nD: AlexNet
𝑓(𝑡)
𝑔(𝑡)

(f ∗ g)(t)



APPLICATION: 1D STENCIL

 1D Stencil:

 Used in nodal based simulations to evaluate PDE over a grid

 Each output element is the sum of inputs elements within a radius
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radius radius

= a « kernel »
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APPLICATION: 1D STENCIL

 Problem analysis:

 Each output element is the sum of inputs elements within a radius

 We read many times the same element
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Read

Written

= a « kernel »

radius radius



APPLICATION: 1D STENCIL

 Problem analysis:

 Each output element is the sum of inputs elements within a radius

 CPU version
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Read

Written

𝑖𝑑𝑥 + 𝑜𝑓𝑓𝑠𝑒𝑡 ∈ [−𝑅𝐴𝐷,𝑁 + 𝑅𝐴𝐷]

= a « kernel »

radius radius



APPLICATION: 1D STENCIL
 Problem analysis:

 Each output element is the sum of inputs elements within a radius

 GPU version (almost copying the CPU)
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Read

Written

CPU

GPU

= a « kernel »

radius radius



APPLICATION: 1D STENCIL
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 Problem analysis:

 Each output element is the sum of inputs elements within a 

radius

 GPU Shared memory

 Idea: Copy from global to shared

 The shared memory is 𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒 + 2 × 𝑘𝑒𝑟𝑛𝑒𝑙_𝑟𝑎𝑑

 We only have 𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒 threads

 Some of them will do more work

 All the threads fill the central part of the shared memory

 Threads with id smaller than 𝑘𝑒𝑟𝑛𝑒𝑙_𝑟𝑎𝑑 fill:

 The first missing elements

 The last missing elements

 We need to check if we are in the borders of the stencil



EXERCISE

 Write your own 1D Stencil version (CPU/GPU/Shared)

 Profile it and report the speedups

 Generalize it to 1D Convolution

 You need to add a kernel array (!! Different that a GPU function !!)

 The elements of the vector will do a dot product with this kernel

 You can think of 1D stencil as a 1D convolution with a kernel = [1 1 1 ⋯ 1 1 1]
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https://e2eml.school/convolution_one_d.html

https://e2eml.school/convolution_one_d.html


APPLICATION: 2D CONVOLUTION
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CNN Learning

Smoothing with Gaussian Kernel Edge detection

𝐆𝐲

What we learn in DL



APPLICATION: 2D CONVOLUTION

 What does a 2D convolution do?
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https://theano-pymc.readthedocs.io/en/latest/tutorial/conv_arithmetic.html

Over A

Over k

https://theano-pymc.readthedocs.io/en/latest/tutorial/conv_arithmetic.html


MATRIX MEMORY LAYOUT

 In C++ you can easily access 2D structures: A[x][y]

 In CUDA you usually work with 1D arrays

 You do not want to perform each time

(linearization)

 Write a macro to avoid mistakes:

with
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𝑎00 𝑎01 𝑎02 𝑎03

𝑎10 𝑎11 𝑎12 𝑎13

𝑎20 𝑎21 𝑎22 𝑎23

width

𝑎00 𝑎01 𝑎02 𝑎03 𝑎10 𝑎11 𝑎12 𝑎13 𝑎20 𝑎21 𝑎22 𝑎23

𝐴 𝑟 𝑐 = 𝐴[𝑟 × 𝑤𝑖𝑑𝑡ℎ + 𝑐𝑜𝑙]

𝑎21 = 𝐴 2 1 = 𝐴 2 × 4 + 1 = 𝐴[9]

Conceptually:

In main memory:

Linearization of indices
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APPLICATION: 2D CONVOLUTION

 Let’s cover the image with a grid

Problem: To produce some output we need a bigger input with fast accesses
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Image

Block

Shared

Memory

Problem: We have « block » threads and we need to fill « shared memory » spaces

𝑁2 floats

𝐵2 threads

𝐵 + 2 ∗ 𝑟𝑎𝑑 2 elements

APPLICATION: 2D CONVOLUTION

 Let’s cover the image with a grid Remember: We cannot put the whole matrix in shared 

memory because shared memory is very small!
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APPLICATION: 2D CONVOLUTION

