INFO-H-503 - GPGPU PROGRAMMING - 03

GAUTHIER LAFRUIT - JAN LEMEIRE

ELINE SOETENS - DANIELE BONATTO

i - T

- - -
-%...3 am— x

ot X S e

LAST TIME - TODAY

= Last Time:

= Vector Add
= QOccupancy
= Profiling
= Benchmark
= This Time:
= Shared Memory
= Dot product

= Histogram

03/03/2023

https://colin-scott.github.io/personal_website/research/interactive latency.html

KIND OF MEMORY - CPU

Network

1 Main Memory 100

ns RAM ms
() Page Miss

Registers Hard Drive

+——— 16 bits —

8 bits 8 bits

EAX AX AH AL

100 Missing value in
- o R n RAM
e Cache Miss
Missing value in
cache

General-purpose Registers

ESI

ESP
(stack pointer)
EBP
(base pointer)

03/03/2023

https://colin-scott.github.io/personal_website/research/interactive_latency.html

KIND OF MEMORY - GPU

GPU’s Streaming Machines

|

|

|

|

: smo sMi

| Registers I Registers . l
= GPU is split in computation units : ! ! ! b ! i ! ¥

) SMEM L1 i(i)erﬁd Constant SMEM L1 I(?)e:ld Constant
= Each of them is very similar to the CPU architecture . Y

|

= Butin GPU we have more kind of memories!

= Each with their own tradeoffs

3/3/2023

KIND OF MEMORY - GPU

&0.00 kRa
G

= GPU uses hierarchies of memory

Feq 15.57 ME

Local
9.6 %
483.00 Reg 120,75 kB
. ATOMs
= |tis costly/SLOW to communicate between different memories 0.0 Req REDSs fone

= = s|low to communicate between threads!

= The closer the memory is to the thread: E

the faster it is

Device Memory

48,27 kRaq 11,78 ME

= = slower to communicate between blocks

= = slowerer to communicate between multiprocessors

= = slowererer to communicate between the VRAM (GPU) and the RAM (CPU)
= No automatic control of race conditions at the memory layer

= You need to check for race conditions yourself in code!

= With GPUs: You are in CONTROL on which variable goes in which memory!

03/03/2023

SHARED MEMORY

= SHARED memory is:

= very fast

= Accessible by block

®= You need to:

= declare a shared array in the kernel, or £0.00 kReg 7.32 MB

Global

= call the kernel with the corresponding size in C++

. 162,35 kRag 19,87 ME

sdefine MEM SIZE 32 Local

__global woid kernel(const int* in, int* out) ({ H l:,qc;t"
483.00 Reg 120.75 kB -

IIIIIIIII::::.|IIIIIII

0.00 Req EDe 0.00 B

/{4 Static allocation
48,27 kReg 11.78 ME

__shared int shared array[MEM SIZE];

Device Memory

// Useful code which exploit the shared memory

1
__global_ void kernelDyn(const int* in, int* out) ({

// Dynamic allocation
extern shared int shared arrayl[]:;
y —
int main () {
S L...]
[kernel<<<block size, threads per block>>>(in, out) ;]
f [e..]
kernelDyn<<<block size, threads per block,
I MEM SIZE*sizeof (int)>>>(in, out);
/[[...] 03/03/2023

SHARED MEMORY

= Shared memory is fast but small

= You can check the amount of shared memory available per block using
cudaGetDeviceProperties()

= FullHD image = 6,220,800 elements = 6,220,800 bytes
= Whole image does not fit in the shared memory
= Each block is going to process a part of the image

= For each block, put the part of image needed to process this block in
the shared memory

03/03/2023

SOME (PARTS OF) KERNELS ARE NOT PARALLELIZABLE

Sometime you NEED synchronization between threads

Eg:

Every thread initialize the shared memory before doing something
Synchronize them to be sure the memory in initialized

Do some other operation

Command:

__syncthreads();

Use it only if necessary! (race conditions)

__global void func(int *arr, int *out)

__shared int local array[THREADS PER BLOCK];
int idx = blockIdx.x * blockDim.x+ threadIdx.x;

// Initialize the data in local memory
local arrayl[threadIdx.x] = arr[idx];

// Synchronize the local threads per block
// = Barrier, wait they are all done.

