
INFO-H-503 – GPGPU PROGRAMMING – 03

GAUTHIER LAFRUIT – JAN LEMEIRE

ELINE SOETENS - DANIELE BONATTO

LAST TIME – TODAY

 Last Time:

 Vector Add

 Occupancy

 Profiling

 Benchmark

 This Time:

 Shared Memory

 Dot product

 Histogram

03/03/2023

KIND OF MEMORY – CPU

03/03/2023

ALU
Main Memory

(RAM)
Hard Drive

Network

Cache Miss

Missing value in

cache

Page Miss

Missing value in

RAM

L1

L2

L3

Cach

e

Registers
1

ns

4

ns
100

ns

100

ms

>150

ms

https://colin-scott.github.io/personal_website/research/interactive_latency.html

CP

U

https://colin-scott.github.io/personal_website/research/interactive_latency.html

KIND OF MEMORY - GPU

 GPU is split in computation units

 Each of them is very similar to the CPU architecture

 But in GPU we have more kind of memories!

 Each with their own tradeoffs

3/3/2023

GPU’s Streaming Machines

KIND OF MEMORY - GPU

 GPU uses hierarchies of memory

 The closer the memory is to the thread:

 the faster it is

 the smaller it is

 It is costly/SLOW to communicate between different memories

 ⇒ slow to communicate between threads!

 ⇒ slower to communicate between blocks

 ⇒ slowerer to communicate between multiprocessors

 ⇒ slowererer to communicate between the VRAM (GPU) and the RAM (CPU)

 No automatic control of race conditions at the memory layer

 You need to check for race conditions yourself in code!

 With GPUs: You are in CONTROL on which variable goes in which memory!

03/03/2023

SHARED MEMORY
 SHARED memory is:

 very fast

 Accessible by block

 You need to:

 declare a shared array in the kernel, or

 call the kernel with the corresponding size in C++

03/03/2023

SHARED MEMORY

 Shared memory is fast but small

 You can check the amount of shared memory available per block using

cudaGetDeviceProperties()

 FullHD image = 6,220,800 elements → 6,220,800 bytes

 Whole image does not fit in the shared memory

 Each block is going to process a part of the image

 For each block, put the part of image needed to process this block in

the shared memory

03/03/2023

Lena

SOME (PARTS OF) KERNELS ARE NOT PARALLELIZABLE

 Sometime you NEED synchronization between threads

 Eg:

 Every thread initialize the shared memory before doing something

 Synchronize them to be sure the memory in initialized

 Do some other operation

 Command:

 __syncthreads();

 Use it only if necessary! (race conditions)

03/03/2023

SOME KERNELS ARE NOT PARALLELIZABLE
 Sometime you NEED synchronization between blocks

 Eg:

 We want to dot product two vectors with 100.000+ elements

 We divide the vectors in several blocks

 We need to add the results of each block together

 Can’t synchronize between block

 Blocks run in random order

 Can’t wait until all the block are done with an operation

 But we can make sure blocks don’t access the same

resource at the same time with command:

 atomicAdd(out, variable); (addition between blocks)

 Use it only if necessary! (race conditions)

 https://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html#atomic-functions

 atomicAdd, atomicSub, atomicMin, atomicMax, atomicCAS
(compare), atomicAnd, atomicOr, atomicXor, etc.

03/03/2023

𝑎 = (𝑎0, 𝑎1, ⋯ , 𝑎𝑇 , 𝑎𝑇+1, ⋯ , 𝑎2𝑇 , ⋯ , 𝑎𝑁)
𝑏 = (𝑏0, 𝑏1, ⋯ , 𝑏𝑇 , 𝑏𝑇+1, ⋯ , 𝑏2𝑇 , ⋯ , 𝑏𝑁)