 Problem: We have less threads than the shared memory size

 Some threads will do more work

kk
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Block of threads

Shared memory

4 corner threads do a lot of 

work

Main block is divided in 4

Each region handle its side

Main block is divided in 8

Each region handle its side

Central regions handle the 

corners

 We can think about even more strategies (including scheduling idle threads to fill the missing areas)

 There is a tradeoff between the work of a thread and the number of divergences
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APPLICATION: 2D CONVOLUTION

 Some threads will do more work → __syncthreads() force the whole block to wait for the busiest thread

 Depending on the strategy used, some contiguous thread need to access noncontiguous memory address → inefficient 

memory access

 Another strategy :

 Each thread fill 9 elements in the shared memory

image
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Image

Block

Shared

Memory

𝑁2 floats

𝐵2 threads

3 ∗ 𝐵 2 elements
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APPLICATION: 2D CONVOLUTION

 Shared Memory used > Input needed

 Is it a bad idea ? 

 Depend on 

 Block size 𝐵

 Kernel size 𝑟𝑎𝑑

 Shared memory size independent from kernel size

 More memory access but can be more efficient 
Shared 

Memory

3 ∗ 𝐵 2 elements

image
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Input 

Needed

𝐵 + 2 ∗ 𝑟𝑎𝑑 2 elements



APPLICATION: 2D CONVOLUTION

 In matrix multiplication, the blocks were always « inside » 

the matrix

 In convolution the kernel goes outside, we need to 

handle the borders
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A

k

A

 Useful strategies are:

 Pad the matrix with 0 in the outside border

 (OpenGL: GL_CLAMP_TO_BORDER)

 Copy the edge

 (OpenGL: GL_CLAMP_TO_EDGE)

 Mirror the border

 (OpenGL: GL_MIRRORED_REPEAT)

 Warp around

 (OpenGL: GL_REPEAT)

 All of them require possible divergent conditions in the 

kernel!

k



2D CONVOLUTION – DEBUGGING TRICK
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 Even with small matrices (𝑁 = 2 × 16) (A = 

0 1 2 3 4 0 1 2
2 3 4 0 1 2 3 4

⋯
0 1 2 3 4 0 1
2 3 4 0 1 2 3

⋮ ⋱ ⋮
2 3 4 0 1 2 3 4 ⋯ 2 3 4 0 1 2 3

, K = 

1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

 It can be extremely difficult to debug indices in the terminal (did you spot them?)



2D CONVOLUTION – DEBUGGING TRICK
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 Excel with small matrices (𝑁 = 2 × 16) can be extremely useful for debugging!

 We see a problem with the indices in the shared memory and we can detect 

which condition do not work!

 In excel use : Conditional Formatting
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2D CONVOLUTION – DEBUGGING TRICK

 When pasting values from the terminal to Excel, click on « Use the paste assitant »

 Delimited data > next

 Space > Finish
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2D CONVOLUTION – DEBUGGING TRICK

 By replacing the old values, you should see the effects of changing the code

 Only one line was commented and we still have a bug  → That line was ok!
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2D CONVOLUTION – DEBUGGING TRICK

 Let’s check the line responsible for the central part of the shared memory alone

 Simplification of the problem: Change the kernel and the matrix to 1 everywhere!

 Central part alone seems ok

 We check the results at the corners between blocks
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2D CONVOLUTION – DEBUGGING TRICK

 This time we look at the other conditions

 We start to see what’s wrong !
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2D CONVOLUTION – DEBUGGING TRICK

 Almost there!

 (this kind of bugs can be particularly annoying)
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2D CONVOLUTION – DEBUGGING TRICK

 Finally!

