
L E C T U R E  4 :  D A T A  S T R E A M S  

I N S T R U C T I O N  E X E C U T I O N  
I N S T R U C T I O N  C O M P L E T I O N  &  R E T I R E M E N T  

D A T A  F L O W  &  R E G I S T E R  R E N A M I N G  
D Y N A M I C  E X E C U T I O N  C O R E  

 
J A N  L E M E I R E  

Advanced Computer 
Architecture 

1 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



Processor Pipeline 
2 

seen so far 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



Instruction Execution (1) 
3 

 Trend towards more and more specialized FUs 

 Typically 

 multiple integer FUs 

 multiple floating-point FUs 

 one or more branch units 

 multiple load/store-units 

 SIMD units (SSEx) 

 very recently: cryptographic units 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



Instruction Execution (2) 
4 

 Width determined by fetch, decode and complete width 

 Typically #FUs > pipeline width 

 Pro 

 Handle dynamic mix of instructions (sometimes not matching 
mix of FUs), even with increased specialization 

 Con 

 Forwarding hardware becomes much more complex 

 order n2 , slow because of high fan-out (# output lines) 

 need to forward in same cycle as actual computation 

 solution: 

 often don't want need full cross-bar 

 deal with structural hazards instead 

 

 
12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



Instruction Completion 
5 

 After execution 

 instruction leaves FU 

 enters reorder buffer 

 architectural state not yet updated 

 

 Instruction leaves reorder buffer 

 called "completion" 

 in-order 

 architectural state is updated 

 store leaves store queue to enter store buffer 

 
12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



Instruction Retirement 
6 

 Stores actually write to memory after completion, 
during so-called "retirement" 

 For other instructions: completion = retirement 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



Illustration of the issue 
7 

 Example code fragment 

 
 w:  R4 = R0 + R8 

 x: R2 = R0 * R4 

 y: R4 = R4 + R8 

 z: R8 = R4 * R2 

 

 In how many cycles can this be executed? 

 Addition: 2 cycles 

 Multiplication: 3 cycles 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



Limits to ILP 
8 

 Control flow transfers and pipeline bubbles 

 

 Data hazards 

 RAW: true dependencies 

 WAW: output dependencies (not in in-order processors) 

 WAR: anti dependencies (not in in-order processors) 

 

 Structural hazards 

 resources 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



DEPENDENCY GRAPH 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 

9 

 Tomasulo Removes WAW 

 



Tomasulo Algorithm (1) 
10 

 Original IBM 360 floating-point unit: two-operand register-register micro-ops 

registers 

operations to be executed: FLOS stalls whenever  
FU needed for next instruction is occupied 

store 
buffer 

load 
buffer 

two FUs 

operand values 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



Tomasulo Algorithm (2) 
11 

 Improved IBM 360/91: added reservation stations, common data bus and tags   

forwards tagged data 
to the reservation stations 

and the store buffer 

tags are used to get 
correct data from CDB 
by monitoring the bus 

instructions can now be dispatched as long as 
there is space available in reservation stations 

reservation 
stations 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



Tomasulo Algorithm (3) 
12 

 Improved IBM 360/91: added Reservation Stations (RS), common data bus 
and tags   

Tags need to encode 12 
options: 
11 possible sources (6 FLB 
+ 5 RS) for data that is not 
yet available  
+ 1 for when data is  
present already 
 
=> so 4 bits per tag   

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



Tomasulo Algorithm (5) 
13 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



Tomasulo Algorithm (6) 
14 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



Tomasulo Algorithm (7) 
15 

1. Structural (FU) dependence = > virtual FU’s 

 FLOS can hold and decode up to 8 instructions. 

 Instructions are dispatched to the 5 reservation stations (virtual FU’s) even though there 
are only two physical FU’s. 

 Hence, structural dependence does not stall dispatching. 

2. True dependence (RAW) = > pseudo operands + result forwarding 

 If an operand is available in FLR, it is copied to a reservation station entry. 

 If an operand is not available (i.e. there is pending write), then a tag is copied to the 
reservation station entry instead.  This tag identifies the source of the pending write.  This 
instruction then waits in its reservation station for the true dependence to be resolved. 

 When the operand is finally produced by the source (ID of source = tag value), this source 
unit asserts its ID, i.e. its tag value, on the CDB followed by broadcasting of the operand 
on the CDB. 

 All the reservation station entries and the FLR entries and SDB entries carrying this tag 
value in their tag fields will detect a match of tag values and latch in the broadcasted 
operand from the CDB. 

 Hence, true dependence does not block subsequent independent instructions and does not 
stall a physical FU. Forwarding also minimizes delay due to true dependence. 

