
INFO-H-503 – GPGPU PROGRAMMING – 04
GAUTHIER LAFRUIT – JAN LEMEIRE

ELINE SOETENS - DANIELE BONATTO

LAST TIME – TODAY

 Last Time:

 Shared Memory

 Dot product

 Histogram

 This Time:

 Convolution

 Supplemental : Integral Image

10/03/2023

WHY? CONVOLUTIONS

 Convolutions are everywhere in science

 1D: sound processing

 2D: Image processing

 3D: Medical/Volumetric data

 nD: Neural Networks

 Basic idea:

 « Convolve » a signal with a specific kernel

 𝑓 ∗ 𝑔 𝑡 ≔ ∞−׬
∞

𝑓 𝜏 𝑔 𝜏 − 𝑡 𝑑𝜏

3/10/2023

1D: statistics 2D: Image filtering

3D: MRI/CT-Scans

nD: AlexNet
𝑓(𝑡)
𝑔(𝑡)

(f ∗ g)(t)

APPLICATION: 1D STENCIL

 1D Stencil:

 Used in nodal based simulations to evaluate PDE over a grid

 Each output element is the sum of inputs elements within a radius

10/03/2023

radius radius

= a « kernel »

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3

6 10 15 15 16 17 18 19 20 15 16 17 18 15 11 6

1 2 3 4 5 0 1

16

APPLICATION: 1D STENCIL

 Problem analysis:

 Each output element is the sum of inputs elements within a radius

 We read many times the same element

10/03/2023

Read

Written

= a « kernel »

radius radius

APPLICATION: 1D STENCIL

 Problem analysis:

 Each output element is the sum of inputs elements within a radius

 CPU version

10/03/2023

Read

Written

𝑖𝑑𝑥 + 𝑜𝑓𝑓𝑠𝑒𝑡 ∈ [−𝑅𝐴𝐷,𝑁 + 𝑅𝐴𝐷]

= a « kernel »

radius radius

APPLICATION: 1D STENCIL
 Problem analysis:

 Each output element is the sum of inputs elements within a radius

 GPU version (almost copying the CPU)

10/03/2023

Read

Written

CPU

GPU

= a « kernel »

radius radius

APPLICATION: 1D STENCIL

10/03/2023

 Problem analysis:

 Each output element is the sum of inputs elements within a

radius

 GPU Shared memory

 Idea: Copy from global to shared

 The shared memory is 𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒 + 2 × 𝑘𝑒𝑟𝑛𝑒𝑙_𝑟𝑎𝑑

 We only have 𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒 threads

 Some of them will do more work

 All the threads fill the central part of the shared memory

 Threads with id smaller than 𝑘𝑒𝑟𝑛𝑒𝑙_𝑟𝑎𝑑 fill:

 The first missing elements

 The last missing elements

 We need to check if we are in the borders of the stencil

EXERCISE

 Write your own 1D Stencil version (CPU/GPU/Shared)

 Profile it and report the speedups

 Generalize it to 1D Convolution

 You need to add a kernel array (!! Different that a GPU function !!)

 The elements of the vector will do a dot product with this kernel

 You can think of 1D stencil as a 1D convolution with a kernel = [1 1 1 ⋯ 1 1 1]

3/10/2023

https://e2eml.school/convolution_one_d.html

https://e2eml.school/convolution_one_d.html

APPLICATION: 2D CONVOLUTION

3/10/2023

CNN Learning

Smoothing with Gaussian Kernel Edge detection

𝐆𝐲

What we learn in DL

APPLICATION: 2D CONVOLUTION

 What does a 2D convolution do?

10/03/2023

https://theano-pymc.readthedocs.io/en/latest/tutorial/conv_arithmetic.html

Over A

Over k

https://theano-pymc.readthedocs.io/en/latest/tutorial/conv_arithmetic.html

MATRIX MEMORY LAYOUT

 In C++ you can easily access 2D structures: A[x][y]

 In CUDA you usually work with 1D arrays

 You do not want to perform each time

(linearization)

 Write a macro to avoid mistakes:

with

3/10/2023

𝑎00 𝑎01 𝑎02 𝑎03

𝑎10 𝑎11 𝑎12 𝑎13

𝑎20 𝑎21 𝑎22 𝑎23

width

𝑎00 𝑎01 𝑎02 𝑎03 𝑎10 𝑎11 𝑎12 𝑎13 𝑎20 𝑎21 𝑎22 𝑎23

𝐴 𝑟 𝑐 = 𝐴[𝑟 × 𝑤𝑖𝑑𝑡ℎ + 𝑐𝑜𝑙]

