
INFO-H-503 – GPU PROGRAMMING – 01

GAUTHIER LAFRUIT – JAN LEMEIRE

ELINE SOETENS - DANIELE BONATTO



ACKNOWLEDGMENT

 My favourite ressource: CUDA Programming – A Developer’s Guide to Parallel Computing with GPUs – Shane Cook, 

Elsevier, 2013, ISBN: 978-0-12-415933-4

 It’s the only resource I found that discussed nicely the hardware part of Cuda.

 Your new best friends:

 CUDA C Programming Guide v9.1 and higher https://docs.nvidia.com/cuda/archive/9.1/pdf/CUDA_C_Programming_Guide.pdf

 CUDA official documentation https://docs.nvidia.com/cuda/archive/10.1/index.html

 Always check the CUDA version on your system!

 Most of the images in the slides and several codes

 Shamelessly token and adapted from all around the web

17/02/2023

https://docs.nvidia.com/cuda/archive/9.1/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/archive/10.1/index.html


GUACAMOLE

 Your distant computer: https://guacamole.lisa.ulb.ac.be/

 Accessible from ULB’s vpn : https://monulb.ulb.be/en/web/support/-/comment-utiliser-ulb-vpn-

 Connect with your user and password (ask me if you do not have any)

 Select one of the INFO-H-503 sessions

 User: infoh503

 Password: student503

17/02/2023

https://guacamole.lisa.ulb.ac.be/
https://monulb.ulb.be/en/web/support/-/comment-utiliser-ulb-vpn-


TABLE OF CONTENT

 Write a program for the GPU

 Visual Studio and Exercises

17/02/2023



TABLE OF CONTENT

 Write a program for the GPU

 Your first Kernel

 Spatial structures – Indices

 Memory allocation

 Visual Studio and Exercises

17/02/2023



WRITING A KERNEL

 Functions executed by a thread in the GPU are called Kernels

 (C++) use “qualifiers” for the compiler to know the kind of function:

 __global__ : Kernel executed by a thread but CALLED from the C++ code 

 __device__: Kernel executed by a thread and called by another thread

 __host__: Classic function called and executed on the CPU (NOT MANDATORY)

2/17/2023

To remember:

- Each thread/core execute the SAME

kernel on each element of the block for 

each block of the grid



HOW TO SOLVE A PROBLEM WITH THE GPU

 Basic idea : A lot of thread will work in parallel, each thread solve a small part of the problem

 Vector addition : each thread add a few element

 Histogram : each thread process the value of one pixel

 …

17/02/2023



SPATIAL STRUCTURES – GRID AND BLOCK SIZES

 We can map a grid over the data we want to process

 Some problems are not 2D!

 1D stencil → 1D grid

 Matrix multiplication → 2D grid

 3D medical image → 3D grid

 Furthermore, in each cell of the grid (a block),  we can define it to be in 1D, 2D or 3D!

 For some problems, we can then work with a 3D grid of 3D thread blocks (9D dimensional space!)

 We need to choose the right structure that match our problem

 Matrices/images: it is usually useful to work with 2D grids of 2D threads

17/02/2023



SPATIAL STRUCTURES – GRID AND BLOCK SIZES

 Calling a kernel

 kernel_name<<<block_size, thread_per_block>>>(A, ...);

 You need to select the block_size and the thread_size depending on the problem!

 dim3 block_size(512, 128, 1);           // C++ 2D grid with 512 × 128 cells

 dim3 thread_per_block(10, 10, 1);   // C++ 2D block size of 10 × 10 = 100 threads per cell of the grid

 If the problem is not a multiple of the possible grid dimensions, a good strategy is to use

 block_size.x = x_size / thread_per_block.x + ((x_size % thread_per_block.x) == 0 ? 0:1);

17/02/2023

In 1D this formula is:

Int N = 100 000; # array size

Int 𝑇ℎ𝑟𝑒𝑎𝑑𝑠𝑝𝑒𝑟 𝑏𝑙𝑜𝑐𝑘 = 512;

int 𝑁𝑏𝑙𝑜𝑐𝑘𝑠 =
𝑁+(𝑇ℎ𝑟𝑒𝑎𝑑𝑠𝑝𝑒𝑟 𝑏𝑙𝑜𝑐𝑘 −1)

𝑇ℎ𝑟𝑒𝑎𝑑𝑠𝑝𝑒𝑟 𝑏𝑙𝑜𝑐𝑘
;

To remember:

- <≪block, threads>>>();

kernel calling convention

- dim3 type for dimensions



SPATIAL STRUCTURES – GRID AND BLOCK SIZES

 How a kernel can possibly know its position in the grid and the block?

