INFO-H-503 - GPGPU PROGRAMMING - 02

GAUTHIER LAFRUIT - JAN LEMEIRE

ELINE SOETENS - DANIELE BONATTO

el —

Lo - -
-%...3 — X -

ot X S e




LAST TIME - TODAY

®  Last Time:

= Familiarization with CUDA and Visual Studio

= VectorAdd
= This Time:
= QOccupancy

= Profiling and benchmark

= Roofline model
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HOW TO HAVE GOOD PERFORMANCES? - OCCUPANCY

Nactive warps/SM

=  The occupancy is defined as the ratio

maximum of active warps/SM

= |e: The number of threads that are executing over the maximum number of executable threads for one streaming multiprocessor (SM),
on a specific hardware

= The higher the level of occupancy you achieve, the faster the kernel will potentially execute in compute-bound kernels.

= |n memory-bound kernels, it is used to hide global memory access latency

= An early step of kernel performance analysis should be to check occupancy and observe the effects on kernel execution
time when running at different occupancy levels.

= Determining accurately the number of threads running in each SM is difficult

= Use the Occupancy Calculator from NVIDIA https://docs.nvidia.com/cuda/cuda-occupancy-calculator/index.html

= Computes the actual number of threads running on each SM for a particular device given the usage of resources by a kernel.
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https://docs.nvidia.com/cuda/cuda-occupancy-calculator/index.html

OCCUPANCY EFFECT

= Low occupancy : poor instruction issue efficiency (not enough eligible warps to hide latency between dependent
instructions)

(0) time of 1 run = 13 cycles for <3 computations (all dependent)> with 2 threads and scheduler = DOUBLE_RR

{Computational pipeline : ! ! ! : : : : i :
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OCCUPANCY EFFECT

m  Sufficient occupancy to hide latency

{1) time of 1 run =15 cycles for <3 computatlons [all dependent]> Wlth 4 threads and scheduler = DCIUEILE RR

{Computational pipeline
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Hidden latency
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OCCUPANCY EFFECT

= Higher occupancy: may degrade performance due to the reduction in resources per thread.

ouT

IN

ouT

(2) time of 1 run =21 cycles for <3 computatlons [all dependent]:- Wlth 6 threads and scheduler = DOUELE RR

{ Computational pipeline

IN n@qu@1|u@u@qn@4u@d1 @q1 @1| @211 @q1 @41 @dz@qz@1|2@qz@q2@42@q
—_—— S
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Normally it take 12 cycles to obtain the output of the first instruction,

Here it takes 16 cycles
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HOW TO HAVE GOOD PERFORMANCES? - OCCUPANCY . ... ..

Device ? GPU O - GeForce GTX 1080 T
Process CUDA 10.1 Runtimel.exe [17244]
MAX_THREADS_PER_BLOCK 1024
MAX_BLOCK_DIM_X 1024
MAX_BLOCK_DIM_Y 1024
MAX_BLOCK_DIM_Z 64
= QOur GPU is more complex than the simple pipeline e —
MaX_GRID_DIM_Z 65535
= You need to take into consideration All those parameters depends onthe | . cumeomevon s sioc ssis
W . characteristics of your GPU! R o
u arps per . . =
PSP You need to design your softwares with v anericson
MAX_REGISTERS_PER_BLOCK B5536
= Blocks per SM a specific GPU in mind! oo jare 1607000
TEXTURE_ALIGNMENT 512

= Registers per SM
= Shared Memory per SM

m  https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellev
el/achievedoccupancy.htm (PDF included with your files)

= READ IT CAREFULLY

= |n deep discussion:

= Talk: « Better Performance at Lower Occupancy », Vasily Volkov, 2010 (PDF)
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3. Compute, Bandwidth, or Latency Bound

The first step in analyzing an individual kermel is to determineg if the
performance of the kernel is bounded by computation, memory
bandwidth, or instructionymemory lakency, The results at right
indicate that the performance of kemel “"mathult_nalve_gpu” is

PROFILING FOR OCCUPANCY e

F| ner E ile, Perform Latency Anakysis

. The most likely bottieneck to performa noe fior this kel i instruction and memony
a n a IyS |S Btency so youshouid first parform instructionand mem oy Btency arelysis o determ ine
howy it s lim iting perfoma noe.

i, Perform Compute Analysis

O Anabysis &2 | BN GPU Details (Surnrmary) CPU Details | [T5] OpenACC Details

T Analysis &2 | B0 GPU Details (Surnrmanyd | 0 CPU Details | [5] C Iy, Perform Memory Bandwidth Analysis

= @ = E 14 Results
; i 1. CUDA Application Analysis i KernelDptimization Priorities
1. CUDA Application Analysis The fpMowing kernels are ordered by optirnization impartance based on execution tirme and achiey
: 2. Performance-Critical “""p( lipAly to irmprove performance compared to lower ranked kernels,