 I worked it out on a 3x3 matrix with kernel_size = 1 on paper, I was missing a border



APPLICATION – CONVOLUTION 2D
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 To avoid this mess with conditions we have several strategies:

 Compute ONLY the central elements → The output is smaller than the input by

(outside) – (inside) = N2 − N− 2R 2 = 𝑁2 −𝑁2 + 4𝑁𝑅 − 4𝑅2 = 4𝑅 𝑁 − 𝑅 elements

Only 𝑁2 − 4𝑅 𝑁 − 𝑅 elements are left

 This can be Ok for some kind of work: in a big image, we lose only some pixels at the borders

 𝑁 = 1024, 𝑅 = 3 ⟹ 4 × 3 1024 − 3 = 12 252𝑝𝑥 ⟹
12 252

10242
= 0,01 ⟹ 1% pixel lost, 10242 − 12 252 = 1 036 324 𝑝𝑥 left

 Run a first kernel which PAD the matrix A with 0 everywhere

 Good:

 Super easy:

 Create A’ (empty) with size 𝑁 + 2𝑅 2

 Each block copy the elements of A, but with an offset of (𝑅, 𝑅), the size of the kernel

 Perform the convolution with this new matrix

 Output same size as the original

 No more divergence in the kernel

 We can do advanced stuff at the border (mirror the image, other values than 0, …) – But then we have again conditions

 Bad:

 We need to run an entire new kernel

 Depending on the size of the kernel we can have non coalescing copies

 Change the grid

N

N

R

R

N-2R



input

𝐵 + 𝑟𝑎𝑑

𝑟𝑎𝑑

thread

pixel

image

29

Image

Shared 

Memory

or

Block

The conditions are easier, but we now have a lots of threads that do nothing apart from copying in shared memory

𝑁2 floats

𝐵 + 𝑟𝑎𝑑 2 threads

APPLICATION: 2D CONVOLUTION

 We can change the grid so that each block is of size 𝐵 + 𝑟𝑎𝑑 2

 In this case, each thread can be mapped to one element in A 

output

Where lots = 𝐵 + 𝑟𝑎𝑑 2 − 𝐵 + 𝑟𝑎𝑑 2 − 2 × 𝑟𝑎𝑑 2



APPLICATION – CONVOLUTION 2D
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 Some kernel are « separable » (eg Gaussian)

 That mean that we can perform 1D convolution on every row

using a 1D gaussian

 Followed by a 1D convolution on every column

using a 1D gaussian

 We would like to obtain something:

 Fast with respect to data access (coalescence)

 With simple code

 Without too many divergences

 We would like to:

 Reuse what we already implemented

 Exploit this “separability”

http://www.dspguide.com/ch24/3.htm

http://www.dspguide.com/ch24/3.htm


 No need for the 2D convolution!

 Algorithm:

APPLICATION – CONVOLUTION 2D
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http://www.dspguide.com/ch24/3.htm

We use 2 kernels:

- Convolution 1D

- Transpose

We can have a __global__

Kernel which call the 

__device__ kernels!

1. Original Image 2. Row Conv1D 5. Transpose

3. Transpose 4. Row Conv1D

http://www.dspguide.com/ch24/3.htm


APPLICATION – CONVOLUTION 2D – TRICK
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 If the kernel is small, you can use the GPU constant memory (~64kb)

 Declare a __constant__ array

 Use “cudaMemcpyToSymbol”

 You can now directly access the variable in a kernel

https://docs.nvidia.com/cuda/cuda-runtime-

api/group__CUDART__MEMORY.html#group__CUDART__MEMORY_1g9bcf02b53644eee2bef9983d807084c7

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html#group__CUDART__MEMORY_1g9bcf02b53644eee2bef9983d807084c7
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html#group__CUDART__MEMORY_1g9bcf02b53644eee2bef9983d807084c7


EXERCISE

 Implement the 2D convolution

 Naively

 Using the shared memory

 Try several strategies for the indices

 Try loading 9 blocks in the shared memory

 Load images with stb_image or OpenCV

 Perform a Gaussian filter

 Perform a Sobel Filter

 Perform the filtering using a separable kernel

(conv1D, transpose, conv1D, transpose)
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http://resuly.me/2018/05/18/3d-convolutional-networks-for-traffic-forecasting/

http://resuly.me/2018/05/18/3d-convolutional-networks-for-traffic-forecasting/


APPENDICES : MEMORY PITCH AND 2D LAYOUTS
 Matrices with a non aligned number of elements are « strided » with empty values in memory

