
INFO-H-503 – GPGPU PROGRAMMING – 03

GAUTHIER LAFRUIT – JAN LEMEIRE

ELINE SOETENS - DANIELE BONATTO

LAST TIME – TODAY

 Last Time:

 Vector Add

 Occupancy

 Profiling

 Benchmark

 This Time:

 Shared Memory

 Dot product

 Histogram

03/03/2023

KIND OF MEMORY – CPU

03/03/2023

ALU
Main Memory

(RAM)
Hard Drive

Network

Cache Miss

Missing value in

cache

Page Miss

Missing value in

RAM

L1

L2

L3

Cach

e

Registers
1

ns

4

ns
100

ns

100

ms

>150

ms

https://colin-scott.github.io/personal_website/research/interactive_latency.html

CP

U

https://colin-scott.github.io/personal_website/research/interactive_latency.html

KIND OF MEMORY - GPU

 GPU is split in computation units

 Each of them is very similar to the CPU architecture

 But in GPU we have more kind of memories!

 Each with their own tradeoffs

3/3/2023

GPU’s Streaming Machines

KIND OF MEMORY - GPU

 GPU uses hierarchies of memory

 The closer the memory is to the thread:

 the faster it is

 the smaller it is

 It is costly/SLOW to communicate between different memories

 ⇒ slow to communicate between threads!

 ⇒ slower to communicate between blocks

 ⇒ slowerer to communicate between multiprocessors

 ⇒ slowererer to communicate between the VRAM (GPU) and the RAM (CPU)

 No automatic control of race conditions at the memory layer

 You need to check for race conditions yourself in code!

 With GPUs: You are in CONTROL on which variable goes in which memory!

03/03/2023

SHARED MEMORY
 SHARED memory is:

 very fast

 Accessible by block

 You need to:

 declare a shared array in the kernel, or

 call the kernel with the corresponding size in C++

03/03/2023

SHARED MEMORY

 Shared memory is fast but small

 You can check the amount of shared memory available per block using

cudaGetDeviceProperties()

 FullHD image = 6,220,800 elements → 6,220,800 bytes

 Whole image does not fit in the shared memory

 Each block is going to process a part of the image

 For each block, put the part of image needed to process this block in

the shared memory

03/03/2023

Lena

SOME (PARTS OF) KERNELS ARE NOT PARALLELIZABLE

 Sometime you NEED synchronization between threads

 Eg:

 Every thread initialize the shared memory before doing something

 Synchronize them to be sure the memory in initialized

 Do some other operation

 Command:

 __syncthreads();

 Use it only if necessary! (race conditions)

03/03/2023

SOME KERNELS ARE NOT PARALLELIZABLE
 Sometime you NEED synchronization between blocks

 Eg:

 We want to dot product two vectors with 100.000+ elements

 We divide the vectors in several blocks

 We need to add the results of each block together

 Can’t synchronize between block

 Blocks run in random order

 Can’t wait until all the block are done with an operation

 But we can make sure blocks don’t access the same

resource at the same time with command:

 atomicAdd(out, variable); (addition between blocks)

 Use it only if necessary! (race conditions)

 https://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html#atomic-functions

 atomicAdd, atomicSub, atomicMin, atomicMax, atomicCAS
(compare), atomicAnd, atomicOr, atomicXor, etc.

03/03/2023

𝑎 = (𝑎0, 𝑎1, ⋯ , 𝑎𝑇 , 𝑎𝑇+1, ⋯ , 𝑎2𝑇 , ⋯ , 𝑎𝑁)
𝑏 = (𝑏0, 𝑏1, ⋯ , 𝑏𝑇 , 𝑏𝑇+1, ⋯ , 𝑏2𝑇 , ⋯ , 𝑏𝑁)