𝑎21 = 𝐴 2 1 = 𝐴 2 × 4 + 1 = 𝐴[9]

Conceptually:

In main memory:

Linearization of indices

output

B

threadin
p

u
t

output

image

14

Image

Block

𝑁2 floats

𝐵2 threads

APPLICATION: 2D CONVOLUTION

 Let’s cover the image with a grid

Problem: To produce some output we need a bigger input with fast accesses

input

output

B

𝐵 + 𝑟𝑎𝑑

𝑟𝑎𝑑

thread

pixel

in
p

u
t

output

image

15

Image

Block

Shared

Memory

Problem: We have « block » threads and we need to fill « shared memory » spaces

𝑁2 floats

𝐵2 threads

𝐵 + 2 ∗ 𝑟𝑎𝑑 2 elements

APPLICATION: 2D CONVOLUTION

 Let’s cover the image with a grid Remember: We cannot put the whole matrix in shared

memory because shared memory is very small!

16

APPLICATION: 2D CONVOLUTION

 Problem: We have less threads than the shared memory size

 Some threads will do more work

kk

1 2

43

1 2

1 2

43

3 4

kk

1 2

43

1 2

1 2

43

3 4

kk

1 2

3

2

4

1

3 4

5

5

6

6

77 88

kk

Block of threads

Shared memory

4 corner threads do a lot of

work

Main block is divided in 4

Each region handle its side

Main block is divided in 8

Each region handle its side

Central regions handle the

corners

 We can think about even more strategies (including scheduling idle threads to fill the missing areas)

 There is a tradeoff between the work of a thread and the number of divergences

17

APPLICATION: 2D CONVOLUTION

 Some threads will do more work → __syncthreads() force the whole block to wait for the busiest thread

 Depending on the strategy used, some contiguous thread need to access noncontiguous memory address → inefficient

memory access

 Another strategy :

 Each thread fill 9 elements in the shared memory

image
S

h
a

re
d

 m
e

m
o

ry

Image

Block

Shared

Memory

𝑁2 floats

𝐵2 threads

3 ∗ 𝐵 2 elements

18

APPLICATION: 2D CONVOLUTION

 Shared Memory used > Input needed

 Is it a bad idea ?

 Depend on

 Block size 𝐵

 Kernel size 𝑟𝑎𝑑

 Shared memory size independent from kernel size

 More memory access but can be more efficient
Shared

Memory

3 ∗ 𝐵 2 elements

image

S
h

a
re

d

m
e

m
o

ry

Input

Needed

𝐵 + 2 ∗ 𝑟𝑎𝑑 2 elements

APPLICATION: 2D CONVOLUTION

 In matrix multiplication, the blocks were always « inside »

the matrix

 In convolution the kernel goes outside, we need to

handle the borders

3/10/2023

A

k

A

 Useful strategies are:

 Pad the matrix with 0 in the outside border

 (OpenGL: GL_CLAMP_TO_BORDER)

 Copy the edge

 (OpenGL: GL_CLAMP_TO_EDGE)

 Mirror the border

 (OpenGL: GL_MIRRORED_REPEAT)

 Warp around

 (OpenGL: GL_REPEAT)

 All of them require possible divergent conditions in the

kernel!

k

2D CONVOLUTION – DEBUGGING TRICK

3/10/2023

 Even with small matrices (𝑁 = 2 × 16) (A =

0 1 2 3 4 0 1 2
2 3 4 0 1 2 3 4

⋯
0 1 2 3 4 0 1
2 3 4 0 1 2 3

⋮ ⋱ ⋮
2 3 4 0 1 2 3 4 ⋯ 2 3 4 0 1 2 3

, K =

1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

 It can be extremely difficult to debug indices in the terminal (did you spot them?)

2D CONVOLUTION – DEBUGGING TRICK

3/10/2023

 Excel with small matrices (𝑁 = 2 × 16) can be extremely useful for debugging!

 We see a problem with the indices in the shared memory and we can detect

which condition do not work!

 In excel use : Conditional Formatting

3/10/2023

2D CONVOLUTION – DEBUGGING TRICK

 When pasting values from the terminal to Excel, click on « Use the paste assitant »

 Delimited data > next

 Space > Finish

3/10/2023

2D CONVOLUTION – DEBUGGING TRICK

 By replacing the old values, you should see the effects of changing the code

 Only one line was commented and we still have a bug → That line was ok!