 But then, you need to take into account the stride instead of the width of the matrix
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𝑎00 𝑎01 𝑎02 𝑋

𝑎10 𝑎11 𝑎12 𝑋

𝑎20 𝑎21 𝑎22 𝑋

stride

𝑎00 𝑎01 𝑎02 𝑋 𝑎10 𝑎11 𝑎12 𝑋 𝑎20 𝑎21 𝑎22 𝑋

𝐴 𝑟 𝑐 = 𝐴[𝑟 × 𝑠𝑡𝑟𝑖𝑑𝑒 + 𝑐𝑜𝑙]

𝑎21 = 𝐴 2 1 = 𝐴 2 × 4 + 1 = 𝐴[9]

In main memory:

Linearization of indices

𝑎00 𝑎01 𝑎02

𝑎10 𝑎11 𝑎12

𝑎20 𝑎21 𝑎22

width

𝑎00 𝑎01 𝑎02 𝑎10 𝑎11 𝑎12 𝑎20 𝑎21 𝑎22

𝐴 𝑟 𝑐 = 𝐴[𝑟 × 𝑤𝑖𝑑𝑡ℎ + 𝑐𝑜𝑙]

𝑎21 = 𝐴 2 1 = 𝐴 2 × 3 + 1 = 𝐴[7]

Conceptually:

In main memory:

Linearization of indices

3 × 4 = 12 𝑏𝑦𝑡𝑒𝑠
Not memory aligned

4 × 4 = 16 𝑏𝑦𝑡𝑒𝑠
Memory aligned



APPENDICES : MEMORY PITCH AND 2D LAYOUTS

 CUDA give us useful function to allocate memory and copy data that need a stride (= pitch)

 cudaMallocPitch

 cudaMemcpy2D
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Before After

https://stackoverflow.com/questions/16119943/how-and-when-should-i-use-pitched-pointer-with-the-cuda-api

https://stackoverflow.com/questions/16119943/how-and-when-should-i-use-pitched-pointer-with-the-cuda-api


APPENDICES : CASE STUDY – INTEGRAL IMAGE (SUMMED-AREA TABLE)

 Nice mathematical properties

 Idea:

 We sum together all the columns of an image

 We sum together all the rows of an image

 Plot twist:

 We keep all the partial sums in a matrix
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𝑜𝑢𝑡 𝑗, 𝑖 = 

𝑙=0

𝑗−1



𝑘=0

𝑖−1

𝑖𝑚𝑔 𝑙, 𝑘

https://www.programmersought.com/article/51165193770/

https://www.programmersought.com/article/51165193770/


APPENDICES : CASE STUDY – INTEGRAL IMAGE (SUMMED-AREA TABLE)

 Which mathematical properties?

 Compute the mean of a box in the image (area)

 (And several other statistics: Variance, Skewness, etc.)

 Areas = Value at the corner bottom left of the different boxes

 Mean of                 =
𝐵𝑅 − 𝐵𝐿 − 𝑇𝑅 + 𝑇𝐿

𝑤𝑖𝑑𝑡ℎ×ℎ𝑒𝑖𝑔ℎ𝑡

 When the integral image is computed, we only need 6 

operations to find the mean of any box → super fast!
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𝑜𝑢𝑡 𝑗, 𝑖 = 

𝑙=0

𝑗−1



𝑘=0

𝑖−1

𝑖𝑚𝑔 𝑙, 𝑘

https://www.programmersought.com/article/51165193770/
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https://www.programmersought.com/article/51165193770/


2 9 12 17

6 14 26 33

11 25 37 44

11 27 47 57

APPENDICES : CASE STUDY – INTEGRAL IMAGE (SUMMED-AREA TABLE)

 Example with an array:

 Blue mean (array)               : 
1+9+2+6+0+0+2+8+3

9
=

31

9
= 3,44

 Blue mean (Integral image): 
57 − 11 − 17 +2

9
=

31

9
= 3,44

 Constant number of operations!
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𝑜𝑢𝑡 𝑗, 𝑖 = 