The guided analysis system walks you through the various analygs
stages to help you understand the optimization opportunities i
your application, Gnee wou becore familiar with the optimizatypn
process, you can explore the individual analysis stages in an
unguided mode, YWhen optimizing yaour application it is imp
to fully utilize the compute and data maovement capahbilities pf the e 14: [ 1 kernel instances | mathult_naive_gpuifloat”, float”, float”, int)

&P, To da this you should look at your application’s avergll GPU @ Perforrm Kernel Analysis &4 4 [ 1kernel instances | mathult_naive_gpu_non_coalescing(float®, float®, float®, int)

The results on the right shopfeyvour application’s kernels ordered by Rank Description

potential far perfarmancgfAmprovement, Starting with the kernel ) N N w
with the highest rankigd] you should select an entry from the le 100 [ 1 kernel instances ] mathult_blocked_gpuifloat®, float®, float, int)
and then perform kepfiel analysis to discover additional 82 [1kernelinstances | mathult_blacked_gpu_non_coalescing(float®, float®, flaat®, int)
optimization oppoylunities,

usage aswell as the performance of individual kernels. : - . . .
Sekecta hemelfrom the t ble at right o from the timeline to-erable kemelarasis. This 1 1 [T kernelinstances ] mathult2_blocked_gpu_non_coalescing(float®, float®, float®, int)
. ama kysis riequines detailed profiling data, so your appliction will be run once to coliect
i, Bxamine GPU Usage that ceta for the kemel if it is not aleady avaitble.
Determ ine your appliation's ovem 1 GPU w=ge. This a m bysis requinss ghappliation " .
timeline, 20 your appliation will b runonce to collect it if it s notal awaibhble. ‘ilﬁ Perform Additional Analysis
‘fou @ ncoliect afditioral imform ation to help identify kerneks with 3| parform ancz
_ problem . Aftgh running this amksis, selectamy of the new results at righto highlight
the individ rnets for wehich the a alysis applies.
S
Dterm ine thh karnelzarnz the_m ost pe.rfcurm ance Er.I‘IEG|.EI1:| that hawe the mo=T matMult_naive_gpulfloat’, float, float", int)
apportunity for im provem ent. This ambysis requires utililationdata from every kernel, so
your a pplicatian will be run once to collect that data i it i notalready avaibhble. Queued nfa
Submitted fia
- . . Start 261,60425 ms ..
I Delete Existing Analysis Information :
% 4 ¥ End 20045118 s ..
If the = ppliction he: cha nged since the Bt amkysis then the existing am ksis Duration 36,8465 s (..
irfiorm ation may be sta ke a nd should be deleted before continuing. Strearn Default
Grid Size [4,1024,1 ]
2 2 2 Block Size [256,1,1] . . . .
|
L Sl o wg wid i S e More interesting informations
Shared Memorg/Block 0B
Launch Type Marrmal
Ay 24/02/2023
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PROFILING FOR OCCUPANCY

A
Dol Analysis &2 | B8 GPU Details (Summary) | B4 CPU Details | 5] OpenCC Details | [ OpenhP Details| Bl Console | Thi Settings

BE)| = [y, Export PDF R...
1. CUDA Application Analysis

2. Performance-Critical Kernels

3. Compute, Bandwidth, or Latency Bound

The first step in analyzing an individual kernel is to determine if the nox
performance of the kernel is bounded by computation, mermony .
bandwidth, or instruction/memary latency, The results at right EliEE
indicate that the performance of kernel "matMult_naive_gpu®is an
most likely limited by instruction and memory latency,
T
E @ Perform Latency S&nalysis i 5 o
The most likely bottieneck to parformance for this kernel i instroctionand mem ory E Bl
Btency soyou should first perform instructionand mem ory Bt=ncy amlsis taodsterm ine =
how it i lim iting performance. 5 A
f a0
[, Perfarrn Cornpute Analysis
205
jly, Perform Memary Bandwidth Snalysis e
Com pute and memory bandwidthare likely not the primary perfiorm a noe bottlenacks for 4_
this karnel, but you may still wa nt to perform thoss a e ses. Emadantt (Single)

Results

i Kernel Performance Is Bound By Instruction And Memory Latency

This kernel exhibits low compute throughput and memory bandwidth utilization relative to the peak perforrmance of "GeForce GTX 1080 Ti", These utilization levels indicate that the performance of
the kernel is rmost likely limited by the latency of arithrmetic or memory operations, Achieved compute throughpot andfor memory bandwidth below 602 of peak typically indicates latency issues,

Wariable Achieved Theoretical
. Occupancy Per 5h
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YWariahle Achieved Thearetical Device Lirmit  1Grid Size: [ 791,71 ] (79 blog