3/10/2023

2D CONVOLUTION – DEBUGGING TRICK

 Let’s check the line responsible for the central part of the shared memory alone

 Simplification of the problem: Change the kernel and the matrix to 1 everywhere!

 Central part alone seems ok

 We check the results at the corners between blocks

3/10/2023

2D CONVOLUTION – DEBUGGING TRICK

 This time we look at the other conditions

 We start to see what’s wrong !

3/10/2023

2D CONVOLUTION – DEBUGGING TRICK

 Almost there!

 (this kind of bugs can be particularly annoying)

3/10/2023

2D CONVOLUTION – DEBUGGING TRICK

 Finally!

 I worked it out on a 3x3 matrix with kernel_size = 1 on paper, I was missing a border

APPLICATION – CONVOLUTION 2D

3/10/2023

 To avoid this mess with conditions we have several strategies:

 Compute ONLY the central elements → The output is smaller than the input by

(outside) – (inside) = N2 − N− 2R 2 = 𝑁2 −𝑁2 + 4𝑁𝑅 − 4𝑅2 = 4𝑅 𝑁 − 𝑅 elements

Only 𝑁2 − 4𝑅 𝑁 − 𝑅 elements are left

 This can be Ok for some kind of work: in a big image, we lose only some pixels at the borders

 𝑁 = 1024, 𝑅 = 3 ⟹ 4 × 3 1024 − 3 = 12 252𝑝𝑥 ⟹
12 252

10242
= 0,01 ⟹ 1% pixel lost, 10242 − 12 252 = 1 036 324 𝑝𝑥 left

 Run a first kernel which PAD the matrix A with 0 everywhere

 Good:

 Super easy:

 Create A’ (empty) with size 𝑁 + 2𝑅 2

 Each block copy the elements of A, but with an offset of (𝑅, 𝑅), the size of the kernel

 Perform the convolution with this new matrix

 Output same size as the original

 No more divergence in the kernel

 We can do advanced stuff at the border (mirror the image, other values than 0, …) – But then we have again conditions

 Bad:

 We need to run an entire new kernel

 Depending on the size of the kernel we can have non coalescing copies

 Change the grid

N

N

R

R

N-2R

input

𝐵 + 𝑟𝑎𝑑

𝑟𝑎𝑑

thread

pixel

image

29

Image

Shared

Memory

or

Block

The conditions are easier, but we now have a lots of threads that do nothing apart from copying in shared memory

𝑁2 floats

𝐵 + 𝑟𝑎𝑑 2 threads

APPLICATION: 2D CONVOLUTION

 We can change the grid so that each block is of size 𝐵 + 𝑟𝑎𝑑 2

 In this case, each thread can be mapped to one element in A

output

Where lots = 𝐵 + 𝑟𝑎𝑑 2 − 𝐵 + 𝑟𝑎𝑑 2 − 2 × 𝑟𝑎𝑑 2

APPLICATION – CONVOLUTION 2D

3/10/2023

 Some kernel are « separable » (eg Gaussian)

 That mean that we can perform 1D convolution on every row

using a 1D gaussian

 Followed by a 1D convolution on every column

using a 1D gaussian

 We would like to obtain something:

 Fast with respect to data access (coalescence)

 With simple code

 Without too many divergences

 We would like to:

 Reuse what we already implemented

 Exploit this “separability”

http://www.dspguide.com/ch24/3.htm

http://www.dspguide.com/ch24/3.htm

 No need for the 2D convolution!

 Algorithm:

APPLICATION – CONVOLUTION 2D

3/10/2023

http://www.dspguide.com/ch24/3.htm

We use 2 kernels:

- Convolution 1D

- Transpose

We can have a __global__

Kernel which call the

__device__ kernels!

1. Original Image 2. Row Conv1D 5. Transpose

3. Transpose 4. Row Conv1D

http://www.dspguide.com/ch24/3.htm

APPLICATION – CONVOLUTION 2D – TRICK

10/03/2023

 If the kernel is small, you can use the GPU constant memory (~64kb)

 Declare a __constant__ array

 Use “cudaMemcpyToSymbol”

 You can now directly access the variable in a kernel

https://docs.nvidia.com/cuda/cuda-runtime-

api/group__CUDART__MEMORY.html#group__CUDART__MEMORY_1g9bcf02b53644eee2bef9983d807084c7