𝑙=0

𝑗−1



𝑘=0

𝑖−1

𝑖𝑚𝑔 𝑙, 𝑘

https://www.programmersought.com/article/51165193770/
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2D Array Integral Image

https://www.programmersought.com/article/51165193770/


 Let’s start with a simpler problem – The parallel prefix sum – It’s the integral image over a vector

 We already saw how to compute sum of arrays

 We need a strategy to keep the partial sums in memory
3/10/2023

APPENDICES : CASE STUDY – INTEGRAL IMAGE (SUMMED-AREA TABLE) – GPU



APPENDICES : CASE STUDY – INTEGRAL IMAGE (SUMMED-AREA TABLE)

 With the parallel prefix sum, we can use the 

same trick as with the separable kernels in 

2D convolution !
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𝑜𝑢𝑡 𝑗, 𝑖 = 

𝑙=0

𝑗−1



𝑘=0

𝑖−1

𝑖𝑚𝑔 𝑙, 𝑘

https://www.programmersought.com/article/51165193770/

1. Original Image

4. Row Prefix Sum

5. Transpose2. Row Prefix Sum

3. Transpose

https://www.programmersought.com/article/51165193770/


 Let’s start with a simpler problem – The parallel prefix sum – It’s the integral image over a vector

 The prefix sum is a building block in several algorithms:

 Radix Sort

 Quick Sort

 Tree operations

 List ranking (transforming efficiently a linked list into an array)

 Histograms

 Logic gates!

(binary adder in hardware with O(n) logic gates and O(log(n)) time steps)

 Polynomial interpolation (using the parallel prefix MULTIPLICATION)

 Etc.

3/10/2023

APPENDICES : CASE STUDY – INTEGRAL IMAGE (SUMMED-AREA TABLE)

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda

𝑣 = 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑛−1 ⟹ 𝑣′ = [𝑥0, (𝑥0+𝑥1), (𝑥0 + 𝑥1 + 𝑥2),⋯ , 𝑥0 + 𝑥1 +⋯+ 𝑥𝑛−1 ]

16 bit Kogge Stone adder

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda


 Let’s start with a simpler problem – The parallel prefix sum – It’s the integral image over a vector

 The C++ implementation is trivial:
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APPENDICES : CASE STUDY – INTEGRAL IMAGE (SUMMED-AREA TABLE)

𝑣 = 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑛−1 ⟹ 𝑣′ = [𝑥0, (𝑥0+𝑥1), (𝑥0 + 𝑥1 + 𝑥2),⋯ , 𝑥0 + 𝑥1 +⋯+ 𝑥𝑛−1 ]

1 2 3 4 5 6 7 8

1 3 3 4 5 6 7 8

1 3 6 4 5 6 7 8

1 3 6 10 5 6 7 8

1 3 6 10 15 6 7 8

1 3 6 10 15 21 7 8

1 3 6 10 15 21 28 8

1 3 6 10 15 21 28 36

𝑂 𝑛 Linear complexity



 Let’s start with a simpler problem – The parallel prefix sum – It’s the integral image over a vector

 What happens if we parallelize it?

 + is associative and commutative in ℝ
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APPENDICES : CASE STUDY – INTEGRAL IMAGE (SUMMED-AREA TABLE)

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda

𝑛 = 8 log2 𝑛 = 3

𝑣 = 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑛−1 ⟹ 𝑣′ = [𝑥0, (𝑥0+𝑥1), (𝑥0 + 𝑥1 + 𝑥2),⋯ , 𝑥0 + 𝑥1 +⋯+ 𝑥𝑛−1 ]

𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7

𝑥0 (𝑥0⋯𝑥1) (𝑥1⋯𝑥2) (𝑥2⋯𝑥3) (𝑥3⋯𝑥4) (𝑥4⋯𝑥5) (𝑥5⋯𝑥6) (𝑥6⋯𝑥7)

𝑥0 (𝑥0⋯𝑥1) (𝑥0⋯𝑥2) (𝑥0⋯𝑥3) (𝑥1⋯𝑥4) (𝑥2⋯𝑥5) (𝑥3⋯𝑥6) (𝑥4⋯𝑥7)