___syncthreads() ;

out[idx] = ops_on_local_ array(threadIdx.x);

03/03/2023

SOME KERNELS ARE NOT PARALLELIZABLE

Sometime you NEED synchronization between blocks

Eg:
= We want to dot product two vectors with 100.000+ elements
= We divide the vectors in several blocks

= We need to add the results of each block together

Can’t synchronize between block a = (ag, ay,**,ar, 741, AT,
b= (b0' bli T bT» bT+1' T bZT:

N
= Can’t wait until all the block are done with an operation i
a.b = a;b
i=1

= Blocks runin random order

But we can make sure blocks don’t access the same
resource at the same time with command:

= atomicAdd(out, variable); (addition between blocks) N/T T
= Use it only if necessary! (race conditions) a.b = z z aib‘
m https://docs.nvidia.com/cuda/cuda-c-programming- i=1 j=IN

guide/index.html#atomic-functions

= atomicAdd, atomicSub, atomicMin, atomicMax, atomicCAS N b|OCkS Of '|' th reads
(compare), atomicAnd, atomicOr, atomicXor, etc.

03/03/2023

L ay)
<, by)

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions

BASIC APPLICATION: DOT PRODUCT a = (ao,ay,,ar, Ar41,°**, Ao, ***, AN)
b= (bOJ blr Tt bTr bT+1J Y bZTr) bN)

. N
= We want to dot product two vectors with 100.000+ elements ,
a.b = a;bt
= N blocks of T threads z L
i=1
= We divide the vectors in several blocks
. . N/T T
= We need to add the results of each block together in a synchronized way]
a.b = Z Z a;bt
__global woid dot(int* a, int* b, int* out) =1 _]=lN
{
__shared int local array[THREADS PER BLOCK] ; BLOCK 01 BLOCK N

ind idx = blockIdx.x * blockDim.x + threadIdx.x;
local array[threadIdx.x] = al[idx] * b[idx];

// We wait all the threads are done per block
syncthreads () ;
— Parallel 5
// Thread 0 for each block handle the sum!
if (threadIdx.x == 0) {
int sum = 0; -
for (int i = 0; i < THREADS PER BLOCK; ++i)
{
sum += local array[i];
}
// We add/synchronize the blocks!
atomicAdd (out, sum);

Synchronized -

aib‘

Remark: the “if” creates a warp divergence! 03/03/2023

BASIC APPLICATION: DOT PRODUCT - DYADIC SUM

BLOCK 01 BLOCK N

= QOperations: Parallel -

= Each block performs: L

= 1 cycle multiplication

= T cycles addition (synchronized) Synchronized <

T cycles
by 1 thread

= Between blocks:

= N/T atomic additions

= Can we do better?

N/T atomic add

03/03/2023

BASIC APPLICATION: DOT PRODUCT - DYADIC SUM

BLOCK 01 BLOCK N

®= The dot product is always: _

= Parallelizable products
Parallel 5

= Non parallelized sums

= What if we have a separate kernel to perform the sums?

