
INFO-H-503 – GPGPU PROGRAMMING – 02
GAUTHIER LAFRUIT – JAN LEMEIRE

ELINE SOETENS - DANIELE BONATTO

LAST TIME – TODAY

 Last Time:

 Familiarization with CUDA and Visual Studio

 VectorAdd

 This Time:

 Occupancy

 Profiling and benchmark

 Roofline model

24/02/2023

HOW TO HAVE GOOD PERFORMANCES? - OCCUPANCY

 The occupancy is defined as the ratio
𝑁𝑎𝑐𝑡𝑖𝑣𝑒 𝑤𝑎𝑟𝑝𝑠/𝑆𝑀

𝑁𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑤𝑎𝑟𝑝𝑠/𝑆𝑀

 Ie: The number of threads that are executing over the maximum number of executable threads for one streaming multiprocessor (SM),

on a specific hardware

 The higher the level of occupancy you achieve, the faster the kernel will potentially execute in compute-bound kernels.

 In memory-bound kernels, it is used to hide global memory access latency

 An early step of kernel performance analysis should be to check occupancy and observe the effects on kernel execution

time when running at different occupancy levels.

 Determining accurately the number of threads running in each SM is difficult

 Use the Occupancy Calculator from NVIDIA https://docs.nvidia.com/cuda/cuda-occupancy-calculator/index.html

 Computes the actual number of threads running on each SM for a particular device given the usage of resources by a kernel.

2/24/2023

https://docs.nvidia.com/cuda/cuda-occupancy-calculator/index.html

OCCUPANCY EFFECT

 Low occupancy : poor instruction issue efficiency (not enough eligible warps to hide latency between dependent

instructions)

24/02/2023

Visible latency

OCCUPANCY EFFECT

 Sufficient occupancy to hide latency

24/02/2023

Hidden latency

OCCUPANCY EFFECT

 Higher occupancy: may degrade performance due to the reduction in resources per thread.

24/02/2023

Normally it take 12 cycles to obtain the output of the first instruction,

Here it takes 16 cycles

 Our GPU is more complex than the simple pipeline

 You need to take into consideration

 Warps per SM

 Blocks per SM

 Registers per SM

 Shared Memory per SM

 https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellev

el/achievedoccupancy.htm (PDF included with your files)

 READ IT CAREFULLY

 In deep discussion:

 Talk: « Better Performance at Lower Occupancy », Vasily Volkov, 2010 (PDF)

24/02/2023

HOW TO HAVE GOOD PERFORMANCES? - OCCUPANCY

All those parameters depends on the

characteristics of your GPU!

You need to design your softwares with

a specific GPU in mind!

https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm

PROFILING FOR OCCUPANCY

24/02/2023

1

2

More interesting informations

Finer

analysis

PROFILING FOR OCCUPANCY

24/02/2023

EXERCISE - OCCUPANCY

 Create a project and use the code from vector_add_bench.cu

 Look at the changes from vector_add.cu

 Profile for different array_size and different number of thread per block

 In Visual Profiler : Examine GPU Usage > Examine Individual Kernels > Perform Kernel Analysis > Perform Latency

Analysis > Examine Occupancy

 Compare the occupancy in the different case

24/02/2023

EXERCISE - MAPPING

 Take the code from vector_add_bench.cu

 Change the kernel to have each thread process j elements of the array

 Profile for increasing value of j

 What do you see ?

24/02/2023

PROFILING – COMPUTE ANALYSIS

24/02/2023

COMPUTE VS MEMORY PERFORMANCE

 Memory Throughput/Bandwidth
#𝑏𝑦𝑡𝑒𝑠 𝑟𝑒𝑎𝑑/𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑝𝑒𝑟 𝑘𝑒𝑟𝑛𝑒𝑙

𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑘𝑒𝑟𝑛𝑒𝑙

 Computation Throughput/Operation per Second
#𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑜𝑛𝑒 𝑝𝑒𝑟 𝑘𝑒𝑟𝑛𝑒𝑙

𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑘𝑒𝑟𝑛𝑒𝑙

 Usually profiler gives you memory/computation throughput as a % of peak performance

 Peak performance depends on the hardware and can be difficult to calculate

 If we know what the kernel does and its runtime, we can compute the bandwidth/computation throughput ourselves

24/02/2023

COMPUTATIONAL INTENSITY

 Computational intensity
𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

𝑀𝑒𝑚𝑜𝑟𝑦 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡
[OPS/byte]

 Low computational intensity → Memory transfer is the limiting factor

 High computational intensity → Compute performance is the limiting factor

24/02/2023

Peak Perfomance Boundary

EXERCISE – COMPUTATIONAL INTENSITY

 Take the code from vector_add_bench.cu

 Make sure you understand how memory and computation throughput are calculated

 Determine the compute intensity

 Change the kernel to repeat the add operation k times (where k is a parameter you can increase easily)

 How does the compute intensity and computation throughput change when k increase ?

 Draw the roofline model

24/02/2023

BENCHMARKING

 Same executable, run four different runtimes …

 Execution time can change a lot from one run to another

 If you want to do an accurate benchmarking, you need to run your code several time and take the average runtime

 It’s what profilers do !