 
12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



Tomasulo Algorithm (8) 
16 

3.  Anti-dependence (WAR)  = > operand copying 

 If an operand is available in FLR, it is copied to a reservation station entry. 

 By copying this operand to the reservation station, all anti-dependences due to 

future writes to this same register are resolved. 

 Hence, the reading of an operand is not delayed, possibly due to other 

dependences, and subsequent writes are also not delayed. 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



Tomasulo Algorithm (9) 
17 

4. Output dependence (WAW) = > register renaming + result forwarding 

 If a register is waiting for a pending write, its tag field will contain the ID, or tag value, 
of the source for that pending write. 

 When that source eventually produces the result, that result will be written into the 
register via the CDB. 

 It is possible that prior to the completion of the pending write, another instruction can 
come along and also has that same register as its destination register. 

 If this occurs, the operands (or pseudo operands) needed by this instruction are still 
copied to an available reservation station.  In addition, the tag field of the destination 
register of this instruction is updated with the ID of this new reservation station, i.e. the 
old tag value is overwritten.  This will ensure that the said register will get the latest 
value, i.e. the late completing earlier write cannot overwrite a later write. 

 However, the forwarding to instructions between those two output dependent instructions 
will still use the old tag. 

 Hence, the output dependence is resolved without stalling a physical functional unit, not 
requiring additional buffers to ensure sequential write back to the register file. 

 
12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



Tomasulo Algorithm (10) 
18 

 Supports out of order execution of instructions. 

 Resolves dependences dynamically using hardware. 

 Attempts to delay the resolution of dependencies as late as possible. 

 Structural dependence does not stall issuing; virtual FU’s in the form of 
reservation stations are used. 

 Output dependence does not stall issuing; copying of old tag to reservation 
station and updating of tag field of the register with pending write with the 
new tag. 

 True dependence with a pending write operand does not stall the reading of 
operands; pseudo operand (tag) is copied to reservation station. 

 Anti-dependence does not stall write back; earlier copying of operand 
awaiting read to the reservation station. 

 Can support sequence of multiple output dependences. 

 Forwarding from FU’s to reservation stations bypasses the register file. 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



Tomasulo Algorithm (11) 
19 

IBM 360/91 Modern processors 

Width Peak IPC = 1 4+ 

Structural hazards 2 FPU 

Single CDB 

Many FU 

Many busses 

Anti-dependences Operand copy Reg. renaming 

Output dependences Renamed reg. tag Reg. renaming 

True dependences Tag-based forw. Tag-based forw. 

Exceptions Imprecise Precise (ROB) 

Implementation 3 x 66” x 15” x 78” 

60ns cycle time 

11-12 gate delays per pipe 
stage 

>$1 million 

1 chip 

300ps 

< $100 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



Data Flow ILP Limit (1) [244] 
20 

 Suppose we have a program 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



Data Flow ILP Limit (2) [245] 
21 

 Depth of data dependence graph determines minimal 
number of cycles on any machine 
 only RAW dependencies 

 Further limits imposed by 
finite number of resources 
 nr of FUs 

 pipeline width 

 nr of registers 

 Registers are reused in code 
in flight 
 because of register allocation 

 because of small loops 

 reuse poses additional limits because of WAW and WAR dependencies 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



Register Renaming [237] 
22 

 Reuse means storing more than one value in a register 

 until older value is needed, it cannot be overwritten by newer value 

 Central idea: 

 do not limit storage of operands to architectural registers 

 add other "renaming registers" 

 this provides storage space to avoid reuse 

 rename architectural registers (visible to programmer) in operands 
to avoid reuse in instruction window 

 removes WAR dependencies 

 removes WAW dependencies 

 Idea: write to a register no more than once 

 all in hardware 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



Register Renaming: example 
23 

R4←ld[MEM] 

R3←R1+R2  

R5←R3+R4  

R6←R1+R5 

R3←R1+R4  

R5←R3+R6  

F4←ld[MEM] F3←F1+F2  

F5←F3+F4  

F6←F1+F5 

F7←F1+F4  

F8←F7+F6  

F4←ld[MEM] 

F3←F1+F2  

F5←F3+F4  

F6←F1+F5 

F7←F1+F4  

F8←F7+F6  

every instruction in flight gets a unique  
destination operand (single assignment) 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



Register Renaming: tasks 
24 

 Three tasks per instruction 

1) source read             2) destination allocate           3) register update 
 

1) and 2) in pipeline front-end, 3) in pipeline back-end 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



25 

Register Renaming: (1) Source read 

 Busy bit in ARF = 0 
 No instruction in flight that will write to this register 
 Get operand from this ARF register 