𝑎. 𝑏 =

𝑖=1

𝑁

𝑎𝑖𝑏
𝑖

𝑎. 𝑏 =

𝑖=1

𝑁/𝑇

𝑗=𝑖𝑁

𝑇

𝑎𝑖𝑏
𝑖

N blocks of T threads

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions

BASIC APPLICATION: DOT PRODUCT

 We want to dot product two vectors with 100.000+ elements

 N blocks of T threads

 We divide the vectors in several blocks

 We need to add the results of each block together in a synchronized way

03/03/2023

Parallel

Synchronized

𝑎0 𝑎1 𝑎𝑇𝑎3 𝑎4

𝑏0 𝑏1 𝑏𝑇𝑏3 𝑏4

𝑎𝑖𝑏
𝑖

BLOCK 01

𝑎0 𝑎1 𝑎𝑇𝑎3 𝑎4

𝑏0 𝑏1 𝑏𝑇𝑏3 𝑏4

𝑎𝑖𝑏
𝑖

BLOCK N

𝑎 = (𝑎0, 𝑎1, ⋯ , 𝑎𝑇 , 𝑎𝑇+1, ⋯ , 𝑎2𝑇 , ⋯ , 𝑎𝑁)
𝑏 = (𝑏0, 𝑏1, ⋯ , 𝑏𝑇 , 𝑏𝑇+1, ⋯ , 𝑏2𝑇 , ⋯ , 𝑏𝑁)

𝑎. 𝑏 =

𝑖=1

𝑁

𝑎𝑖𝑏
𝑖

𝑎. 𝑏 =

𝑖=1

𝑁/𝑇

𝑗=𝑖𝑁

𝑇

𝑎𝑖𝑏
𝑖

Remark: the “if” creates a warp divergence!

 Operations:

 Each block performs:

 1 cycle multiplication

 T cycles addition (synchronized)

 Between blocks:

 N/T atomic additions

 Can we do better?

03/03/2023

BASIC APPLICATION: DOT PRODUCT – DYADIC SUM

Parallel

Synchronized

𝑎0 𝑎1 𝑎𝑇𝑎3 𝑎4

𝑏0 𝑏1 𝑏𝑇𝑏3 𝑏4

𝑎𝑖𝑏
𝑖

BLOCK 01

𝑎0 𝑎1 𝑎𝑇𝑎3 𝑎4

𝑏0 𝑏1 𝑏𝑇𝑏3 𝑏4

𝑎𝑖𝑏
𝑖

BLOCK N

𝐴 ⋅ 𝐵

T cycles

by 1 thread

1 cycles

N/T atomic add

 The dot product is always:

 Parallelizable products

 Non parallelized sums

 What if we have a separate kernel to perform the sums?

 Main idea we can exploit for the sums:

 + is commutative and associative in (ℝ,+,×)

 = We can perform additions in any order

03/03/2023

BASIC APPLICATION: DOT PRODUCT – DYADIC SUM

Parallel

𝑎0 𝑎1 𝑎𝑇𝑎3 𝑎4

𝑏0 𝑏1 𝑏𝑇𝑏3 𝑏4

BLOCK 01

𝑎0 𝑎1 𝑎𝑇𝑎3 𝑎4

𝑏0 𝑏1 𝑏𝑇𝑏3 𝑏4

BLOCK N

 Remarks:

 We want to exploit shared memory (avoid global access)

 Use “local_array” of shared memory which already contains all the multiplications per block

 We can think of several strategies to perform the sum:

03/03/2023

BASIC APPLICATION: DOT PRODUCT – DYADIC SUM

Profile them to know which one is the best and why!

 In both cases, the GPU can be overkill to perform the additions

 At each loop, the number of working threads is divided by 2

 The last steps can be performed on the CPU

 To avoid running kernels with very few active threads

 The context change is more important here than doing CPU operations

03/03/2023

BASIC APPLICATION: DOT PRODUCT – DYADIC SUM

 Implement the dot product

 The dot product with the two strategies of the dyadic sum

 Analyze with the profiler

 Based on the results of the profiler, you can decide at which number of elements you should run the sums on the CPU

03/03/2023

EXERCISE: DOT PRODUCT – DYADIC SUM

 Computing histograms is a very usual task

 Used in image processing

 Mapping

 Color corrections

 Noise removal

 Etc.

