
INFO-H-503 – GPU PROGRAMMING – 01

GAUTHIER LAFRUIT – JAN LEMEIRE

ELINE SOETENS - DANIELE BONATTO

ACKNOWLEDGMENT

 My favourite ressource: CUDA Programming – A Developer’s Guide to Parallel Computing with GPUs – Shane Cook,

Elsevier, 2013, ISBN: 978-0-12-415933-4

 It’s the only resource I found that discussed nicely the hardware part of Cuda.

 Your new best friends:

 CUDA C Programming Guide v9.1 and higher https://docs.nvidia.com/cuda/archive/9.1/pdf/CUDA_C_Programming_Guide.pdf

 CUDA official documentation https://docs.nvidia.com/cuda/archive/10.1/index.html

 Always check the CUDA version on your system!

 Most of the images in the slides and several codes

 Shamelessly token and adapted from all around the web

17/02/2023

https://docs.nvidia.com/cuda/archive/9.1/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/archive/10.1/index.html

GUACAMOLE

 Your distant computer: https://guacamole.lisa.ulb.ac.be/

 Accessible from ULB’s vpn : https://monulb.ulb.be/en/web/support/-/comment-utiliser-ulb-vpn-

 Connect with your user and password (ask me if you do not have any)

 Select one of the INFO-H-503 sessions

 User: infoh503

 Password: student503

17/02/2023

https://guacamole.lisa.ulb.ac.be/
https://monulb.ulb.be/en/web/support/-/comment-utiliser-ulb-vpn-

TABLE OF CONTENT

 Write a program for the GPU

 Visual Studio and Exercises

17/02/2023

TABLE OF CONTENT

 Write a program for the GPU

 Your first Kernel

 Spatial structures – Indices

 Memory allocation

 Visual Studio and Exercises

17/02/2023

WRITING A KERNEL

 Functions executed by a thread in the GPU are called Kernels

 (C++) use “qualifiers” for the compiler to know the kind of function:

 __global__ : Kernel executed by a thread but CALLED from the C++ code

 __device__: Kernel executed by a thread and called by another thread

 __host__: Classic function called and executed on the CPU (NOT MANDATORY)

2/17/2023

To remember:

- Each thread/core execute the SAME

kernel on each element of the block for

each block of the grid

HOW TO SOLVE A PROBLEM WITH THE GPU

 Basic idea : A lot of thread will work in parallel, each thread solve a small part of the problem

 Vector addition : each thread add a few element

 Histogram : each thread process the value of one pixel

 …

17/02/2023

SPATIAL STRUCTURES – GRID AND BLOCK SIZES

 We can map a grid over the data we want to process

 Some problems are not 2D!

 1D stencil → 1D grid

 Matrix multiplication → 2D grid

 3D medical image → 3D grid

 Furthermore, in each cell of the grid (a block), we can define it to be in 1D, 2D or 3D!

 For some problems, we can then work with a 3D grid of 3D thread blocks (9D dimensional space!)

 We need to choose the right structure that match our problem

 Matrices/images: it is usually useful to work with 2D grids of 2D threads

17/02/2023

SPATIAL STRUCTURES – GRID AND BLOCK SIZES

 Calling a kernel

 kernel_name<<<block_size, thread_per_block>>>(A, ...);

 You need to select the block_size and the thread_size depending on the problem!

 dim3 block_size(512, 128, 1); // C++ 2D grid with 512 × 128 cells

 dim3 thread_per_block(10, 10, 1); // C++ 2D block size of 10 × 10 = 100 threads per cell of the grid

 If the problem is not a multiple of the possible grid dimensions, a good strategy is to use

 block_size.x = x_size / thread_per_block.x + ((x_size % thread_per_block.x) == 0 ? 0:1);

17/02/2023

In 1D this formula is:

Int N = 100 000; # array size

Int 𝑇ℎ𝑟𝑒𝑎𝑑𝑠𝑝𝑒𝑟 𝑏𝑙𝑜𝑐𝑘 = 512;

int 𝑁𝑏𝑙𝑜𝑐𝑘𝑠 =
𝑁+(𝑇ℎ𝑟𝑒𝑎𝑑𝑠𝑝𝑒𝑟 𝑏𝑙𝑜𝑐𝑘 −1)

𝑇ℎ𝑟𝑒𝑎𝑑𝑠𝑝𝑒𝑟 𝑏𝑙𝑜𝑐𝑘
;

To remember:

- <≪block, threads>>>();

kernel calling convention

- dim3 type for dimensions

SPATIAL STRUCTURES – GRID AND BLOCK SIZES

 How a kernel can possibly know its position in the grid and the block?