= Main idea we can exploit for the sums:

= + js commutative and associative in (R, +,%)

= = We can perform additions in any order

03/03/2023

BASIC APPLICATION: DOT PRODUCT - DYADIC SUM

= Remarks:

= We want to exploit shared memory (avoid global access)

= Use “local_array” of shared memory which already contains all the multiplications per block

= We can think of several strategies to perform the sum:

Values(sharedmemory)|10| 1 l 8 |-1 I 0 |2[3 | 5 |-

Step 1 Thread , _
Stride 1 IDs 2 O ©

N
L4
o

Va|ues|11|1 |7 |1|2|
Step 2

Thread
Stride 2 IDs @

Values [18| 1 |7 [|6 |2|8s5]a|-a]0|7][1a[n]2]2]

Step 3

Thread
Stride 4 IDs

Values [24[1 [7 []6 2|8 |5 [17][3[0]7[13]11]2]2]

Step 4 Thread 0)
Stride 8 IDs

Values [a1| 1 [7[-1]|6[-2[8|5[17[3]o[7]3]1n]2]2]

Values (shared memory) o] 1 [8 [+ [0 [2] 5[5 2[a2 7 [0 [n[o]z]

Step 1
Stride 8

Step 2
Stride 4

Step 3
Stride 2

Step 4
Stride 1

Thread

IDs N 1 ', v‘) 6,

Values |8 [-2|10|6 |09 |3]|7]|-2|-3]2]7]0]11]0]2]

Thread T 1

bs @OE

values [8 [7 [13]13[0|9 |3[7]|2][a|2|7 0[]0 2]
Thread

s @@
Values[;50[13[13|o[9[3[7]-2[-3[2]7[0[11|o|2|
"os @

Values [41]20[13][13[0 |9 |3 |7]|-2][83][2][7]0[11]0]2]

Profile them to know which one is the best and why!

03/03/2023

BASIC APPLICATION: DOT PRODUCT - DYADIC SUM

= |n both cases, the GPU can be overkill to perform the additions

= At each loop, the number of working threads is divided by 2

= The last steps can be performed on the CPU

= To avoid running kernels with very few active threads

= The context change is more important here than doing CPU operations

wwww WWWW vl :

e 8 blocks
On GPU ekt e
[~ -~ -
-~ -~ ‘\ l’ > -
-~ -
\\\\\\\\ I//,/,/

W’ Level 1:
On CPU 1 block

03/03/2023

EXERCISE: DOT PRODUCT - DYADIC SUM

= |mplement the dot product

= The dot product with the two strategies of the dyadic sum

= Analyze with the profiler

= Based on the results of the profiler, you can decide at which number of elements you should run the sums on the CPU

3 3 3 3 = 3 El El 3 3 3 3 3 3 2 B
g g g g g g g g g g g g g g g g
(=3 o (=3 |2 o (=% (=% o -1 o Q Q Q o o o

gl) L= 7 N W e SN0 ey <N~ e U SN R - LT o <N 7

;_»\v/,» > »\\“/,f 3 . _\ .’,.- \\\./v - \J,/ \\// \.\/,' ~»\\‘// 3 & R o
ao a1 32 a3 84 as as a7 ao a1 a2 83 a4 a5 as 87
aO 1 a2 3 a4 5 a6,7 a0.4 a1 5 aZ 6 aS 7

__Va _{A ‘ - ‘ a

a0.1.2.3 a4.5.6.7 a0,2.4.6 a1.3,5,7
e R
a a

BASIC APPLICATION: HISTOGRAM

= Computing histograms is a very usual task Lena

= Used in image processing
= Mapping
= Color corrections
= Noise removal

= Etc.

= Each “bin” represent one value for a color
T
= 256 bin in image processing applications Random noise

= We count the number of occurrences
of each “bin” in the image

= We need to compute them fast!

= Some bin will be used more than others

0 20 4 @ % 10 0 4 ¥ 18 MW W M XN 0 2 4 0 & 00 10 4 1§ W 20 20 % ¥

= Race conditions = We need atomic additions *: Actually this comes from a paper on cryptography of the same image
A new image encryption algorithm using random numbers generation of two matrices and bit-shift operators

03/03/2023

BASIC APPLICATION: HISTOGRAM

B |n C++

Image img('file'); // grayscale

int histogram[Z55] = {0}

for (int x = 0; %2 < img.width; ++x) {

E for (int yv = U; y < img.height; ++y) {
E int value = img[x][v]: . N
histogram[value] += 1; * N