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html#group__CUDART__MEMORY_1g9bcf02b53644eee2bef9983d807084c7
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html#group__CUDART__MEMORY_1g9bcf02b53644eee2bef9983d807084c7

EXERCISE

 Implement the 2D convolution

 Naively

 Using the shared memory

 Try several strategies for the indices

 Try loading 9 blocks in the shared memory

 Load images with stb_image or OpenCV

 Perform a Gaussian filter

 Perform a Sobel Filter

 Perform the filtering using a separable kernel

(conv1D, transpose, conv1D, transpose)

3/10/2023

http://resuly.me/2018/05/18/3d-convolutional-networks-for-traffic-forecasting/

http://resuly.me/2018/05/18/3d-convolutional-networks-for-traffic-forecasting/

APPENDICES : MEMORY PITCH AND 2D LAYOUTS
 Matrices with a non aligned number of elements are « strided » with empty values in memory

 But then, you need to take into account the stride instead of the width of the matrix

3/10/2023

𝑎00 𝑎01 𝑎02 𝑋

𝑎10 𝑎11 𝑎12 𝑋

𝑎20 𝑎21 𝑎22 𝑋

stride

𝑎00 𝑎01 𝑎02 𝑋 𝑎10 𝑎11 𝑎12 𝑋 𝑎20 𝑎21 𝑎22 𝑋

𝐴 𝑟 𝑐 = 𝐴[𝑟 × 𝑠𝑡𝑟𝑖𝑑𝑒 + 𝑐𝑜𝑙]

𝑎21 = 𝐴 2 1 = 𝐴 2 × 4 + 1 = 𝐴[9]

In main memory:

Linearization of indices

𝑎00 𝑎01 𝑎02

𝑎10 𝑎11 𝑎12

𝑎20 𝑎21 𝑎22

width

𝑎00 𝑎01 𝑎02 𝑎10 𝑎11 𝑎12 𝑎20 𝑎21 𝑎22

𝐴 𝑟 𝑐 = 𝐴[𝑟 × 𝑤𝑖𝑑𝑡ℎ + 𝑐𝑜𝑙]

𝑎21 = 𝐴 2 1 = 𝐴 2 × 3 + 1 = 𝐴[7]

Conceptually:

In main memory:

Linearization of indices

3 × 4 = 12 𝑏𝑦𝑡𝑒𝑠
Not memory aligned

4 × 4 = 16 𝑏𝑦𝑡𝑒𝑠
Memory aligned

APPENDICES : MEMORY PITCH AND 2D LAYOUTS

 CUDA give us useful function to allocate memory and copy data that need a stride (= pitch)

 cudaMallocPitch

 cudaMemcpy2D

3/10/2023

Before After

https://stackoverflow.com/questions/16119943/how-and-when-should-i-use-pitched-pointer-with-the-cuda-api

https://stackoverflow.com/questions/16119943/how-and-when-should-i-use-pitched-pointer-with-the-cuda-api

APPENDICES : CASE STUDY – INTEGRAL IMAGE (SUMMED-AREA TABLE)

 Nice mathematical properties

 Idea:

 We sum together all the columns of an image

 We sum together all the rows of an image

 Plot twist:

 We keep all the partial sums in a matrix

3/10/2023

𝑜𝑢𝑡 𝑗, 𝑖 = ෍

𝑙=0

𝑗−1

෍

𝑘=0

𝑖−1

𝑖𝑚𝑔 𝑙, 𝑘

https://www.programmersought.com/article/51165193770/

https://www.programmersought.com/article/51165193770/

APPENDICES : CASE STUDY – INTEGRAL IMAGE (SUMMED-AREA TABLE)

 Which mathematical properties?

 Compute the mean of a box in the image (area)

 (And several other statistics: Variance, Skewness, etc.)

 Areas = Value at the corner bottom left of the different boxes

 Mean of =
𝐵𝑅 − 𝐵𝐿 − 𝑇𝑅 + 𝑇𝐿

𝑤𝑖𝑑𝑡ℎ×ℎ𝑒𝑖𝑔ℎ𝑡

 When the integral image is computed, we only need 6

operations to find the mean of any box → super fast!