 Busy bit in ARF = 1 
 Instruction in flight that will write to this ARF registers 
 Tag in map table identifies corresponding RRF register 
 2 possibilities 

 Valid bit in RRF = 1 
 Instruction is in flight but not yet completed, so read the 

operand from RRF 
 Valid bit in RRF = 0 

 Instruction that will write is not yet executed, feed tag of 
corresponding RRF to reservation buffer (where we will wait 
for the operand to arrive) 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



26 

Register Renaming: (2) Destination allocate 

 Index ARF with register number 

 Set busy bit in ARF to 1  

 Find free register (busy bit = 0) in RRF 

 Set busy bit in RRF to 1 

 Set valid bit in RRF to 0 

 Store rename register tag in map table of ARF register 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



27 

Register Renaming: (3) Register Update 

 When instruction leaves FU (finishes) 
 Write result value in RRF at correct place 

 Set valid bit in RRF to 1 

 When instruction leaves the reorder (completes) 
 Copy the result value from RRF to ARF 

 Set busy bit in RRF to 0 

 This happens in-order! 

 Both steps can be in consecutive cycles or with 
many cycles in between ... 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



Register Renaming (7) 
28 

 Alternative: one combined register file (pooled or merged) 

 architectural registers are part of one larger register file 

 map table remembers which of the registers are considered as 
architectural ones (this may change) 

 

 

 

 

 

 

 Con: before context switch, need to know which architectural 
registers to save 

 Pro: no copying of data between RRF and ARF 

 12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



 Operation 

29 

Register Renaming (8) 

available 

renaming register 
contents not available 

renaming register 
contents available 

architectural register 

architectural register 
is freed 

physical register gets 
allocated 

instruction is finished 
executing 

instruction leaves 
reorder buffer 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



30 

Register Renaming (9) 

 Initialisation 
 All physical registers that are mappings of architectural registers are in 

the "architectural register" state 

 The other physical registers are "available" 

 

 for the input operand 
 Read physical register corresponding to the architectural register from the 

mapping table 

 

 for the output operand 
 Select an "available" physical register, and change its condition to 

"renaming register, content not available" update the mapping table 

 If the original physical register was in the "architectural register" state, its 
new state becomes "available" 

 If there is no "available" register, block until some become available 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



31 

 When an instruction finishes execution 
 Change the state to "renaming register, content available" 

 

 When an instruction leaves the reorder buffer (completion) 
 change the state into "architectural register”, 

 the previous physical register associated with this architectural 
register becomes "available" 

 Its previous value will not be necessary anymore in case of exceptions 

 Its previous mapping was remembered in the reorder buffer 

Register Renaming (10) 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



32 

Register Renaming (11) 

R1 : F1 

R2 : F2 

R3 : F3 

R4 : F4 

R5 : F5 

R4←ld[MEM] 

R3←R1+R2  

R5←R3+R4  

R5←R1+R5 

R3←R3+R5  

R5←R3+R5  

 

F1 (R1): AR 

F2 (R2): AR 

F3 (R3): AR 

F4 (R4): AR 

F5 (R5): AR 

F6 (--): AV 

F7 (--): AV 

 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 

AR = architectural register 
AV = available 
RR = renaming register 



33 

Register Renaming (12) 

R1 : F1 

R2 : F2 

R3 : F3 

R4 : F6 

R5 : F5 

R4←ld[MEM] 

R3←R1+R2  

R5←R3+R4  

R5←R1+R5 

R3←R3+R5  

R5←R3+R5  

F1 (R1): AR 

F2 (R2): AR 

F3 (R3): AR 

F4 (--): AV 

F5 (R5): AR 

F6 (R4): RR 

F7 (--): AV 

F6←ld[MEM] 

AR = architectural register 
AV = available 
RR = renaming register 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



34 

Register Renaming (13) 

R1 : F1 

R2 : F2 

R3 : F7 

R4 : F6 

R5 : F5 

R4←ld[MEM] 

R3←R1+R2  

R5←R3+R4  

R5←R1+R5 

R3←R3+R5  

R5←R3+R5  

F1 (R1): AR 

F2 (R2): AR 

F3 (--): AV 

F4 (--): AV 

F5 (R5): AR 

F6 (R4): RR 

F7 (R3): RR 

F6←ld[MEM] 

F7←F1+F2  

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 

AR = architectural register 
AV = available 
RR = renaming register 



35 

Register Renaming (14) 

R1 : F1 

R2 : F2 

R3 : F7 

R4 : F6 

R5 : F3 

R4←ld[MEM] 