EXERCISE - OCCUPANCY Occupancy Per S

Active Blocks 3 32 e E— =
o 4 &8 12 16 20 24 8 32
Active Warps 21,36 6 2
9 18 7 3n 45 54 &
Active Threads 2048 2048 . —————e——
1] 512 1024 1536 2048
Dccupancy 34, 2% 100% 100°

129 25% S 7554 10024

= Create a project and use the code from vector_add_bench.cu

= Look at the changes from vector_add.cu

= Profile for different array_size and different number of thread per block

= |n Visual Profiler : Examine GPU Usage > Examine Individual Kernels > Perform Kernel Analysis > Perform Latency
Analysis > Examine Occupancy

= Compare the occupancy in the different case
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EXERCISE - MAPPING

= Take the code from vector_add_bench.cu
=  Change the kernel to have each thread process j elements of the array
= Profile for increasing value of j

= What do you see ?
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PROFILING - COMPUTE ANALYSIS

5 Analysis 22 | F GPU Details (Summany) | L CPU Details | [T5] OpenaCC Details | (5] OpentP Details| Bl Console | T Settings w, O
ElE & [, Export PDF R... Results
1. CUDA Application Analysis i Kernel Performance Is Bound By Instruction And Memory Latency

This kernel exhibits low compute throughput and memory bandwidth utilization relative to the peak performance of "GeForce GTX 1080 T", These utilization levels indicate that the performance of

2. Performance-Critical Kernels the kernel is most likely limited by the latency of arithrmetic or mermorny operations, Achieved cornpute throughput and/or memory bandwidth below 60 2% of peak typically indicates latency issues,

3. Compute, Bandwidth, or Latency Bound

The first step in analyzing an individual kernel is to determine if the 002
performance of the kernel is bounded by computation, memory .
bandwidth, or instruction/memaorny latency, The results at right BIIE3
indicate that the performance of kernel "mathult_naive_gpu”is a0
most likely limited by instruction and memory latency.
LA
E [, Perform Latency Analysis i 5 e
The mast likely bottleneck to perform anoe for this kel is instructionand mem ory E [
Btengy =0 pou should first perform instruction and mem oy Btency armakysis todetarm ine =
hows it i lim iting paformance. 5 A
@ Perform Compute &nalysis S
205
I, Perform Memory Bandwidth Analysis
LS 1y g 10
Com pute and memory bandwidth anz likely not the primary parformanoe bottkenscks for 4_
this kernel, but you may till want to perform thoss ame sss, Function Unit [Single] Memary (L2 Cache]
[y, Rerun Analysis
If you modify the kernelyou nesed to rerun your a ppliation to update this amakysis.
00
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COMPUTE VS MEMORY PERFORMANCE

#bytes read/written per kernel

= Memory Throughput/Bandwidth

runtime for the kernel

#operation done per kernel

= Computation Throughput/Operation per Second

runtime for the kernel

= Usually profiler gives you memory/computation throughput as a % of peak performance
= Peak performance depends on the hardware and can be difficult to calculate

= |f we know what the kernel does and its runtime, we can compute the bandwidth/computation throughput ourselves
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COMPUTATIONAL INTENSITY

Computation throughput

= Computational intensity Memory throughput

[OPS/byte]
Low computational intensity = Memory transfer is the limiting factor

High computational intensity - Compute performance is the limiting factor

Floating Point Operations Rooffine
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EXERCISE - COMPUTATIONAL INTENSITY

= Take the code from vector_add_bench.cu

= Make sure you understand how memory and computation throughput are calculated

=  Determine the compute intensity
= Change the kernel to repeat the add operation k times (where k is a parameter you can increase easily)
= How does the compute intensity and computation throughput change when k increase ?

= Draw the roofline model
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GPU results are ¢ GPU results are correct

“PU time g CPU time

SPU time E 1 GPU time
cpeedup : : T

‘lemor 14 5
BENCH MAR KING Computation throughput : 16.4168 GOPS/s

GPU result
CPU time :
GPU time GPU results
CPU time :
GPU time :
speedup :
Memory thr

= Execution time can change a lot from one run to another Computation

speedup :

Memory thr : 8.3 GB/Ss

= Same executable, run four different runtimes ... Computation throughput : 13.1916 GOPS/s

= |f you want to do an accurate benchmarking, you need to run your code several time and take the average runtime
= |t's what profilers do !
= Redo the exercises but this time run the kernel several time and compute the average runtime

= Use those benchmark for you mini-project
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APPENDICES - PROBLEM SPACE SIZE

For everyone surprised by
Max grid dim x = 2,147,483,647
during last session

= The problems we want to solve do not always match the number of cores!

= fullHD image = 1920x1080 px = 2,073,600 px
= 2,073,600 px x 3 colors = 6,220,800 elements

= Total number of cores = 2560

= Each core need to process 6,220,800/2560 = 2430 elements!