 Redo the exercises but this time run the kernel several time and compute the average runtime

 Use those benchmark for you mini-project

24/02/2023

APPENDICES – PROBLEM SPACE SIZE

 The problems we want to solve do not always match the number of cores!

 fullHD image = 1920x1080 px = 2,073,600 px

= 2,073,600 px x 3 colors = 6,220,800 elements

 Total number of cores = 2560

 Each core need to process 6,220,800/2560 = 2430 elements!

 How to solve?

24/02/2023

image 2430 bigger!

Not real scale here

For everyone surprised by

Max grid dim x = 2,147,483,647

during last session

APPENDICES – PROBLEM SPACE SIZE

 Each core need to process 6,220,800/2560 = 2430 elements

 Idea 1:

 Map a grid over the image

 Each thread process SEVERAL pixels (2430)

 This is usually not what we do! (each thread access non local memory)

24/02/2023

core

APPENDICES – PROBLEM SPACE SIZE

 Each core need to process 6,220,800/2560 = 2430 elements

 Idea 2:

 Map a grid over the image

 GPU Process one block after the other

 This is usually what we do!

 Each thread is responsible for one pixel for each block

 In practice:

 The GPU is split in WARPS of 32 threads

 As soon as a WARP is finished, it goes in the next

block that need to be processed

 It’s not the only way to work with images

24/02/2023

image 2430 bigger!

Not real scale here

Whole

GPU

APPENDICE – PROBLEM SPACE SIZE

 Each core need to process 6,220,800/2560 = 2430 elements

 Illustrations of the grid approach

 Order of computed blocks is not guarantee!

24/02/2023

We can clearly see the blocks working

More cores, less time by Duy Le

https://www.youtube.com/watch?v=MiZDtax_O4U

Rendering Evermotion on 360 cores by MRIYArender

https://www.youtube.com/watch?v=XPXiITMpHGE

280 cores 32 cores

Videos shown for speed

comparisons and to

illustrate the random order

of execution

https://www.youtube.com/watch?v=MiZDtax_O4U
https://www.youtube.com/watch?v=XPXiITMpHGE

APPENDICES – GRID>BLOCK>THREAD

 GPU-based view of threads

2/24/2023

Cuda Programming, Cook, 2013

When the host CPU invokes a kernel grid:

- The blocks of the grid are enumerated and distributed to

multiprocessors with available execution capacity

- The threads of a thread block execute concurrently on one

multiprocessor

- Multiple thread blocks can execute concurrently on one

multiprocessor

- As thread blocks terminate, new blocks are launched on the vacated

multiprocessors

- https://docs.nvidia.com/cuda/cuda-c-programming-

guide/index.html#hardware-implementation

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#hardware-implementation
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#hardware-implementation

 GPU-based view of threads

24/02/2023

Cuda Programming, Cook, 2013

“CUDA splits problems into grids of blocks, each containing multiple
threads. The blocks may run in any order. Only a subset of the blocks will
ever execute at any one point in time. A block must execute from start to
completion and may be run on one of N SMs (symmetrical
multiprocessors). Blocks are allocated from the grid of blocks to any SM
that has free slots. Initially this is done on a round-robin basis so each SM
gets an equal distribution of blocks. For most kernels, the number of blocks
needs to be in the order of eight or more times the number of physical
SMs on the GPU. To use a military analogy, we have an army (a grid) of
soldiers (threads). The army is split into a number of units (blocks), each
commanded by a lieutenant. The unit is split into squads of 32 soldiers (a
warp), each commanded by a sergeant.

To perform some action, central command (the kernel/host program) must
provide some action plus some data. Each soldier (thread) works on his or
her individual part of the problem. Threads may from time to time swap
data with one another under the coordination of either the sergeant (the
warp) or the lieutenant (the block). However, any coordination with other
units (blocks) has to be performed by central command (the kernel/host
program).”

APPENDICES – GRID>BLOCK>THREAD

	Section par défaut
	Diapositive 1 INFO-H-503 – GPGPU Programming – 02
	Diapositive 2 Last time – Today
	Diapositive 3 How to have good performances? - Occupancy
	Diapositive 4 Occupancy Effect
	Diapositive 5 Occupancy Effect
	Diapositive 6 Occupancy Effect
	Diapositive 7
	Diapositive 8 PROFILING FOR occupancy
	Diapositive 9 Profiling for occupancy
	Diapositive 10 Exercise - Occupancy
	Diapositive 11 Exercise - mapping
	Diapositive 12 PROFILING – compute analysis
	Diapositive 13 Compute vs Memory performance
	Diapositive 14 Computational intensity
	Diapositive 15 Exercise – Computational intensity
	Diapositive 16 benchmarking
	Diapositive 17 Appendices – Problem Space Size
	Diapositive 18 Appendices – Problem Space Size
	Diapositive 19 appendices – Problem Space Size
	Diapositive 20 Appendice – Problem Space Size
	Diapositive 21 Appendices – grid>block>thread
	Diapositive 22 Appendices – grid>block>thread