 In a kernel you have acces to:

 gridDim : a 3D vector which contains the dimensions of the grid                     
(depends on how you call the kernel) = how many blocks in the grid

 blockDim: a 3D vector which contains the dimensions of a block in the grid  
(depends on how you call the kernel) = how many threads per block

 blockIdx : a 3D vector which contain the position of the block in the grid

 threadIdx: a 3D vector which contain the position of the thread within a block

 All those variables you can access the .x, .y and .y components

 Eg: blockIdx.x, blockIdx.y, blockIdx.z

17/02/2023

To remember:

- gridDim, blockDim

- blockIdx, threadIdx



 How a kernel can possibly know its position in the grid and the block?

 1D grid of 1D threads:

 To access an element – Linear transform:

 int idx = blockIdx.x * blockDim.x + threadIdx.x

17/02/2023

SPATIAL STRUCTURES – GRID AND BLOCK SIZES

How many

threads in a 

block



 How a kernel can possibly know its position in the grid and the block?

 Higher dimensions are similar

 2D To access an element – Linear transform:

 int idx = blockIdx.x * blockDim.x + threadIdx.x

 int idy = blockIdx.y * blockDim.y + threadIdx.y

 int width = blockDim.x * gridDim.x;

 int global_idx = idy * width + idx; // 1D linear access 

 Indexing are one of the main sources of bugs in CUDA!

 Think about them carefully

17/02/2023

SPATIAL STRUCTURES – GRID AND BLOCK SIZES



MEMORY ALLOCATION

 You need to transfer arrays between the GPU and the CPU 

before and after calling a kernel

 Always use the same convention!

 d_name for pointers to the GPU

 h_name for pointers to the CPU

 WARNINGS:

 This code DO NOT CHECK ANY ERROR

 Note the direction of the copies in cudaMemcopy

 You need to “cudaDeviceSynchronize” to be sure the kernel has 

finished before continuing the execution of the c++ code

17/02/2023



MEMORY MANAGEMENT WITH CORRECT ERROR HANDLING:

2/17/2023

It’s extremely important that you check your code

The base code in Visual Studio already has error 

handling, Do not use this slide as reference,



TABLE OF CONTENT

 Write a program for the GPU

 Visual Studio and Exercises

17/02/2023



INSTALLATION – HOW TO USE CUDA

 Computer in the PC rooms : everything is already set up !

 If you want to do the lab on your own computer, you need :

 Nvidia GPU

 Visual studio : https://visualstudio.microsoft.com/fr/vs/community/

 Cuda development tools : https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/

17/02/2023

https://visualstudio.microsoft.com/fr/vs/community/
https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/


EXERCISE – LET’S SEE THE POWER OF CUDA

 Copy the zip Z:\INFO-H-503 2021\v10.1.zip to your desktop and UNZIP it

 Go to the folder v10.1/bin/win64/Release in the Desktop

 Execute and play with the examples:

 FluidsGL.exe

 Mandelbrot.exe

 MarchingCubes.exe

 simpleD3D10RenderTarget.exe

 simpleD3D10Texture.exe

 simpleGL.exe

 volumeFiltering.exe

 volumeRender.exe

 bilateralFilter.exe

 Their code is available in the main folder « v10.1 », you can open the Visual Studio 2019 solution and look at the code

 If you are doing the lab on your own computer, sample are available here : https://github.com/nvidia/cuda-samples

17/02/2023

 boxFilter.exe

 stereoDisparity.exe

 oceanFFT.exe

 particles.exe

 postProcessGL.exe

 randomFog.exe

 recursiveGaussian.exe

 VFlockingD3D10.exe

Look at all the examples in the folders! They

can be extremely useful for the project! Eg:

- Convolutions

- Scan

- Dot products

- Matrix multiplication

All the solutions for the exercices can be

found here!

https://github.com/nvidia/cuda-samples


VISUAL STUDIO – LET’S MAKE A PROJECT

17/02/2023

Look for this software in the computer

You can use your personal account to log in

If you do not have one, you can create one



VISUAL STUDIO

17/02/2023



VISUAL STUDIO

17/02/2023



VISUAL STUDIO

17/02/2023

Make a folder on the 

desktop to easily

regroup your projects

I think you can use 

GIT on the computers 

to version your code.