𝑎. 𝑏 =෍

𝑖=1

𝑁

𝑎𝑖𝑏
𝑖

𝑎. 𝑏 = ෍

𝑖=1

𝑁/𝑇

෍

𝑗=𝑖𝑁

𝑇

𝑎𝑖𝑏
𝑖

N blocks of T threads

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions

BASIC APPLICATION: DOT PRODUCT

 We want to dot product two vectors with 100.000+ elements

 N blocks of T threads

 We divide the vectors in several blocks

 We need to add the results of each block together in a synchronized way

03/03/2023

Parallel

Synchronized

𝑎0 𝑎1 𝑎𝑇𝑎3 𝑎4

𝑏0 𝑏1 𝑏𝑇𝑏3 𝑏4

𝑎𝑖𝑏
𝑖

BLOCK 01

𝑎0 𝑎1 𝑎𝑇𝑎3 𝑎4

𝑏0 𝑏1 𝑏𝑇𝑏3 𝑏4

𝑎𝑖𝑏
𝑖

BLOCK N

𝑎 = (𝑎0, 𝑎1, ⋯ , 𝑎𝑇 , 𝑎𝑇+1, ⋯ , 𝑎2𝑇 , ⋯ , 𝑎𝑁)
𝑏 = (𝑏0, 𝑏1, ⋯ , 𝑏𝑇 , 𝑏𝑇+1, ⋯ , 𝑏2𝑇 , ⋯ , 𝑏𝑁)

𝑎. 𝑏 =෍

𝑖=1

𝑁

𝑎𝑖𝑏
𝑖

𝑎. 𝑏 = ෍

𝑖=1

𝑁/𝑇

෍

𝑗=𝑖𝑁

𝑇

𝑎𝑖𝑏
𝑖

Remark: the “if” creates a warp divergence!

 Operations:

 Each block performs:

 1 cycle multiplication

 T cycles addition (synchronized)

 Between blocks:

 N/T atomic additions

 Can we do better?

03/03/2023

BASIC APPLICATION: DOT PRODUCT – DYADIC SUM

Parallel

Synchronized

𝑎0 𝑎1 𝑎𝑇𝑎3 𝑎4

𝑏0 𝑏1 𝑏𝑇𝑏3 𝑏4

𝑎𝑖𝑏
𝑖

BLOCK 01

𝑎0 𝑎1 𝑎𝑇𝑎3 𝑎4

𝑏0 𝑏1 𝑏𝑇𝑏3 𝑏4

𝑎𝑖𝑏
𝑖

BLOCK N

𝐴 ⋅ 𝐵

T cycles

by 1 thread

1 cycles

N/T atomic add

 The dot product is always:

 Parallelizable products

 Non parallelized sums

 What if we have a separate kernel to perform the sums?

 Main idea we can exploit for the sums:

 + is commutative and associative in (ℝ,+,×)

 = We can perform additions in any order

03/03/2023

BASIC APPLICATION: DOT PRODUCT – DYADIC SUM

Parallel

𝑎0 𝑎1 𝑎𝑇𝑎3 𝑎4

𝑏0 𝑏1 𝑏𝑇𝑏3 𝑏4

BLOCK 01

𝑎0 𝑎1 𝑎𝑇𝑎3 𝑎4

𝑏0 𝑏1 𝑏𝑇𝑏3 𝑏4

BLOCK N

 Remarks:

 We want to exploit shared memory (avoid global access)

 Use “local_array” of shared memory which already contains all the multiplications per block

 We can think of several strategies to perform the sum:

03/03/2023

BASIC APPLICATION: DOT PRODUCT – DYADIC SUM

Profile them to know which one is the best and why!

 In both cases, the GPU can be overkill to perform the additions

 At each loop, the number of working threads is divided by 2

 The last steps can be performed on the CPU

 To avoid running kernels with very few active threads

 The context change is more important here than doing CPU operations

03/03/2023

BASIC APPLICATION: DOT PRODUCT – DYADIC SUM

 Implement the dot product

 The dot product with the two strategies of the dyadic sum

 Analyze with the profiler

 Based on the results of the profiler, you can decide at which number of elements you should run the sums on the CPU

03/03/2023

EXERCISE: DOT PRODUCT – DYADIC SUM

 Computing histograms is a very usual task

 Used in image processing

 Mapping

 Color corrections

 Noise removal

 Etc.

