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 Parallel Systems I 
The GPU architecture 



 Sequential program 

 ‘Sequential’ pipelined execution 

 Instruction-level parallelism (ILP): 
◦ superscalar pipeline  

◦ out-of-order execution 

 Limitations: max ILP = 4 
◦ Reached… 

 Maximal clock frequency reached… 

 Branch prediction, caching, forwarding, … 
More improvement possible? 

CPU pipeline 
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This is The End? 
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Way out:  
parallel processors relying 

on explicit parallel software 
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Chuck Moore, "DATA PROCESSING IN EXASCALE-CLASS COMPUTER SYSTEMS", The 

Salishan Conference on High Speed Computing, 2011. 



Parallel processors 

Courtesy of 

GPUs (arrays) 



Thus: 
The Future looks Parallel 
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Changed into… 

Sequential world 



Conclusions 
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Parallel world 
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GPU vs CPU Peak Performance Trends 
 

 GPU peak performance has grown aggressively. 

 Hardware has kept up with Moore’s law  

 

Source : NVIDIA 

2010 
350 Million triangles/second 
3 Billion transistors GPU 

1995 
5,000 triangles/second 
800,000 transistors GPU 



Graphical Processing Units (GPUs) 

 94 fps (AMD Tahiti Pro) 

 

 GPU: 1-3 TeraFlop/second  

 instead of 10-20 GigaFlop/second for CPU 

Figure 1.1. Enlarging Performance Gap between GPUs and CPUs.

Multi-core CPU

Many-core GPU

Courtesy: John Owens
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 FASTRA at university of Antwerp 

Supercomputing for free 

Collection of 8 graphical cards in PC 

 

FASTRA 8 cards = 8x128 processors = 4000 

euro 

 

Similar performance as University’s 

supercomputer  (512 regular desktop PCs) 

that costed 3.5 million euro in 2005 

 http://fastra.ua.ac.be 
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Why are GPUs faster? 

Devote transistors to… computation 



 ±24 stages  

 in-order execution!! 

 no branch prediction!! 

 no forwarding!! 

 no register renaming!! 

 Memory system:  
◦ relatively small 

◦ Until recently no caching 

◦ On the other hand: much more registers (see later) 

GPU processor pipeline 
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New concepts: 
1. Multithreading 

2. SIMD 



 1 process/thread active per core 

 When activating another thread: context switch 
◦ Stop program execution: flush pipeline (let all 

instructions finish) 

◦ Save state of process/thread into Process Control 
Block : registers, program counter and operating 
system-specific data 

◦ Restore state of activated thread 

◦ Restart program execution and refill the pipeline 

Multithreading on CPU 
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 In several modern CPUs  
◦ typically 2HW threads 

 Devote extra hardware for process state 

 Context switch by hardware 
◦ (almost) no overhead 

◦ Within 1 cycle! 

◦ Instructions in flight from different threads 

Hardware threads 
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Multithreading 

 Performing multiple threads of execution in 
parallel 
 Replicate registers, PC, etc. 

 Fast switching between threads 

 Fine-grain multithreading 
 Switch threads after each cycle 

 Interleave instruction execution 

 If one thread stalls, others are executed 

 Coarse-grain multithreading 
 Only switch on long stall (e.g., L2-cache miss) 

 Simplifies hardware, but doesn’t hide short stalls 
(eg, data hazards) 
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Simultaneous Multithreading 

 In multiple-issue dynamically scheduled 
processor 

 Schedule instructions from multiple threads 

 Instructions from independent threads execute 
when function units are available 

 Within threads, dependencies handled by 
scheduling and register renaming 

 Example: Intel Pentium-4 HT 

 Two threads: duplicated registers, shared 
function units and caches 
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Multithreading Example 



 Independent instructions (no bubbles) 

 More time between instructions: possibility 
for latency hiding 
◦ Hide memory accesses 

 If pipeline full 
◦ Forwarding not necessary 

◦ Branch prediction not necessary 

Benefits of fine-grained multithreading 
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Instruction and Data Streams 
 An alternate classification 
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Data Streams 

Single Multiple 

Instruction 

Streams 

Single SISD: 

Intel Pentium 4 

SIMD: SSE 

instructions of x86 

Multiple MISD: 

No examples today 

MIMD: 

Intel Xeon e5345 

 SPMD: Single Program Multiple Data 

 A parallel program on a MIMD computer 

 Conditional code for different processors 
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SIMD 

 Operate elementwise on vectors of data 
◦ E.g., MMX and SSE instructions in x86 

 Multiple data elements in 128-bit wide registers 

 All processors execute the same instruction 
at the same time 
◦ Each with different data address, etc. 