3/10/2023

𝑜𝑢𝑡 𝑗, 𝑖 = ෍

𝑙=0

𝑗−1

෍

𝑘=0

𝑖−1

𝑖𝑚𝑔 𝑙, 𝑘

https://www.programmersought.com/article/51165193770/

BR

TR

BL

TL

h
e

ig
h

t

width

BR BL
TR

TL

https://www.programmersought.com/article/51165193770/

2 9 12 17

6 14 26 33

11 25 37 44

11 27 47 57

APPENDICES : CASE STUDY – INTEGRAL IMAGE (SUMMED-AREA TABLE)

 Example with an array:

 Blue mean (array) :
1+9+2+6+0+0+2+8+3

9
=

31

9
= 3,44

 Blue mean (Integral image):
57 − 11 − 17 +2

9
=

31

9
= 3,44

 Constant number of operations!

3/10/2023

𝑜𝑢𝑡 𝑗, 𝑖 = ෍

𝑙=0

𝑗−1

෍

𝑘=0

𝑖−1

𝑖𝑚𝑔 𝑙, 𝑘

https://www.programmersought.com/article/51165193770/

2 7 3 5

4 1 9 2

5 6 0 0

0 2 8 3

2 9 12 17

6 14 26 33

11 25 37 44

11 27 47 57

2 7 3 5

4 1 9 2

5 6 0 0

0 2 8 3

BRBL

TL

h
e

ig
h

t

width

TR

2D Array Integral Image

https://www.programmersought.com/article/51165193770/

 Let’s start with a simpler problem – The parallel prefix sum – It’s the integral image over a vector

 We already saw how to compute sum of arrays

 We need a strategy to keep the partial sums in memory
3/10/2023

APPENDICES : CASE STUDY – INTEGRAL IMAGE (SUMMED-AREA TABLE) – GPU

APPENDICES : CASE STUDY – INTEGRAL IMAGE (SUMMED-AREA TABLE)

 With the parallel prefix sum, we can use the

same trick as with the separable kernels in

2D convolution !

3/10/2023

𝑜𝑢𝑡 𝑗, 𝑖 = ෍

𝑙=0

𝑗−1

෍

𝑘=0

𝑖−1

𝑖𝑚𝑔 𝑙, 𝑘

https://www.programmersought.com/article/51165193770/

1. Original Image

4. Row Prefix Sum

5. Transpose2. Row Prefix Sum

3. Transpose

https://www.programmersought.com/article/51165193770/

 Let’s start with a simpler problem – The parallel prefix sum – It’s the integral image over a vector

 The prefix sum is a building block in several algorithms:

 Radix Sort

 Quick Sort

 Tree operations

 List ranking (transforming efficiently a linked list into an array)

 Histograms

 Logic gates!

(binary adder in hardware with O(n) logic gates and O(log(n)) time steps)

 Polynomial interpolation (using the parallel prefix MULTIPLICATION)

 Etc.

3/10/2023

APPENDICES : CASE STUDY – INTEGRAL IMAGE (SUMMED-AREA TABLE)

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda

𝑣 = 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑛−1 ⟹ 𝑣′ = [𝑥0, (𝑥0+𝑥1), (𝑥0 + 𝑥1 + 𝑥2),⋯ , 𝑥0 + 𝑥1 +⋯+ 𝑥𝑛−1]

16 bit Kogge Stone adder

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda

 Let’s start with a simpler problem – The parallel prefix sum – It’s the integral image over a vector

 The C++ implementation is trivial:

3/10/2023

APPENDICES : CASE STUDY – INTEGRAL IMAGE (SUMMED-AREA TABLE)

𝑣 = 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑛−1 ⟹ 𝑣′ = [𝑥0, (𝑥0+𝑥1), (𝑥0 + 𝑥1 + 𝑥2),⋯ , 𝑥0 + 𝑥1 +⋯+ 𝑥𝑛−1]

1 2 3 4 5 6 7 8

1 3 3 4 5 6 7 8

1 3 6 4 5 6 7 8

1 3 6 10 5 6 7 8

1 3 6 10 15 6 7 8

1 3 6 10 15 21 7 8

1 3 6 10 15 21 28 8

1 3 6 10 15 21 28 36

𝑂 𝑛 Linear complexity

 Let’s start with a simpler problem – The parallel prefix sum – It’s the integral image over a vector

 What happens if we parallelize it?