𝑥0 (𝑥0⋯𝑥1) (𝑥0⋯𝑥2) (𝑥0⋯𝑥3) (𝑥0⋯𝑥4) (𝑥0⋯𝑥5) (𝑥0⋯𝑥6) (𝑥0⋯𝑥7)

𝑑 = 1

𝑑 = 2

𝑑 = 3

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
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APPENDICES : CASE STUDY – INTEGRAL IMAGE (SUMMED-AREA TABLE)

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda

𝑛 = 8 log2 𝑛 = 3

1 2 3 4 5 6 7 8

1 3 5 7 9 11 13 15

1 3 6 10 14 18 22 26

1 3 6 10 15 21 28 36

𝑑 = 1

𝑑 = 2

𝑑 = 3

𝑂 𝑛 log𝑛 Not good for big arrays

𝑛 𝒍𝒐𝒈𝟐 𝒏

101 3

102 6,6

103 10

104 13

105 16,6

106 20

107 23

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda


 Let’s focus on a smarter algorithm
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APPENDICES : CASE STUDY – INTEGRAL IMAGE (SUMMED-AREA TABLE)

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda

1 3 3 10

1 3 3 7

1 2 3 4

1. Upstream Operation

At this point we have all the even sums

1 3 3 0

1 0 3 3

0 1 3 6

This operation is similar to the upstream, but the rule is different

3. Downstream Operation

L R

L + RL

R L+R

RL

10

2. Set R to 0

4. Add the 

removed value

Rules:

Stride of 2𝑑−1

𝑑 = 1

𝑑 = 2

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda


 Using this strategy the algorithm is 

extremely efficient in parallel

 We perform less operations
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Naïve GPU Parallel Prefix Sum

Iterations: 𝑂(2 log 𝑛)
Work/iter: 𝑂 𝑛

Technically it has more 

operations than the 

sequential algorithm, but 

exploiting the parallelism 

performs better!

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda


APPENDICES : CASE STUDY – INTEGRAL IMAGE (SUMMED-AREA TABLE)
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𝑥0 (𝑥0⋯𝑥1) 𝑥2 (𝑥2⋯𝑥3) 𝑥4 (𝑥4⋯𝑥5) 𝑥6 (𝑥6⋯𝑥7)

𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 x7

𝑥0 (𝑥0⋯𝑥1) 𝑥2 (𝑥0⋯𝑥3) 𝑥4 (𝑥4⋯𝑥5) 𝑥6 (𝑥4⋯𝑥7)

𝑥0 (𝑥0⋯𝑥1) 𝑥2 (𝑥0⋯𝑥3) 𝑥4 (𝑥4⋯𝑥5) 𝑥6 (𝑥0⋯𝑥7)

𝑑 = 2

𝑑 = 1

𝑑 = 0

𝑥0 0 𝑥2 (𝑥0⋯𝑥1) 𝑥4 (𝑥4⋯𝑥5) 𝑥6 (𝑥0⋯𝑥5)

0 𝑥0 (𝑥0⋯𝑥1) (𝑥0⋯𝑥2) (𝑥0⋯𝑥3) (𝑥0⋯𝑥4) (𝑥0⋯𝑥5) (𝑥0⋯𝑥6)

𝑥0 (𝑥0⋯𝑥1) 𝑥2 0 𝑥4 (𝑥4⋯𝑥5) 𝑥6 (𝑥0⋯𝑥3)

𝑥0 (𝑥0⋯𝑥1) 𝑥2 (𝑥0⋯𝑥3) 𝑥4 (𝑥4⋯𝑥5) 𝑥6 0

𝑥0 (𝑥0⋯𝑥1) 𝑥2 (𝑥0⋯𝑥3) 𝑥4 (𝑥4⋯𝑥5) 𝑥6 (𝑥0⋯𝑥7)

𝑑 = 2

𝑑 = 1

𝑑 = 0

Upstream Downstream

Even numbers accumulated Propoagate to odd numbers
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1 3 3 10 5 11 7 36

1 3 3 10 5 11 7 26

1 3 3 7 5 11 7 15

1 2 3 4 5 6 7 8

1 3 3 10 5 11 7 0

1 3 3 0 5 11 7 10

1 0 3 3 5 10 7 21

0 1 3 6 10 15 21 28 36

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda


 Another advantage is that it works with several blocks
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We perform the prefix sum on each block