= How to solve?

image 2430 bigger!
Not real scale here
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APPENDICES - PROBLEM SPACE SIZE |

=  Each core need to process 6,220,800/2560 = 2430 elements
= |dea 1:

= Map a grid over the image
= Each thread process SEVERAL pixels (2430)

®= This is usually not what we do! (each thread access non local memory)
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APPENDICES - PROBLEM SPACE SIZE

= Each core need to process 6,220,800/2560 = 2430 elements
= |dea 2:

= Map a grid over the image
= GPU Process one block after the other

= This is usually what we do!
= Each thread is responsible for one pixel for each block

= |n practice:
image 2430 bigger!

= The GPU is split in WARPS of 32 threads Not real scale here

= As soon as a WARP is finished, it goes in the next
block that need to be processed

= |t's not the only way to work with images
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APPENDICE - PROBLEM SPACE SIZE

=  Each core need to process 6,220,800/2560 = 2430 elements

= |llustrations of the grid approach

= Order of computed blocks is not guarantee!

We can clearly see the blocks working

Rendering Evermotion on 360 cores by MRIYArender
https://www.youtube.com/watch?v=XPXilTMpHGE

280 cores 32 cores

e
) Videos shown for speed
comparisons and to

illustrate the random order
of execution

More cores, less time by Duy Le
https://www.youtube.com/watch?v=MiZDtax_04U
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APPENDICES - GRID>BLOCK>THREAD

=  GPU-based view of threads
Grd

: : I

Block Block Block

N-1 N N+1
' T e T T e T
Warp Warp Wam Warp Warp Wamp Warp Warp Wamp
N-1 N N+1 =1 N N+1 =1 N N+1

Cuda Programming, Cook, 2013

When the host CPU invokes a kernel grid:

The blocks of the grid are enumerated and distributed to
multiprocessors with available execution capacity

The threads of a thread block execute concurrently on one
multiprocessor

Multiple thread blocks can execute concurrently on one
multiprocessor

As thread blocks terminate, new blocks are launched on the vacated
multiprocessors

https://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html#hardware-implementation
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APPENDICES - GRID>BLOCK>THREAD

= GPU-based view of threads

“CUDA splits problems into grids of blocks, each containing multiple
threads. The blocks may run in any order. Only a subset of the blocks will
ever execute at any one point in time. A block must execute from start to

Grd completion and may be run on one of N SMs (symmetrical
multiprocessors). Blocks are allocated from the grid of blocks to any SM
that has free slots. Initially this is done on a round-robin basis so each SM

l v l gets an equal distribution of blocks. For most kernels, the number of blocks
Block Block Block needs to be in the order of eight or more times the number of physical
N-1 N N+ SMs on the GPU. To use a military analogy, we have an army (a grid) of
soldiers (threads). The army is split into a number of units (blocks), each
i ¥ ly ‘l. ¥ ly ‘l, ¥ Jy commanded by a lieutenant. The unit is split into squads of 32 soldiers (a
Warp | | Warp | | Warp | | Warp | | Warp | | Wamp | | Warp | | Warp | | Wamp warp), each commanded by a sergeant.
MN-1 N MN+1 N-1 N MN+1 N-1 N MN+1

To perform some action, central command (the kernel/host program) must
) provide some action plus some data. Each soldier (thread) works on his or
Cuda Programmmg; Cook, 2013 her individual part of the problem. Threads may from time to time swap
data with one another under the coordination of either the sergeant (the
warp) or the lieutenant (the block). However, any coordination with other
units (blocks) has to be performed by central command (the kernel/host
program).”

24/02/2023



	Section par défaut
	Diapositive 1 INFO-H-503 – GPGPU Programming – 02
	Diapositive 2 Last time – Today
	Diapositive 3 How to have good performances? - Occupancy
	Diapositive 4 Occupancy Effect
	Diapositive 5 Occupancy Effect
	Diapositive 6 Occupancy Effect
	Diapositive 7
	Diapositive 8 PROFILING FOR occupancy
	Diapositive 9 Profiling for occupancy
	Diapositive 10 Exercise - Occupancy
	Diapositive 11 Exercise - mapping 
	Diapositive 12 PROFILING – compute analysis
	Diapositive 13 Compute vs Memory performance
	Diapositive 14 Computational intensity
	Diapositive 15 Exercise – Computational intensity
	Diapositive 16 benchmarking
	Diapositive 17 Appendices – Problem Space Size
	Diapositive 18 Appendices – Problem Space Size 
	Diapositive 19 appendices – Problem Space Size 
	Diapositive 20 Appendice – Problem Space Size 
	Diapositive 21 Appendices – grid>block>thread
	Diapositive 22 Appendices – grid>block>thread