 + is associative and commutative in ℝ

3/10/2023

APPENDICES : CASE STUDY – INTEGRAL IMAGE (SUMMED-AREA TABLE)

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda

𝑛 = 8 log2 𝑛 = 3

𝑣 = 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑛−1 ⟹ 𝑣′ = [𝑥0, (𝑥0+𝑥1), (𝑥0 + 𝑥1 + 𝑥2),⋯ , 𝑥0 + 𝑥1 +⋯+ 𝑥𝑛−1]

𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7

𝑥0 ෍(𝑥0⋯𝑥1) ෍(𝑥1⋯𝑥2) ෍(𝑥2⋯𝑥3) ෍(𝑥3⋯𝑥4) ෍(𝑥4⋯𝑥5) ෍(𝑥5⋯𝑥6) ෍(𝑥6⋯𝑥7)

𝑥0 ෍(𝑥0⋯𝑥1) ෍(𝑥0⋯𝑥2) ෍(𝑥0⋯𝑥3) ෍(𝑥1⋯𝑥4) ෍(𝑥2⋯𝑥5) ෍(𝑥3⋯𝑥6) ෍(𝑥4⋯𝑥7)

𝑥0 ෍(𝑥0⋯𝑥1) ෍(𝑥0⋯𝑥2) ෍(𝑥0⋯𝑥3) ෍(𝑥0⋯𝑥4) ෍(𝑥0⋯𝑥5) ෍(𝑥0⋯𝑥6) ෍(𝑥0⋯𝑥7)

𝑑 = 1

𝑑 = 2

𝑑 = 3

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda

3/10/2023

APPENDICES : CASE STUDY – INTEGRAL IMAGE (SUMMED-AREA TABLE)

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda

𝑛 = 8 log2 𝑛 = 3

1 2 3 4 5 6 7 8

1 3 5 7 9 11 13 15

1 3 6 10 14 18 22 26

1 3 6 10 15 21 28 36

𝑑 = 1

𝑑 = 2

𝑑 = 3

𝑂 𝑛 log𝑛 Not good for big arrays

𝑛 𝒍𝒐𝒈𝟐 𝒏

101 3

102 6,6

103 10

104 13

105 16,6

106 20

107 23

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda

 Let’s focus on a smarter algorithm

3/10/2023

APPENDICES : CASE STUDY – INTEGRAL IMAGE (SUMMED-AREA TABLE)

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda

1 3 3 10

1 3 3 7

1 2 3 4

1. Upstream Operation

At this point we have all the even sums

1 3 3 0

1 0 3 3

0 1 3 6

This operation is similar to the upstream, but the rule is different

3. Downstream Operation

L R

L + RL

R L+R

RL

10

2. Set R to 0

4. Add the

removed value

Rules:

Stride of 2𝑑−1

𝑑 = 1

𝑑 = 2

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda

 Using this strategy the algorithm is

extremely efficient in parallel

 We perform less operations

3/10/2023

APPENDICES : CASE STUDY – INTEGRAL IMAGE (SUMMED-AREA TABLE)

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda

Naïve GPU Parallel Prefix Sum

Iterations: 𝑂(2 log 𝑛)
Work/iter: 𝑂 𝑛

Technically it has more

operations than the

sequential algorithm, but

exploiting the parallelism

performs better!

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda

APPENDICES : CASE STUDY – INTEGRAL IMAGE (SUMMED-AREA TABLE)

3/10/2023

𝑥0 ෍(𝑥0⋯𝑥1) 𝑥2 ෍(𝑥2⋯𝑥3) 𝑥4 ෍(𝑥4⋯𝑥5) 𝑥6 ෍(𝑥6⋯𝑥7)

𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 x7

𝑥0 ෍(𝑥0⋯𝑥1) 𝑥2 ෍(𝑥0⋯𝑥3) 𝑥4 ෍(𝑥4⋯𝑥5) 𝑥6 ෍(𝑥4⋯𝑥7)

𝑥0 ෍(𝑥0⋯𝑥1) 𝑥2 ෍(𝑥0⋯𝑥3) 𝑥4 ෍(𝑥4⋯𝑥5) 𝑥6 ෍(𝑥0⋯𝑥7)

𝑑 = 2

𝑑 = 1

𝑑 = 0

𝑥0 0 𝑥2 ෍(𝑥0⋯𝑥1) 𝑥4 ෍(𝑥4⋯𝑥5) 𝑥6 ෍(𝑥0⋯𝑥5)