 In a kernel you have acces to:

 gridDim : a 3D vector which contains the dimensions of the grid
(depends on how you call the kernel) = how many blocks in the grid

 blockDim: a 3D vector which contains the dimensions of a block in the grid
(depends on how you call the kernel) = how many threads per block

 blockIdx : a 3D vector which contain the position of the block in the grid

 threadIdx: a 3D vector which contain the position of the thread within a block

 All those variables you can access the .x, .y and .y components

 Eg: blockIdx.x, blockIdx.y, blockIdx.z

17/02/2023

To remember:

- gridDim, blockDim

- blockIdx, threadIdx

 How a kernel can possibly know its position in the grid and the block?

 1D grid of 1D threads:

 To access an element – Linear transform:

 int idx = blockIdx.x * blockDim.x + threadIdx.x

17/02/2023

SPATIAL STRUCTURES – GRID AND BLOCK SIZES

How many

threads in a

block

 How a kernel can possibly know its position in the grid and the block?

 Higher dimensions are similar

 2D To access an element – Linear transform:

 int idx = blockIdx.x * blockDim.x + threadIdx.x

 int idy = blockIdx.y * blockDim.y + threadIdx.y

 int width = blockDim.x * gridDim.x;

 int global_idx = idy * width + idx; // 1D linear access

 Indexing are one of the main sources of bugs in CUDA!

 Think about them carefully

17/02/2023

SPATIAL STRUCTURES – GRID AND BLOCK SIZES

MEMORY ALLOCATION

 You need to transfer arrays between the GPU and the CPU

before and after calling a kernel

 Always use the same convention!

 d_name for pointers to the GPU

 h_name for pointers to the CPU

 WARNINGS:

 This code DO NOT CHECK ANY ERROR

 Note the direction of the copies in cudaMemcopy

 You need to “cudaDeviceSynchronize” to be sure the kernel has

finished before continuing the execution of the c++ code

17/02/2023

MEMORY MANAGEMENT WITH CORRECT ERROR HANDLING:

2/17/2023

It’s extremely important that you check your code

The base code in Visual Studio already has error

handling, Do not use this slide as reference,

TABLE OF CONTENT

 Write a program for the GPU

 Visual Studio and Exercises

17/02/2023

INSTALLATION – HOW TO USE CUDA

 Computer in the PC rooms : everything is already set up !

 If you want to do the lab on your own computer, you need :

 Nvidia GPU

 Visual studio : https://visualstudio.microsoft.com/fr/vs/community/

 Cuda development tools : https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/

17/02/2023

https://visualstudio.microsoft.com/fr/vs/community/
https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/

EXERCISE – LET’S SEE THE POWER OF CUDA

 Copy the zip Z:\INFO-H-503 2021\v10.1.zip to your desktop and UNZIP it

 Go to the folder v10.1/bin/win64/Release in the Desktop

 Execute and play with the examples:

 FluidsGL.exe

 Mandelbrot.exe

 MarchingCubes.exe

 simpleD3D10RenderTarget.exe

 simpleD3D10Texture.exe

 simpleGL.exe

 volumeFiltering.exe

 volumeRender.exe

 bilateralFilter.exe

 Their code is available in the main folder « v10.1 », you can open the Visual Studio 2019 solution and look at the code

 If you are doing the lab on your own computer, sample are available here : https://github.com/nvidia/cuda-samples

17/02/2023

 boxFilter.exe

 stereoDisparity.exe

 oceanFFT.exe

 particles.exe

 postProcessGL.exe

 randomFog.exe

 recursiveGaussian.exe

 VFlockingD3D10.exe

Look at all the examples in the folders! They

can be extremely useful for the project! Eg:

- Convolutions

- Scan

- Dot products

- Matrix multiplication

All the solutions for the exercices can be

found here!

https://github.com/nvidia/cuda-samples

VISUAL STUDIO – LET’S MAKE A PROJECT

17/02/2023

Look for this software in the computer

You can use your personal account to log in

If you do not have one, you can create one

VISUAL STUDIO

17/02/2023

VISUAL STUDIO

17/02/2023

VISUAL STUDIO

17/02/2023

Make a folder on the

desktop to easily

regroup your projects

I think you can use

GIT on the computers

to version your code.