DEBUG VS RELEASE CONFIGURATION

17/02/2023

 Debug:

 Program slow to execute

 You can use the DEBUGGER when you start the software

 Set break points in the C++ code

 Use                                             to look at the code line by line or function by function

 You can explore the values of the variables in the « variables locales » panel

 Release:

 The code is optimized, it run full speed

 To check the real speed of your application you need to set it to release



EXECUTE YOUR CODE

17/02/2023

 You should have a base code for the addition of two vectors

 Read it carefully

 Compile one time in Debug and one time in Release

 We will use it with all other profiling softwares

 Execute it

This base code is your

starting point for all the 

exercises

Play with it!



DEBUGGING INDICES – WHEN YOU ARE IN TROUBLES

 Memcheck everything !

 Compile your code in DEBUG mode (nvcc kernel.cu –g –G  or                                                    ) 

 Use cuda-memcheck tool

 Check GPU memory related errors

 Out-of-bound (global, shared, local)

 Misaligned (global, shared, local)

 Stack exceeded

 Leaks which cannot be freed

 …

 $cuda-memcheck [options] kernel.exe

17/02/2023

Important options:

- -b/--blocking Use blocking launches

- -c/--continue Try to continue on memory access violations

- -h/--help Help menu

- -l/--leakcheck show leak info for static allocations

- Way more on

- https://docs.nvidia.com/cuda/cuda-memcheck/index.html

https://docs.nvidia.com/cuda/cuda-memcheck/index.html


TO USE MEMCHECK

 In DEBUG

 Activate the CUDA memory checker

 Activate the exceptions for CUDA

 Look at the output

 More info:

 https://docs.nvidia.com/cuda/cuda-memcheck/index.html

17/02/2023

Warning :  Lab’s PC have cuda 10, for cuda 12 memcheck is deprecated, use compute sanitizer 

instead : https://docs.nvidia.com/cuda/compute-sanitizer/index.html

https://docs.nvidia.com/cuda/cuda-memcheck/index.html
https://docs.nvidia.com/cuda/compute-sanitizer/index.html


TO DEBUG A KERNEL

 In DEBUG mode

 Set break points in the kernel

 Start the CUDA Debugger

 Examine values

17/02/2023



TO DEBUG A KERNEL

2/17/2023

 By default the CUDA debugger breaks at:

 threadIdx = (0, 0, 0);

 But you may want to check other threads

 Right click on your breakpoint and select: Conditions (Alt+F9, C)

 You can now create conditional breakpoints exploiting the kernel’s variables values (threadIdx, blockIdx, or any other!)



NSIGHT – EASIER MENU ACCESS 

 VS2019 moved the NSIGHT menu to Extensions

 We can move it back to the main menu bar

2/17/2023

1) Tools > Customize

2) Extensions Menu > uncheck Nsight

3) Save and restart

You should now have 

the Nsight menu 

which contains the 

CUDA debugger!



PROFILE THE EXECUTION TIME OF THE KERNELS

17/02/2023

Look for this

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\libnvvp\nvvp.exe

 Right click

 Run as Administrator

 Select a workspace IN your folder

For device with compute capability > 8.x, Visual profiler is deprecated



VISUAL PROFILER

 Create a new session

 Select your exe in debug mode

17/02/2023



VISUAL PROFILER

 Select useful things

 Like memory allocations

 Finish

17/02/2023



VISUAL PROFILER

17/02/2023

 Look at the timeline and select your kernel(s)

 In the menus, you can explore the execution time, occupancy, etc. of your kernels



NSIGHT COMPUTE – A VERY POWERFUL DEBUGGER

17/02/2023

 Look for this: C:\Program Files\NVIDIA Corporation\Nsight Compute 2019.3.0\host\windows-desktop-win7-x64\nv-nsight-cu.exe

 RUN AS ADMINISTRATOR



NSIGHT COMPUTE

17/02/2023

 Find your executable in DEBUG mode



NSIGHT COMPUTE

 The debugger should start in PAUSE mode

 Set Profile → Auto Profile

17/02/2023



NSIGHT COMPUTE

 Click on RESUME

 IF NOTHING HAPPENS YOU DID NOT START THE SOFTWARE IN ADMINISTRATOR

 In « Session » you can look at all the characteristics of your GPU

 In « Details » You can inspect the workload of your kernel

 SPEND TIME TO FAMILIARIZE YOURSELF WITH THE MENUS

 In « Source » You can inspect which instructions take the most of the execution 

time! (SUPER IMPORTANT)

17/02/2023
Way more info hidden, use this slider!