0 𝑥0 ෍(𝑥0⋯𝑥1) ෍(𝑥0⋯𝑥2) ෍(𝑥0⋯𝑥3) ෍(𝑥0⋯𝑥4) ෍(𝑥0⋯𝑥5) ෍(𝑥0⋯𝑥6)

𝑥0 ෍(𝑥0⋯𝑥1) 𝑥2 0 𝑥4 ෍(𝑥4⋯𝑥5) 𝑥6 ෍(𝑥0⋯𝑥3)

𝑥0 ෍(𝑥0⋯𝑥1) 𝑥2 ෍(𝑥0⋯𝑥3) 𝑥4 ෍(𝑥4⋯𝑥5) 𝑥6 0

𝑥0 ෍(𝑥0⋯𝑥1) 𝑥2 ෍(𝑥0⋯𝑥3) 𝑥4 ෍(𝑥4⋯𝑥5) 𝑥6 ෍(𝑥0⋯𝑥7)

𝑑 = 2

𝑑 = 1

𝑑 = 0

Upstream Downstream

Even numbers accumulated Propoagate to odd numbers

 Let’s focus on a smarter algorithm

3/10/2023

APPENDICES : CASE STUDY – INTEGRAL IMAGE (SUMMED-AREA TABLE)

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda

1 3 3 10 5 11 7 36

1 3 3 10 5 11 7 26

1 3 3 7 5 11 7 15

1 2 3 4 5 6 7 8

1 3 3 10 5 11 7 0

1 3 3 0 5 11 7 10

1 0 3 3 5 10 7 21

0 1 3 6 10 15 21 28 36

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda

 Another advantage is that it works with several blocks

3/10/2023

APPENDICES : CASE STUDY – INTEGRAL IMAGE (SUMMED-AREA TABLE)

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda

We perform the prefix sum on each block

We split the array into blocks

The last element of the sum we put it in ANOTHER Ordered array

We perform the prefix sum on this array

We perform a vector add on each element of each block using

the corresponding value in the « sums vector »

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda

2 9 12 17

6 14 26 33

11 25 37 44

11 27 47 57

APPENDICES : CASE STUDY – INTEGRAL IMAGE (SUMMED-AREA TABLE)

 Now that we have an efficient parallel prefix sum

 The integral images is exactly with the separable kernels in 2D

Convolution

3/10/2023

𝑜𝑢𝑡 𝑗, 𝑖 = ෍

𝑙=0

𝑗−1

෍

𝑘=0

𝑖−1

𝑖𝑚𝑔 𝑙, 𝑘

https://www.programmersought.com/article/51165193770/

2 7 3 5

4 1 9 2

5 6 0 0

0 2 8 3

2 9 12 17

6 14 26 33

11 25 37 44

11 27 47 57

2 7 3 5

4 1 9 2

5 6 0 0

0 2 8 3

BRBL

TL

h
e

ig
h

t

width

TR

An efficient GPGPU implementation of Viola-Jones Classifier based Face detection algortihm

Sharmila Shridhar, Vinay Gangadhar, Ram Sai Manoj, ECE 759 Project presentation, Fall 2015, University of Wisconsin - Madison

https://www.programmersought.com/article/51165193770/

APPENDICES : EXERCISE

 Perform BY HAND ON PAPER the prefix sum algorithm from 1 to 16

 Implement the parallel prefix sum on GPU with one block

 Be careful with the padding, shared memory etc!

 Improve the parallel prefix sum with several blocks

 Use it with the transposition you coded at LAB 02 to perform Integral Images!

 Import std_image or OpenCV to see your results !

 Test what happens if you replace the addition with a multiplication (parallel prefix mult)

3/10/2023

APPENDICES : COMPILATION OF A CUDA KERNEL

 Kernel<<<>>>, __syncthreads(), __shared__ are NOT standard C++

 That’s why Visual Studio do not recognize them

 nvcc compile .cu/.cuh files into standard C++ which is then linked with other compiler C++ files

3/10/2023C++

CUDA

APPENDICES : CUDA VS OPENCL

 CUDA is proprietary (NVIDIA)

 OpenCL is an open standard (Khronos Group) meant to run on any GPU (https://www.khronos.org/opencl/)

 NVIDIA, AMD, Intel GPUs

 They are very similar, but different terminologies

 OpenCL is more verbose and looks more like OpenGL code (the compilation part)

 CUDA is gold standard in many applications and research papers

 OpenCL is gold standard in other applications (including big ones)

 Note: Other GPUs have other tools to profile (eg AMD profiler)

 Takeaways:

 Choose depending on the project and the existing codebase

 Choose the one you are more comfortable with

 Learn from both !