DEBUG VS RELEASE CONFIGURATION

17/02/2023

 Debug:

 Program slow to execute

 You can use the DEBUGGER when you start the software

 Set break points in the C++ code

 Use to look at the code line by line or function by function

 You can explore the values of the variables in the « variables locales » panel

 Release:

 The code is optimized, it run full speed

 To check the real speed of your application you need to set it to release

EXECUTE YOUR CODE

17/02/2023

 You should have a base code for the addition of two vectors

 Read it carefully

 Compile one time in Debug and one time in Release

 We will use it with all other profiling softwares

 Execute it

This base code is your

starting point for all the

exercises

Play with it!

DEBUGGING INDICES – WHEN YOU ARE IN TROUBLES

 Memcheck everything !

 Compile your code in DEBUG mode (nvcc kernel.cu –g –G or)

 Use cuda-memcheck tool

 Check GPU memory related errors

 Out-of-bound (global, shared, local)

 Misaligned (global, shared, local)

 Stack exceeded

 Leaks which cannot be freed

 …

 $cuda-memcheck [options] kernel.exe

17/02/2023

Important options:

- -b/--blocking Use blocking launches

- -c/--continue Try to continue on memory access violations

- -h/--help Help menu

- -l/--leakcheck show leak info for static allocations

- Way more on

- https://docs.nvidia.com/cuda/cuda-memcheck/index.html

https://docs.nvidia.com/cuda/cuda-memcheck/index.html

TO USE MEMCHECK

 In DEBUG

 Activate the CUDA memory checker

 Activate the exceptions for CUDA

 Look at the output

 More info:

 https://docs.nvidia.com/cuda/cuda-memcheck/index.html

17/02/2023

Warning : Lab’s PC have cuda 10, for cuda 12 memcheck is deprecated, use compute sanitizer

instead : https://docs.nvidia.com/cuda/compute-sanitizer/index.html

https://docs.nvidia.com/cuda/cuda-memcheck/index.html
https://docs.nvidia.com/cuda/compute-sanitizer/index.html

TO DEBUG A KERNEL

 In DEBUG mode

 Set break points in the kernel

 Start the CUDA Debugger

 Examine values

17/02/2023

TO DEBUG A KERNEL

2/17/2023

 By default the CUDA debugger breaks at:

 threadIdx = (0, 0, 0);

 But you may want to check other threads

 Right click on your breakpoint and select: Conditions (Alt+F9, C)

 You can now create conditional breakpoints exploiting the kernel’s variables values (threadIdx, blockIdx, or any other!)

NSIGHT – EASIER MENU ACCESS

 VS2019 moved the NSIGHT menu to Extensions

 We can move it back to the main menu bar

2/17/2023

1) Tools > Customize

2) Extensions Menu > uncheck Nsight

3) Save and restart

You should now have

the Nsight menu

which contains the

CUDA debugger!

PROFILE THE EXECUTION TIME OF THE KERNELS

17/02/2023

Look for this

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\libnvvp\nvvp.exe

 Right click

 Run as Administrator

 Select a workspace IN your folder

For device with compute capability > 8.x, Visual profiler is deprecated

VISUAL PROFILER

 Create a new session

 Select your exe in debug mode

17/02/2023

VISUAL PROFILER

 Select useful things

 Like memory allocations

 Finish

17/02/2023

VISUAL PROFILER

17/02/2023

 Look at the timeline and select your kernel(s)

 In the menus, you can explore the execution time, occupancy, etc. of your kernels

NSIGHT COMPUTE – A VERY POWERFUL DEBUGGER

17/02/2023

 Look for this: C:\Program Files\NVIDIA Corporation\Nsight Compute 2019.3.0\host\windows-desktop-win7-x64\nv-nsight-cu.exe

 RUN AS ADMINISTRATOR

NSIGHT COMPUTE

17/02/2023

 Find your executable in DEBUG mode

NSIGHT COMPUTE

 The debugger should start in PAUSE mode

 Set Profile → Auto Profile

17/02/2023

NSIGHT COMPUTE

 Click on RESUME

 IF NOTHING HAPPENS YOU DID NOT START THE SOFTWARE IN ADMINISTRATOR

 In « Session » you can look at all the characteristics of your GPU

 In « Details » You can inspect the workload of your kernel

 SPEND TIME TO FAMILIARIZE YOURSELF WITH THE MENUS

 In « Source » You can inspect which instructions take the most of the execution

time! (SUPER IMPORTANT)

17/02/2023
Way more info hidden, use this slider!