NSIGHT COMPUTE

 In « Summary », you can quickly see

 How much block and threads where used

 How much time a kernel take

 How close you are to using the full capacity of the GPU

17/02/2023



EXERCISE – GPU DEVICES

 Create a new CUDA project in Visual Studio

 Obtain the properties of you GPU device

 Check what other information you can access : https://docs.nvidia.com/cuda/cuda-runtime-

api/group__CUDART__DEVICE.html#group__CUDART__DEVICE_1g1bf9d625a931d657e08db2b4391170f0

 A few interesting things you can look up : number of thread per block, max size for a block/grid, amount of 

global/shared memory available, …

2/17/2023

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DEVICE.html#group__CUDART__DEVICE_1g1bf9d625a931d657e08db2b4391170f0
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DEVICE.html#group__CUDART__DEVICE_1g1bf9d625a931d657e08db2b4391170f0


EXERCISE – UNDERSTANDING INDICES

 Replace the code in kernel.cu with the code in grid_block_and_threads.cu

 Read the code and play with visual studio:

 Profiling

 Debugger

 CUDA kernel debugger

 Execution times

 What does this kernel do?

 If you change ARRAY_SIZE to something bigger than 128 what happens?

 How can you solve this problem?

 Is there an automated way?

 What you should always do and it is not done in this code?

2/17/2023



BASIC APPLICATION: VECTORADD

17/02/2023

𝑎 = (𝑎0, 𝑎1, ⋯ , 𝑎𝑇 , 𝑎𝑇+1, ⋯ , 𝑎2𝑇, ⋯ , 𝑎𝑁)
𝑏 = (𝑏0, 𝑏1, ⋯ , 𝑏𝑇 , 𝑏𝑇+1, ⋯ , 𝑏2𝑇 , ⋯ , 𝑏𝑁)
𝑎 + 𝑏 = (𝑎0 + 𝑏0, 𝑎1 + 𝑏1, ⋯ , 𝑎2𝑇 + 𝑏2𝑇)

BLOCK 01

𝑎0 𝑎1 𝑎𝑇𝑎3 𝑎4

𝑏0 𝑏1 𝑏𝑇𝑏3 𝑏4

𝑐0 𝑐1 𝑐𝑇𝑐3 𝑐4

I DON’T CHECK CUDA ERRORS IN THE 

SLIDES BUT YOU SHOULD

Main focus

RAM allocation

Pointers to VRAM

VRAM allocation

RAM → VRAM

VRAM → RAM

Kernel Lunch

Kernel

Visual Studio Base Code



 Let’s change the number of elements

 Does this work?

17/02/2023

BASIC APPLICATION: VECTORADD

From (5,1,1)

We need to adapt 

the code for 1000 

elements



 Does this work?

 YES! On some GPUs

 We can allow up to 1024 threads/block

 And 1024 threads in the x direction

 We were using 1 block

 What happens if we have more

than 1024 elements ?

17/02/2023

BASIC APPLICATION: VECTORADD

From (5,1,1)

We need to adapt 

the code for 1000 

elements



 What happens if we have more

than 1024 elements ?

 We need to add more blocks

 luckily: We have a very big number of

available blocks! (MAX_GRID_DIM_X)

 Does this work?

17/02/2023

BASIC APPLICATION: VECTORADD

From (1000,1,1)

More elements

From (1, 1, 1)



 Does this work?

 No :’( 

 We need to adapt the kernel to use

all the blocks

 Remember:
Threads start at 0 in every block

 How to adapt to any vector size?

17/02/2023

BASIC APPLICATION: VECTORADD

𝑡0 𝑡1 𝑡1024 𝑡0 𝑡1 𝑡1024

grid Threadblock

blockIdx.x = 0

blockDim.x = 1024

threadIdx.x ∈ 0, 1023
blockIdx.x * blockDim.x = 0

blockIdx.x = 1

blockDim.x = 1024

threadIdx.x ∈ 0, 1023
blockIdx.x * blockDim.x = 1024

#threads (1024)



 How to adapt to any vector size?