) Random noise*

= To load images:

= QOpenCV (difficult to include in Visual Studio)
= https://opencv.org/

= stb_image.h (header only library)

m https://github.com/nothings/stb/blob/master/stb
image.h

o3& 8 8

0 2 & 6 90 00 10 4 1§ 3 20 20 4 X 0 20 4 @ % 10 0 4 ¥ 18 MW W M XN 0 2 4 © & 00 10 4 1§ W 200 20 2%

*: Actually this comes from a paper on cryptography of the same image
A new image encryption algorithm using random numbers generation of two matrices and bit-shift operators

03/03/2023

https://opencv.org/
https://github.com/nothings/stb/blob/master/stb_image.h
https://github.com/nothings/stb/blob/master/stb_image.h

BASIC APPLICATION: HISTOGRAM

Image img('file'); // grayscale
int histogram[Z55] = {0}
for (int = = 0; % < img.width; ++x) {
for (int v = 0; yv < img.height; ++y) {
int value = img[x] [y]:
histogram[value] += 1;

= How to parallelize this?

= Some bin will be used more than others

= Race conditions = We need atomic additions
= |n global memory

= Butalso in shared memory!

= Challenge: output location for each element is not
known prior to reading its value

= |dea 1:

= Lunch as many threads as the image size

=)

/L]

int dataSize

gidth * img.height;

int N _threads 1024;

dim3 block size(dataSize (+ (N_threads-1))/N threads);
dim3 thread size(N_threads);

histogram<<<block size, thread size>>>(dev_img, dev _hist, img.size);

/L]

__global void histogram(unsigned char *img,
unsigned int * hist,
long N)
{
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx >= N)
return;
unsigned int color = img[idx]:
// Add 1 to the global memory histogram
atomicAdd (& (hist[color]), 1):
}

= Advantages
= Very similar to CPU implementation
= Drawbacks

= Veryslow
= Access to the global memory

= AtomicAdds
03/03/2023

BASIC APPLICATION: HISTOGRAM

/L.
(/ [...]]]]]] int dataSize = img.width * img.height;
int dataSize = img.width * img.height; int N threads = - -
int N _threads = 1024; dim3 Block si {ifu' TSthl+ (¥ threads-1))/N thread 1, 1)
dim3 block size(dataSize (+ (N threads-1))/N threads): %m oc —SlFe EEE;Ei___, _LAreaass. _LAreads, -,).
= - - dim3 thread size(N threads);

dim3 thread size(N_threads);

histogram<<<block size, thread size>>>(dev img, dev hist, img.size); histogram<<<block size, thread size>>>(dev_img, dev hist, img.size);

/L] fL..]
__global wvoid histogram(unsigned char *img, __global void histogram(unsigned char #*img,
unsigned int * hist, unsigned int * hist,
long N) long N)
{
{ int idx = blockIdx.x * blockDim.x + threadIdx.x; q int idxz = blockldx.x * blockDim.x + threadldx.x;
if (idx >= N)

if (idx >= N)

return;

return;

)))) // offset for a row
unsigned int color = img[idx]; int width = blockDim.x * gridDim.x;
// Add 1 to the glcbal memory histogram
atomicAdd(&(hist[color]), 1): // Each thread will work on a column of the image

} [while (idx < N) {|
= | 2. unsigned int ceolor = img[idx];
€a <. // Bdd 1 at the address idx IN global histo

// We need atomicAdd to avoid race conditions

= Executing a thread for only one pixel is overkill
& y P atomicAdd(&hist[color], 1):

= Add a stride to make each thread work more
// Each thread of a block -> a column

| idx += width;|

= Advantages

= Aljttle faster

= Drawbacks

= Still slow 03/03/2023

BASIC APPLICATION: HISTOGRAM

TV |

int dataSize = img.width * img.height;

int N_threads = 25¢6;

dim3 block size((img.width + (N threads-1))/N threads, 1, 1}:

dim3 thread_size(N_threads);

histogram<<<block size, thread size>>>(dev_img, dev_hist, img.size);
/0.