NSIGHT COMPUTE

 In « Summary », you can quickly see

 How much block and threads where used

 How much time a kernel take

 How close you are to using the full capacity of the GPU

17/02/2023

EXERCISE – GPU DEVICES

 Create a new CUDA project in Visual Studio

 Obtain the properties of you GPU device

 Check what other information you can access : https://docs.nvidia.com/cuda/cuda-runtime-

api/group__CUDART__DEVICE.html#group__CUDART__DEVICE_1g1bf9d625a931d657e08db2b4391170f0

 A few interesting things you can look up : number of thread per block, max size for a block/grid, amount of

global/shared memory available, …

2/17/2023

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DEVICE.html#group__CUDART__DEVICE_1g1bf9d625a931d657e08db2b4391170f0
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DEVICE.html#group__CUDART__DEVICE_1g1bf9d625a931d657e08db2b4391170f0

EXERCISE – UNDERSTANDING INDICES

 Replace the code in kernel.cu with the code in grid_block_and_threads.cu

 Read the code and play with visual studio:

 Profiling

 Debugger

 CUDA kernel debugger

 Execution times

 What does this kernel do?

 If you change ARRAY_SIZE to something bigger than 128 what happens?

 How can you solve this problem?

 Is there an automated way?

 What you should always do and it is not done in this code?

2/17/2023

BASIC APPLICATION: VECTORADD

17/02/2023

𝑎 = (𝑎0, 𝑎1, ⋯ , 𝑎𝑇 , 𝑎𝑇+1, ⋯ , 𝑎2𝑇, ⋯ , 𝑎𝑁)
𝑏 = (𝑏0, 𝑏1, ⋯ , 𝑏𝑇 , 𝑏𝑇+1, ⋯ , 𝑏2𝑇 , ⋯ , 𝑏𝑁)
𝑎 + 𝑏 = (𝑎0 + 𝑏0, 𝑎1 + 𝑏1, ⋯ , 𝑎2𝑇 + 𝑏2𝑇)

BLOCK 01

𝑎0 𝑎1 𝑎𝑇𝑎3 𝑎4

𝑏0 𝑏1 𝑏𝑇𝑏3 𝑏4

𝑐0 𝑐1 𝑐𝑇𝑐3 𝑐4

I DON’T CHECK CUDA ERRORS IN THE

SLIDES BUT YOU SHOULD

Main focus

RAM allocation

Pointers to VRAM

VRAM allocation

RAM → VRAM

VRAM → RAM

Kernel Lunch

Kernel

Visual Studio Base Code

 Let’s change the number of elements

 Does this work?

17/02/2023

BASIC APPLICATION: VECTORADD

From (5,1,1)

We need to adapt

the code for 1000

elements

 Does this work?

 YES! On some GPUs

 We can allow up to 1024 threads/block

 And 1024 threads in the x direction

 We were using 1 block

 What happens if we have more

than 1024 elements ?

17/02/2023

BASIC APPLICATION: VECTORADD

From (5,1,1)

We need to adapt

the code for 1000

elements

 What happens if we have more

than 1024 elements ?

 We need to add more blocks

 luckily: We have a very big number of

available blocks! (MAX_GRID_DIM_X)

 Does this work?

17/02/2023

BASIC APPLICATION: VECTORADD

From (1000,1,1)

More elements

From (1, 1, 1)

 Does this work?

 No :’(

 We need to adapt the kernel to use

all the blocks

 Remember:
Threads start at 0 in every block

 How to adapt to any vector size?

17/02/2023

BASIC APPLICATION: VECTORADD

𝑡0 𝑡1 𝑡1024 𝑡0 𝑡1 𝑡1024

grid Threadblock

blockIdx.x = 0

blockDim.x = 1024

threadIdx.x ∈ 0, 1023
blockIdx.x * blockDim.x = 0

blockIdx.x = 1

blockDim.x = 1024

threadIdx.x ∈ 0, 1023
blockIdx.x * blockDim.x = 1024

#threads (1024)

 How to adapt to any vector size?