We split the array into blocks

The last element of the sum we put it in ANOTHER Ordered array

We perform the prefix sum on this array

We perform a vector add on each element of each block using 

the corresponding value in the « sums vector »

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda


2 9 12 17

6 14 26 33

11 25 37 44

11 27 47 57

APPENDICES : CASE STUDY – INTEGRAL IMAGE (SUMMED-AREA TABLE)

 Now that we have an efficient parallel prefix sum

 The integral images is exactly with the separable kernels in 2D 

Convolution

3/10/2023

𝑜𝑢𝑡 𝑗, 𝑖 = 

𝑙=0

𝑗−1



𝑘=0

𝑖−1

𝑖𝑚𝑔 𝑙, 𝑘

https://www.programmersought.com/article/51165193770/

2 7 3 5

4 1 9 2

5 6 0 0

0 2 8 3

2 9 12 17

6 14 26 33

11 25 37 44

11 27 47 57

2 7 3 5

4 1 9 2

5 6 0 0

0 2 8 3

BRBL
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width

TR

An efficient GPGPU implementation of Viola-Jones Classifier based Face detection algortihm

Sharmila Shridhar, Vinay Gangadhar, Ram Sai Manoj, ECE 759 Project presentation, Fall 2015, University of Wisconsin - Madison

https://www.programmersought.com/article/51165193770/


APPENDICES : EXERCISE

 Perform BY HAND ON PAPER the prefix sum algorithm from 1 to 16

 Implement the parallel prefix sum on GPU with one block

 Be careful with the padding, shared memory etc!

 Improve the parallel prefix sum with several blocks 

 Use it with the transposition you coded at LAB 02 to perform Integral Images!

 Import std_image or OpenCV to see your results !

 Test what happens if you replace the addition with a multiplication (parallel prefix mult)

3/10/2023



APPENDICES : COMPILATION OF A CUDA KERNEL

 Kernel<<<>>>, __syncthreads(), __shared__ are NOT standard C++

 That’s why Visual Studio do not recognize them

 nvcc compile .cu/.cuh files into standard C++ which is then linked with other compiler C++ files

3/10/2023C++

CUDA



APPENDICES : CUDA VS OPENCL

 CUDA is proprietary (NVIDIA)

 OpenCL is an open standard (Khronos Group) meant to run on any GPU (https://www.khronos.org/opencl/ )

 NVIDIA, AMD, Intel GPUs

 They are very similar, but different terminologies

 OpenCL is more verbose and looks more like OpenGL code (the compilation part)

 CUDA is gold standard in many applications and research papers

 OpenCL is gold standard in other applications (including big ones)

 Note: Other GPUs have other tools to profile (eg AMD profiler)

 Takeaways:

 Choose depending on the project and the existing codebase

 Choose the one you are more comfortable with

 Learn from both !

10/03/2023
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APPENDICES : C → CUDA → OPENCL ?

 Some research is done to parallelize automatically C programs into CUDA, but not yet as good as an human

 And CUDA to OpenCL

 The compilers do a pretty decent job, but they usually miss the big picture

 You should always parallelize the structure of the problem and use the profiler for smaller optimizations!

3/10/2023



APPENDICES : CUDA VS OPENCL – MEMORY

 CUDA and OpenCL use a different terminology for the same concepts

3/10/2023



APPENDICES : CUDA VS OPENCL – INDEXING

 OpenCL has a shortcut for global indices:

10/03/2023

          

                       

       

    

    

      

     

      

         

                           
             



APPENDICES : CUDA VS OPENCL – TERMINOLOGY
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APPENDICES : CUDA VS OPENCL – TERMINOLOGY

CUDA OpenCL

blockIdx.x get_group_id(0)

threadIdx.x get_local_id(0)

blockDim.x get_local_size(0)

gridDim.x get_global_size(0)

__syncthreads() barrier(CLK_LOCAL_MEM_FENCE)

deviceProp clGetDeviceInfo
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