 Simplifies synchronization 
 Reduced instruction control hardware 
 Works best for highly data-parallel 

applications 
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Vector Processors 

 Highly pipelined function units 

 Stream data from/to vector registers to units 

◦ Data collected from memory into registers 

◦ Results stored from registers to memory 

 Example: Vector extension to MIPS 

◦ 32 × 64-element registers (64-bit elements) 

◦ Vector instructions 

 lv, sv: load/store vector 

 addv.d: add vectors of double 

 addvs.d: add scalar to each element of vector of double 

 Significantly reduces instruction-fetch bandwidth 



Chapter 7 — Multicores, Multiprocessors, and Clusters — 24 

Example: DAXPY (Y = a × X + Y) 
  Conventional MIPS code 

      l.d   $f0,a($sp)     ;load scalar a 
      addiu r4,$s0,#512    ;upper bound of what to load 
loop: l.d   $f2,0($s0)     ;load x(i) 
      mul.d $f2,$f2,$f0    ;a × x(i) 
      l.d   $f4,0($s1)     ;load y(i) 
      add.d $f4,$f4,$f2    ;a × x(i) + y(i) 
      s.d   $f4,0($s1)     ;store into y(i) 
      addiu $s0,$s0,#8     ;increment index to x 
      addiu $s1,$s1,#8     ;increment index to y 
      subu  $t0,r4,$s0     ;compute bound 
      bne   $t0,$zero,loop ;check if done 

  Vector MIPS code 

      l.d     $f0,a($sp)   ;load scalar a 
      lv      $v1,0($s0)   ;load vector x 
      mulvs.d $v2,$v1,$f0  ;vector-scalar multiply 
      lv      $v3,0($s1)   ;load vector y 
      addv.d  $v4,$v2,$v3  ;add y to product 
      sv      $v4,0($s1)   ;store the result 
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Vector vs. Scalar 

 Vector architectures and compilers 
◦ Simplify data-parallel programming 
◦ Explicit statement of absence of loop-carried 

dependences 
 Reduced checking in hardware 

◦ Regular access patterns benefit from interleaved 
and burst memory 

◦ Avoid control hazards by avoiding loops 

 More general than ad-hoc media extensions 
(such as MMX, SSE) 
◦ Better match with compiler technology 



Now:  
the GPU architecture 
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hardware threads 
grouped by 32 threads 
(warps), executing in 
lockstep (SIMD) 

 

In each cycle, a warp is 
selected of which the 
next instruction is put in 
the pipeline 

 
Ps: cache only in new models 

1 Streaming Multiprocessor 
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Peak GPU Performance 

 GPUs consist of Streaming MultiProcessors (MPs) 
grouping a number of Scalar Processors (SPs) 

 Nvidia GTX 280: 
◦ 30MPs x 8 SPs/MP x 2FLOPs/instr/SP x 1 instr/clock x 1.3 GHz 

= 624 GFlops 

 Nvidia Tesla C2050:  
◦ 14 MPs x 32 SPs/MP x 2FLOPs/instr/SP x 1 instr/clock x 1.15 GHz 

(clocks per second)  

= 1030 GFlops 
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Example: pixel transformation 

usgn_8  transform(usgn_8 in, sgn_16 gain, sgn_16 gain_divide, 
sgn_8 offset) 

{ 

    sgn_32 x; 

 

    x = (in * gain / gain_divide) + offset; 

 

    if (x < 0) x = 0; 

    if (x > 255) x = 255; 

    return x; 

 } 
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 Kernel executed by each thread, each processing 1 
pixel GPU = Zero-overhead thread processor 
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Example: real-time image processing 

32 

Pixel rescaling 
lens correction pattern detection 

Images of 

20MegaPixels 

CPU gives only 4 fps 

next generation machines need 50fps 
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CPU: 4 fps    GPU: 70 fps 
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        However:     
processing power not for free 
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Obstacle 1 
Hard(er) to implement 
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Obstacle 2 
Hard(er) to get efficiency 
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X86 to GPU 

18 mei 2011 

GUDI - A combined GP-
GPU/FPGA desktop system 

for accelerating image 
processing applications   



Example 1: convolution 

23 september 

2010 

GUDI - A combined GP-
GPU/FPGA desktop system 

for accelerating image 
processing applications   

Parallelism: +++ 

Locality: ++ 

Work/pixel: ++ 


