

Jan Lemeire
2012-2013

 Parallel Systems I
The GPU architecture

 Sequential program

 ‘Sequential’ pipelined execution

 Instruction-level parallelism (ILP):
◦ superscalar pipeline

◦ out-of-order execution

 Limitations: max ILP = 4
◦ Reached…

 Maximal clock frequency reached…

 Branch prediction, caching, forwarding, …
More improvement possible?

CPU pipeline

Computerarchitectuur

This is The End?

Computerarchitectuur

Way out:
parallel processors relying

on explicit parallel software

Computerarchitectuur

Chuck Moore, "DATA PROCESSING IN EXASCALE-CLASS COMPUTER SYSTEMS", The

Salishan Conference on High Speed Computing, 2011.

Parallel processors

Courtesy of

GPUs (arrays)

Thus:
The Future looks Parallel

Computerarchitectuur

Conclusions

20/12/2

012
8

Changed into…

Sequential world

Conclusions

20/12/2

012
9

Parallel world

10

GPU vs CPU Peak Performance Trends

 GPU peak performance has grown aggressively.

 Hardware has kept up with Moore’s law

Source : NVIDIA

2010
350 Million triangles/second
3 Billion transistors GPU

1995
5,000 triangles/second
800,000 transistors GPU

Graphical Processing Units (GPUs)

 94 fps (AMD Tahiti Pro)

 GPU: 1-3 TeraFlop/second

 instead of 10-20 GigaFlop/second for CPU

Figure 1.1. Enlarging Performance Gap between GPUs and CPUs.

Multi-core CPU

Many-core GPU

Courtesy: John Owens

Computerarchitectuur

 FASTRA at university of Antwerp

Supercomputing for free

Collection of 8 graphical cards in PC

FASTRA 8 cards = 8x128 processors = 4000

euro

Similar performance as University’s

supercomputer (512 regular desktop PCs)

that costed 3.5 million euro in 2005

 http://fastra.ua.ac.be

Computerarchitectuur

Why are GPUs faster?

Devote transistors to… computation

 ±24 stages

 in-order execution!!

 no branch prediction!!

 no forwarding!!

 no register renaming!!

 Memory system:
◦ relatively small

◦ Until recently no caching

◦ On the other hand: much more registers (see later)

GPU processor pipeline

Computerarchitectuur

New concepts:
1. Multithreading

2. SIMD

 1 process/thread active per core

 When activating another thread: context switch
◦ Stop program execution: flush pipeline (let all

instructions finish)

◦ Save state of process/thread into Process Control
Block : registers, program counter and operating
system-specific data

◦ Restore state of activated thread

◦ Restart program execution and refill the pipeline

Multithreading on CPU

Computerarchitectuur

O
ve

rh
e
ad

 In several modern CPUs
◦ typically 2HW threads

 Devote extra hardware for process state

 Context switch by hardware
◦ (almost) no overhead

◦ Within 1 cycle!

◦ Instructions in flight from different threads

Hardware threads

Computerarchitectuur

Chapter 7 — Multicores, Multiprocessors, and Clusters — 17

Multithreading

 Performing multiple threads of execution in
parallel
 Replicate registers, PC, etc.

 Fast switching between threads

 Fine-grain multithreading
 Switch threads after each cycle

 Interleave instruction execution

 If one thread stalls, others are executed

 Coarse-grain multithreading
 Only switch on long stall (e.g., L2-cache miss)

 Simplifies hardware, but doesn’t hide short stalls
(eg, data hazards)

§
7
.5

 H
a
rd

w
a
re

 M
u
ltith

re
a
d
in

g

Chapter 7 — Multicores, Multiprocessors, and Clusters — 18

Simultaneous Multithreading

 In multiple-issue dynamically scheduled
processor

 Schedule instructions from multiple threads

 Instructions from independent threads execute
when function units are available

 Within threads, dependencies handled by
scheduling and register renaming

 Example: Intel Pentium-4 HT

 Two threads: duplicated registers, shared
function units and caches

Chapter 7 — Multicores, Multiprocessors, and Clusters — 19

Multithreading Example

 Independent instructions (no bubbles)

 More time between instructions: possibility
for latency hiding
◦ Hide memory accesses

 If pipeline full
◦ Forwarding not necessary

◦ Branch prediction not necessary

Benefits of fine-grained multithreading

Computerarchitectuur

Chapter 7 — Multicores, Multiprocessors, and Clusters — 21

Instruction and Data Streams
 An alternate classification

§
7
.6

 S
IS

D
, M

IM
D

, S
IM

D
, S

P
M

D
, a

n
d
 V

e
c
to

r

Data Streams

Single Multiple

Instruction

Streams

Single SISD:

Intel Pentium 4

SIMD: SSE

instructions of x86

Multiple MISD:

No examples today

MIMD:

Intel Xeon e5345

 SPMD: Single Program Multiple Data

 A parallel program on a MIMD computer

 Conditional code for different processors

Chapter 7 — Multicores, Multiprocessors, and Clusters — 22

SIMD

 Operate elementwise on vectors of data
◦ E.g., MMX and SSE instructions in x86

 Multiple data elements in 128-bit wide registers

 All processors execute the same instruction
at the same time
◦ Each with different data address, etc.