 Adapt the number of blocks 

automatically depending on the number 

of threads

 You need to put a failsafe in the kernel 

to check that your threads are not

out-of-bounds

17/02/2023

BASIC APPLICATION: VECTORADD

𝑁𝑏𝑙𝑜𝑐𝑘𝑠 = 𝑓𝑙𝑜𝑜𝑟
𝑁 + 𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠 − 1

𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠

Array size N = 14

B0 B1 B2 B3

T

0

T

1

T

2

T

3

T

0

T

1

T

2

T

3

T

0

T

1

T

2

T

3

T

0

T

1

T

2

T

3

𝑁𝑏𝑙𝑜𝑐𝑘𝑠 =
14 + 4 − 1

4
=

17

4
= 4



EXERCISE –VECTOR ADD

 Create a new CUDA project in Visual Studio

 Replace the code in kernel.cu with the code in vector_add.cu

 The code is very similar to Visual Studio template

 What are the changes ?

 What does the new function do ?

 Use the added code to compute the speedup between the CPU and the GPU

 What does this kernel do?

 Change the code to work for an array of 1000 elements

 And for an array of 2048, 4096, … elements

 What do you notice when you change arraySize?

2/17/2023



APPENDIX - GLOBAL EVOLUTION

 GPUs changed in 2006 from Graphic Processing Units 

to General Processing Units

 They still perform both: Graphic and Computing 

operations

 “CUDA Interop” is when you make CUDA and OpenGL 

work together

 CUDA write in texture space (a buffer)

 OpenGL display this texture when it is ready

 If you want to dig deeper in this evolution:

 https://fabiensanglard.net/cuda/index.html

 Is a perfect start (also in the PDFs)

 Sanglard - 2020 - A history of NVidia Stream Multiprocessor

17/02/2023

INFO-H-502

INFO-H-503

https://fabiensanglard.net/cuda/index.html


 Other example

 How a kernel can possibly know its position in the grid and the block?

 Two more illustrations for 2D grids of 2D threads:

17/02/2023

APPENDIX - SPATIAL STRUCTURES – GRID AND BLOCK SIZES


	Diapositive 1 INFO-H-503 – GPU Programming – 01
	Diapositive 2 Acknowledgment
	Diapositive 3 GUACAMOLE
	Diapositive 4 Table of Content
	Diapositive 5 Table of Content
	Diapositive 6 Writing a Kernel
	Diapositive 7 How to solve a problem with the GPU
	Diapositive 8 Spatial Structures – Grid and block sizes
	Diapositive 9 Spatial Structures – Grid and block sizes
	Diapositive 10 Spatial Structures – Grid and block sizes
	Diapositive 11
	Diapositive 12
	Diapositive 13 Memory allocation
	Diapositive 14 Memory management with correct error HANDLING:
	Diapositive 15 Table of Content
	Diapositive 16 Installation – how to use cuda
	Diapositive 17 Exercise – Let’s see the power of CUDA
	Diapositive 18 Visual Studio – Let’s make a project
	Diapositive 19 VISUAL STUDIO
	Diapositive 20 VISUAL STUDIO
	Diapositive 21 VISUAL STUDIO
	Diapositive 22 Debug vs Release configuration
	Diapositive 23 Execute your code
	Diapositive 24 Debugging INDICES – When you are in troubles
	Diapositive 25 To use memcheck 
	Diapositive 26 To DEBUG A KERNEL
	Diapositive 27 To DEBUG A KERNEL
	Diapositive 28 NSIGHT – Easier Menu access 
	Diapositive 29 Profile the execution time of the kernels
	Diapositive 30 Visual profiler
	Diapositive 31 VISUAL PROFILER
	Diapositive 32 Visual Profiler
	Diapositive 33 NSIGHT COMPUTE – A Very powerful debugger
	Diapositive 34 NSIGHT COMPUTE
	Diapositive 35 NSIGHT COMPUTE
	Diapositive 36 NSIGHT COMPUTE
	Diapositive 37 Nsight compute
	Diapositive 38 EXERCISE – GPU DEVICES
	Diapositive 39 EXERCISE – Understanding Indices
	Diapositive 40 Basic Application: VectorAdd
	Diapositive 41
	Diapositive 42
	Diapositive 43
	Diapositive 44
	Diapositive 45
	Diapositive 46 EXERCISE –vector add
	Diapositive 47 APPendix - GLOBAL EVOLUTION
	Diapositive 48