10/03/2023

https://www.khronos.org/opencl/

APPENDICES : C → CUDA → OPENCL ?

 Some research is done to parallelize automatically C programs into CUDA, but not yet as good as an human

 And CUDA to OpenCL

 The compilers do a pretty decent job, but they usually miss the big picture

 You should always parallelize the structure of the problem and use the profiler for smaller optimizations!

3/10/2023

APPENDICES : CUDA VS OPENCL – MEMORY

 CUDA and OpenCL use a different terminology for the same concepts

3/10/2023

APPENDICES : CUDA VS OPENCL – INDEXING

 OpenCL has a shortcut for global indices:

10/03/2023

APPENDICES : CUDA VS OPENCL – TERMINOLOGY

10/03/2023

10/03/2023

APPENDICES : CUDA VS OPENCL – TERMINOLOGY

CUDA OpenCL

blockIdx.x get_group_id(0)

threadIdx.x get_local_id(0)

blockDim.x get_local_size(0)

gridDim.x get_global_size(0)

__syncthreads() barrier(CLK_LOCAL_MEM_FENCE)

deviceProp clGetDeviceInfo

	Diapositive 1 INFO-H-503 – GPGPU Programming – 04
	Diapositive 2 Last time – Today
	Diapositive 3 Why? Convolutions
	Diapositive 5 APPLICATION: 1D STENCIL
	Diapositive 6 APPLICATION: 1D STENCIL
	Diapositive 7 APPLICATION: 1D STENCIL
	Diapositive 8 APPLICATION: 1D STENCIL
	Diapositive 9 APPLICATION: 1D STENCIL
	Diapositive 10 Exercise
	Diapositive 11 APPLICATION: 2D Convolution
	Diapositive 12 APPLICATION: 2D Convolution
	Diapositive 13 Matrix Memory Layout
	Diapositive 14 APPLICATION: 2D Convolution
	Diapositive 15 APPLICATION: 2D Convolution
	Diapositive 16 APPLICATION: 2D Convolution
	Diapositive 17 APPLICATION: 2D Convolution
	Diapositive 18 APPLICATION: 2D Convolution
	Diapositive 19 APPLICATION: 2D Convolution
	Diapositive 20 2D Convolution – Debugging trick
	Diapositive 21 2D Convolution – Debugging trick
	Diapositive 22
	Diapositive 23
	Diapositive 24
	Diapositive 25
	Diapositive 26
	Diapositive 27
	Diapositive 28 Application – Convolution 2D
	Diapositive 29 APPLICATION: 2D Convolution
	Diapositive 31 Application – Convolution 2D
	Diapositive 32 Application – Convolution 2D
	Diapositive 33 Application – Convolution 2D – Trick
	Diapositive 34 Exercise
	Diapositive 35 Appendices : Memory Pitch and 2D layouts
	Diapositive 36 Appendices : Memory Pitch and 2D layouts
	Diapositive 37 Appendices : CASE STUDY – Integral Image (Summed-Area Table)
	Diapositive 38 Appendices : CASE STUDY – Integral Image (Summed-Area Table)
	Diapositive 39 Appendices : CASE STUDY – Integral Image (Summed-Area Table)
	Diapositive 40
	Diapositive 41 Appendices : CASE STUDY – Integral Image (Summed-Area Table)
	Diapositive 42
	Diapositive 43
	Diapositive 44
	Diapositive 45
	Diapositive 46
	Diapositive 47
	Diapositive 48 Appendices : CASE STUDY – Integral Image (Summed-Area Table)
	Diapositive 49
	Diapositive 50
	Diapositive 51 Appendices : CASE STUDY – Integral Image (Summed-Area Table)
	Diapositive 52 Appendices : Exercise
	Diapositive 57 Appendices : Compilation of a cuda kernel
	Diapositive 58 Appendices : CUDA vs OPENCL
	Diapositive 59 Appendices : C  CUDA  OpenCL ?
	Diapositive 60 Appendices : CUDA vs OPENCL – memory
	Diapositive 61 Appendices : CUDA vs OpenCL – Indexing
	Diapositive 62 Appendices : CUDA vs OPENCL – Terminology
	Diapositive 63 Appendices : CUDA vs OPENCL – Terminology