 Adapt the number of blocks

automatically depending on the number

of threads

 You need to put a failsafe in the kernel

to check that your threads are not

out-of-bounds

17/02/2023

BASIC APPLICATION: VECTORADD

𝑁𝑏𝑙𝑜𝑐𝑘𝑠 = 𝑓𝑙𝑜𝑜𝑟
𝑁 + 𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠 − 1

𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠

Array size N = 14

B0 B1 B2 B3

T

0

T

1

T

2

T

3

T

0

T

1

T

2

T

3

T

0

T

1

T

2

T

3

T

0

T

1

T

2

T

3

𝑁𝑏𝑙𝑜𝑐𝑘𝑠 =
14 + 4 − 1

4
=

17

4
= 4

EXERCISE –VECTOR ADD

 Create a new CUDA project in Visual Studio

 Replace the code in kernel.cu with the code in vector_add.cu

 The code is very similar to Visual Studio template

 What are the changes ?

 What does the new function do ?

 Use the added code to compute the speedup between the CPU and the GPU

 What does this kernel do?

 Change the code to work for an array of 1000 elements

 And for an array of 2048, 4096, … elements

 What do you notice when you change arraySize?

2/17/2023

APPENDIX - GLOBAL EVOLUTION

 GPUs changed in 2006 from Graphic Processing Units

to General Processing Units

 They still perform both: Graphic and Computing

operations

 “CUDA Interop” is when you make CUDA and OpenGL

work together

 CUDA write in texture space (a buffer)

 OpenGL display this texture when it is ready

 If you want to dig deeper in this evolution:

 https://fabiensanglard.net/cuda/index.html

 Is a perfect start (also in the PDFs)

 Sanglard - 2020 - A history of NVidia Stream Multiprocessor

17/02/2023

INFO-H-502

INFO-H-503

https://fabiensanglard.net/cuda/index.html

 Other example

 How a kernel can possibly know its position in the grid and the block?

 Two more illustrations for 2D grids of 2D threads:

17/02/2023

APPENDIX - SPATIAL STRUCTURES – GRID AND BLOCK SIZES

	Diapositive 1 INFO-H-503 – GPU Programming – 01
	Diapositive 2 Acknowledgment
	Diapositive 3 GUACAMOLE
	Diapositive 4 Table of Content
	Diapositive 5 Table of Content
	Diapositive 6 Writing a Kernel
	Diapositive 7 How to solve a problem with the GPU
	Diapositive 8 Spatial Structures – Grid and block sizes
	Diapositive 9 Spatial Structures – Grid and block sizes
	Diapositive 10 Spatial Structures – Grid and block sizes
	Diapositive 11
	Diapositive 12
	Diapositive 13 Memory allocation
	Diapositive 14 Memory management with correct error HANDLING:
	Diapositive 15 Table of Content
	Diapositive 16 Installation – how to use cuda
	Diapositive 17 Exercise – Let’s see the power of CUDA
	Diapositive 18 Visual Studio – Let’s make a project
	Diapositive 19 VISUAL STUDIO
	Diapositive 20 VISUAL STUDIO
	Diapositive 21 VISUAL STUDIO
	Diapositive 22 Debug vs Release configuration
	Diapositive 23 Execute your code
	Diapositive 24 Debugging INDICES – When you are in troubles
	Diapositive 25 To use memcheck
	Diapositive 26 To DEBUG A KERNEL
	Diapositive 27 To DEBUG A KERNEL
	Diapositive 28 NSIGHT – Easier Menu access
	Diapositive 29 Profile the execution time of the kernels
	Diapositive 30 Visual profiler
	Diapositive 31 VISUAL PROFILER
	Diapositive 32 Visual Profiler
	Diapositive 33 NSIGHT COMPUTE – A Very powerful debugger
	Diapositive 34 NSIGHT COMPUTE
	Diapositive 35 NSIGHT COMPUTE
	Diapositive 36 NSIGHT COMPUTE
	Diapositive 37 Nsight compute
	Diapositive 38 EXERCISE – GPU DEVICES
	Diapositive 39 EXERCISE – Understanding Indices
	Diapositive 40 Basic Application: VectorAdd
	Diapositive 41
	Diapositive 42
	Diapositive 43
	Diapositive 44
	Diapositive 45
	Diapositive 46 EXERCISE –vector add
	Diapositive 47 APPendix - GLOBAL EVOLUTION
	Diapositive 48