 Each “bin” represent one value for a color

 256 bin in image processing applications

 We count the number of occurrences

of each “bin” in the image

 We need to compute them fast!

 Some bin will be used more than others

 Race conditions → We need atomic additions

03/03/2023

BASIC APPLICATION: HISTOGRAM

Lena

Random noise*

*: Actually this comes from a paper on cryptography of the same image

A new image encryption algorithm using random numbers generation of two matrices and bit-shift operators

 In C++

 To load images:

 OpenCV (difficult to include in Visual Studio)

 https://opencv.org/

 stb_image.h (header only library)

 https://github.com/nothings/stb/blob/master/stb
_image.h

03/03/2023

BASIC APPLICATION: HISTOGRAM

Lena

Random noise*

*: Actually this comes from a paper on cryptography of the same image

A new image encryption algorithm using random numbers generation of two matrices and bit-shift operators

https://opencv.org/
https://github.com/nothings/stb/blob/master/stb_image.h
https://github.com/nothings/stb/blob/master/stb_image.h

03/03/2023

 How to parallelize this?

 Some bin will be used more than others

 Race conditions →We need atomic additions

 In global memory

 But also in shared memory!

 Challenge: output location for each element is not

known prior to reading its value

 Idea 1:

 Lunch as many threads as the image size

BASIC APPLICATION: HISTOGRAM

 Advantages

 Very similar to CPU implementation

 Drawbacks

 Very slow

 Access to the global memory

 AtomicAdds

03/03/2023

BASIC APPLICATION: HISTOGRAM

 Idea 2:

 Executing a thread for only one pixel is overkill

 Add a stride to make each thread work more

 Advantages

 A little faster

 Drawbacks

 Still slow

03/03/2023

BASIC APPLICATION: HISTOGRAM

 Idea 3:

 Exploit the shared memory → Local histograms

 Advantages

 Way faster

 Drawbacks

 Yet not optimal ☺
https://developer.nvidia.com/blog/gpu-pro-tip-
fast-histograms-using-shared-atomics-maxwell/

https://developer.nvidia.com/blog/gpu-pro-tip-fast-histograms-using-shared-atomics-maxwell/
https://developer.nvidia.com/blog/gpu-pro-tip-fast-histograms-using-shared-atomics-maxwell/

 Use stb_image or OpenCV to load an image in your code

 Both libraries let you read/write images on disk to check your results

 Write the CPU version of the histogram

 To check your histogram values, you can save a “.csv” file on disk

 Plot the histogram with python and matplotlib

 Try to write without the slides the 3 histograms kernels

 Profile them with the CUDA profilers (compare the different statistics in the profilers)

 Look at the speedups, are they what you expected?

 Try different “stride” for version 2 & 3

 This exercise is important to learn how to use/integrate OpenCV/stb_image for the next sessions!

03/03/2023

EXERCISE: HISTOGRAM

	Diapositive 1 INFO-H-503 – GPGPU Programming – 03
	Diapositive 2 Last time – Today
	Diapositive 3 Kind of memory – CPU
	Diapositive 4 Kind of Memory - GPU
	Diapositive 5 Kind of Memory - gpu
	Diapositive 6 Shared memory
	Diapositive 7 Shared memory
	Diapositive 8 SOME (parts of) KERNELS ARE NOT PARALLELIZABLE
	Diapositive 9 SOME KERNELS ARE NOT PARALLELIZABLE
	Diapositive 11 BASIC Application: Dot product
	Diapositive 12
	Diapositive 13
	Diapositive 14
	Diapositive 15
	Diapositive 16
	Diapositive 17
	Diapositive 18
	Diapositive 19
	Diapositive 20
	Diapositive 21
	Diapositive 22