 Simplifies synchronization
 Reduced instruction control hardware
 Works best for highly data-parallel

applications

Chapter 7 — Multicores, Multiprocessors, and Clusters — 23

Vector Processors

 Highly pipelined function units

 Stream data from/to vector registers to units

◦ Data collected from memory into registers

◦ Results stored from registers to memory

 Example: Vector extension to MIPS

◦ 32 × 64-element registers (64-bit elements)

◦ Vector instructions

 lv, sv: load/store vector

 addv.d: add vectors of double

 addvs.d: add scalar to each element of vector of double

 Significantly reduces instruction-fetch bandwidth

Chapter 7 — Multicores, Multiprocessors, and Clusters — 24

Example: DAXPY (Y = a × X + Y)
 Conventional MIPS code

 l.d $f0,a($sp) ;load scalar a
 addiu r4,$s0,#512 ;upper bound of what to load
loop: l.d $f2,0($s0) ;load x(i)
 mul.d $f2,$f2,$f0 ;a × x(i)
 l.d $f4,0($s1) ;load y(i)
 add.d $f4,$f4,$f2 ;a × x(i) + y(i)
 s.d $f4,0($s1) ;store into y(i)
 addiu $s0,$s0,#8 ;increment index to x
 addiu $s1,$s1,#8 ;increment index to y
 subu $t0,r4,$s0 ;compute bound
 bne $t0,$zero,loop ;check if done

 Vector MIPS code

 l.d $f0,a($sp) ;load scalar a
 lv $v1,0($s0) ;load vector x
 mulvs.d $v2,$v1,$f0 ;vector-scalar multiply
 lv $v3,0($s1) ;load vector y
 addv.d $v4,$v2,$v3 ;add y to product
 sv $v4,0($s1) ;store the result

Chapter 7 — Multicores, Multiprocessors, and Clusters — 25

Vector vs. Scalar

 Vector architectures and compilers
◦ Simplify data-parallel programming
◦ Explicit statement of absence of loop-carried

dependences
 Reduced checking in hardware

◦ Regular access patterns benefit from interleaved
and burst memory

◦ Avoid control hazards by avoiding loops

 More general than ad-hoc media extensions
(such as MMX, SSE)
◦ Better match with compiler technology

Now:
the GPU architecture

Computerarchitectuur

hardware threads
grouped by 32 threads
(warps), executing in
lockstep (SIMD)

In each cycle, a warp is
selected of which the
next instruction is put in
the pipeline

Ps: cache only in new models

1 Streaming Multiprocessor

Computerarchitectuur

Computerarchitectuur

Peak GPU Performance

 GPUs consist of Streaming MultiProcessors (MPs)
grouping a number of Scalar Processors (SPs)

 Nvidia GTX 280:
◦ 30MPs x 8 SPs/MP x 2FLOPs/instr/SP x 1 instr/clock x 1.3 GHz

= 624 GFlops

 Nvidia Tesla C2050:
◦ 14 MPs x 32 SPs/MP x 2FLOPs/instr/SP x 1 instr/clock x 1.15 GHz

(clocks per second)

= 1030 GFlops

Computerarchitectuur

Example: pixel transformation

usgn_8 transform(usgn_8 in, sgn_16 gain, sgn_16 gain_divide,
sgn_8 offset)

{

 sgn_32 x;

 x = (in * gain / gain_divide) + offset;

 if (x < 0) x = 0;

 if (x > 255) x = 255;

 return x;

 }

Computerarchitectuur

 Kernel executed by each thread, each processing 1
pixel GPU = Zero-overhead thread processor

31 Computerarchitectuur

Example: real-time image processing

32

Pixel rescaling
lens correction pattern detection

Images of

20MegaPixels

CPU gives only 4 fps

next generation machines need 50fps

Computerarchitectuur

CPU: 4 fps GPU: 70 fps

33 Computerarchitectuur

 However:
processing power not for free

Computerarchitectuur

Obstacle 1
Hard(er) to implement

35 Computerarchitectuur

Obstacle 2
Hard(er) to get efficiency

36 Computerarchitectuur

Computerarchitectuur

X86 to GPU

18 mei 2011

GUDI - A combined GP-
GPU/FPGA desktop system

for accelerating image
processing applications

Example 1: convolution

23 september

2010

GUDI - A combined GP-
GPU/FPGA desktop system

for accelerating image
processing applications

Parallelism: +++

Locality: ++

Work/pixel: ++