 Each “bin” represent one value for a color

 256 bin in image processing applications

 We count the number of occurrences

of each “bin” in the image

 We need to compute them fast!

 Some bin will be used more than others

 Race conditions → We need atomic additions

03/03/2023

BASIC APPLICATION: HISTOGRAM

Lena

Random noise*

*: Actually this comes from a paper on cryptography of the same image

A new image encryption algorithm using random numbers generation of two matrices and bit-shift operators

 In C++

 To load images:

 OpenCV (difficult to include in Visual Studio)

 https://opencv.org/

 stb_image.h (header only library)

 https://github.com/nothings/stb/blob/master/stb
_image.h

03/03/2023

BASIC APPLICATION: HISTOGRAM

Lena

Random noise*

*: Actually this comes from a paper on cryptography of the same image

A new image encryption algorithm using random numbers generation of two matrices and bit-shift operators

https://opencv.org/
https://github.com/nothings/stb/blob/master/stb_image.h
https://github.com/nothings/stb/blob/master/stb_image.h

03/03/2023

 How to parallelize this?

 Some bin will be used more than others

 Race conditions →We need atomic additions

 In global memory

 But also in shared memory!

 Challenge: output location for each element is not

known prior to reading its value

 Idea 1:

 Lunch as many threads as the image size

BASIC APPLICATION: HISTOGRAM

 Advantages

 Very similar to CPU implementation

 Drawbacks

 Very slow

 Access to the global memory

 AtomicAdds

03/03/2023

BASIC APPLICATION: HISTOGRAM

 Idea 2:

 Executing a thread for only one pixel is overkill

 Add a stride to make each thread work more

 Advantages

 A little faster

 Drawbacks

 Still slow

03/03/2023

BASIC APPLICATION: HISTOGRAM

 Idea 3:

 Exploit the shared memory → Local histograms

 Advantages

 Way faster

 Drawbacks

 Yet not optimal ☺
https://developer.nvidia.com/blog/gpu-pro-tip-
fast-histograms-using-shared-atomics-maxwell/

https://developer.nvidia.com/blog/gpu-pro-tip-fast-histograms-using-shared-atomics-maxwell/
https://developer.nvidia.com/blog/gpu-pro-tip-fast-histograms-using-shared-atomics-maxwell/

 Use stb_image or OpenCV to load an image in your code

 Both libraries let you read/write images on disk to check your results

 Write the CPU version of the histogram

 To check your histogram values, you can save a “.csv” file on disk

 Plot the histogram with python and matplotlib

 Try to write without the slides the 3 histograms kernels

 Profile them with the CUDA profilers (compare the different statistics in the profilers)

 Look at the speedups, are they what you expected?

 Try different “stride” for version 2 & 3

 This exercise is important to learn how to use/integrate OpenCV/stb_image for the next sessions!

03/03/2023

EXERCISE: HISTOGRAM

	Diapositive 1 INFO-H-503 – GPGPU Programming – 03
	Diapositive 2 Last time – Today
	Diapositive 3 Kind of memory – CPU
	Diapositive 4 Kind of Memory - GPU
	Diapositive 5 Kind of Memory - gpu
	Diapositive 6 Shared memory
	Diapositive 7 Shared memory
	Diapositive 8 SOME (parts of) KERNELS ARE NOT PARALLELIZABLE
	Diapositive 9 SOME KERNELS ARE NOT PARALLELIZABLE
	Diapositive 11 BASIC Application: Dot product
	Diapositive 12
	Diapositive 13
	Diapositive 14
	Diapositive 15
	Diapositive 16
	Diapositive 17
	Diapositive 18
	Diapositive 19
	Diapositive 20
	Diapositive 21
	Diapositive 22