~_globkal void histogram(unsigned char *img,
unsigned int * hist,
long N)

int idx = blockIdx.x * blockDim.x + threadIdx.x;

if (idx >= N)
return;

// offset for a row
int width = blockDim.x * gridDim.x;

=)

// Each thread will work on a column of the image
while (idx < N) {
unsigned int color = img[idx];
// Add 1 at the address idxz IN global histo
// We need atomicAdd to avoid race conditions
atomicAdd(&hist[color], 1);

// Each thread of a block -> a column
idx += width;

= |dea 3:

= Exploit the shared memory = Local histograms

= Advantages
= Way faster

= Drawbacks

= Yet not optimal ©
https://developer.nvidia.com/blog/gpu-pro-tip-
fast-histograms-using-shared-atomics-maxwell/

f0...1
int dataSize = img.width * img.height;
int N threads = 256; // histogram size!
dim3 block size((img.width + (N_threads-1))/N_threads, 1, 1);
dim3 thread size(N threads);
size t|shared size = “5c]* sizeof(unsigned int); // local histogram !
histogram<<<block size, thread size, >>{dev_img, dev_hist, img.size);
PV |

__global void histegram(unsigned char *img, unsigned int * hist, long N)

{

// Shared memory for local histogram

unsigned int local hist[256];
oca i1st[threadIldx.x] = 0;

__syncthreads () ;

int idx = blockIdx.x * blockDim.x + threadIdx.x;
// offset for a row
int width = blockDim.x * gridDim.x;

// Each thread will work on a column of the image
while (idx < N) {
unsigned int color = img[idx];
// Add 1 at the address idx IN local hist
// We need atomicAdd to avoid race conditions
atomicAdd(&local hist[color], 1):

// Each thread of a block -> a column

idx += width;
}
// Wait all the threads to finish their column
I__syncthreads()4

// Block level synchronization
// Each thread copy its own value

& (hist [threadIdx.x]),

local hist[threadIdx.x]);

Input Buffer
__global

__local
Histograms

https://developer.nvidia.com/blog/gpu-pro-tip-fast-histograms-using-shared-atomics-maxwell/
https://developer.nvidia.com/blog/gpu-pro-tip-fast-histograms-using-shared-atomics-maxwell/

EXERCISE: HISTOGRAM

= Use stb_image or OpenCV to load an image in your code
= Both libraries let you read/write images on disk to check your results
= Write the CPU version of the histogram

= To check your histogram values, you can save a “.csv” file on disk

= Plot the histogram with python and matplotlib
= Try to write without the slides the 3 histograms kernels

= Profile them with the CUDA profilers (compare the different statistics in the profilers)
= Look at the speedups, are they what you expected?

= Try different “stride” for version 2 & 3

= This exercise is important to learn how to use/integrate OpenCV/stb_image for the next sessions!

03/03/2023

	Diapositive 1 INFO-H-503 – GPGPU Programming – 03
	Diapositive 2 Last time – Today
	Diapositive 3 Kind of memory – CPU
	Diapositive 4 Kind of Memory - GPU
	Diapositive 5 Kind of Memory - gpu
	Diapositive 6 Shared memory
	Diapositive 7 Shared memory
	Diapositive 8 SOME (parts of) KERNELS ARE NOT PARALLELIZABLE
	Diapositive 9 SOME KERNELS ARE NOT PARALLELIZABLE
	Diapositive 11 BASIC Application: Dot product
	Diapositive 12
	Diapositive 13
	Diapositive 14
	Diapositive 15
	Diapositive 16
	Diapositive 17
	Diapositive 18
	Diapositive 19
	Diapositive 20
	Diapositive 21
	Diapositive 22