R3←R1+R2  

R5←R3+R4  

R5←R1+R5 

R3←R3+R5  

R5←R3+R5  

F1 (R1): AR 

F2 (R2): AR 

F3 (R5): RR 

F4 (--): AV 

F5 (--): AV 

F6 (R4): RR 

F7 (R3): RR 

F6←ld[MEM] 

F7←F1+F2  

F3←F7+F6  

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 

AR = architectural register 
AV = available 
RR = renaming register 



36 

Register Renaming (15) 

R1 : F1 

R2 : F2 

R3 : F7 

R4 : F6 

R5 : F4 

R4←ld[MEM] 

R3←R1+R2  

R5←R3+R4  

R5←R1+R5 

R3←R3+R5  

R5←R3+R5  

F1 (R1): AR 

F2 (R2): AR 

F3 (R5): RR 

F4 (R5): RR 

F5 (--): AV 

F6 (R4): RR 

F7 (R3): RR 

F6←ld[MEM] 

F7←F1+F2  

F3←F7+F6  

F4←F1+F3 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 

AR = architectural register 
AV = available 
RR = renaming register 



37 

Register Renaming (16) 

R1 : F1 

R2 : F2 

R3 : F5 

R4 : F6 

R5 : F4 

R4←ld[MEM] 

R3←R1+R2  

R5←R3+R4  

R5←R1+R5 

R3←R3+R5  

R5←R3+R5  

F1 (R1): AR 

F2 (R2): AR 

F3 (R5): RR 

F4 (R5): RR 

F5 (R3): RR 

F6 (R4): RR 

F7 (R3): RR 

F6←ld[MEM] 

F7←F1+F2  

F3←F7+F6  

F4←F1+F3 

F5←F7+F4 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 

AR = architectural register 
AV = available 
RR = renaming register 



38 

Register Renaming (17) 

R1 : F1 

R2 : F2 

R3 : F5 

R4 : F6 

R5 : F4 

R4←ld[MEM] 

R3←R1+R2  

R5←R3+R4  

R5←R1+R5 

R3←R3+R5  

R5←R3+R5  

F6←ld[MEM] 

F7←F1+F2  

F3←F7+F6  

F4←F1+F3 

F5←F7+F4 

Register renaming now blocks because there 
are no more available registers. 

F1 (R1): AR 

F2 (R2): AR 

F3 (R5): RR 

F4 (R5): RR 

F5 (R3): RR 

F6 (R4): RR 

F7 (R3): RR 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



39 

Register Renaming (18) 

R1 : F1 

R2 : F2 

R3 : F5 

R4 : F6 

R5 : F4 

R4←ld[MEM] 

R3←R1+R2  

R5←R3+R4  

R5←R1+R5 

R3←R3+R5  

R5←R3+R5  

F3←F7+F6  

F4←F1+F3 

F5←F7+F4 

Now suppose the first two instructions leave the reorder buffer 

F1 (R1): AR 

F2 (R2): AR 

F3 (R5): RR 

F4 (R5): RR 

F5 (R3): RR 

F6 (R4): AR 

F7 (R3): AR 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



40 

Register Renaming (19) 

R4←ld[MEM] 

R3←R1+R2  

R5←R3+R4  

R5←R1+R5 

R3←R3+R5  

R5←R3+R5  

F5←F7+F4 

R1 : F1 

R2 : F2 

R3 : F5 

R4 : F6 

R5 : F4 

F1 (R1): AR 

F2 (R2): AR 

F3 (--): AV 

F4 (R5): AR 

F5 (R3): RR 

F6 (R4): AR 

F7 (R3): AR 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 

And the next two instructions leave the reorder buffer as well ... 



41 

Register Renaming (20) 

R4←ld[MEM] 

R3←R1+R2  

R5←R3+R4  

R5←R1+R5 

R3←R3+R5  

R5←R3+R5  

F5←F7+F4 

F3←F5+F4  

R1 : F1 

R2 : F2 

R3 : F5 

R4 : F6 

R5 : F3 

F1 (R1): AR 

F2 (R2): AR 

F3 (R5): RR 

F4 (R5): AR 

F5 (R3): RR 

F6 (R4): AR 

F7 (R3): AR 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



42 

Register Renaming (21) 

R4←ld[MEM] 

R3←R1+R2  

R5←R3+R4  

R5←R1+R5 

R3←R3+R5  

R5←R3+R5  

R1 : F1 

R2 : F2 

R3 : F5 

R4 : F6 

R5 : F3 

F1 (R1): AR 

F2 (R2): AR 

F3 (R5): AR 

F4 (--): AV 

F5 (R3): AR 

F6 (R4): AR 

F7 (--): AV 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



Dynamic Execution Core [254] 
43 

front-end is in order 

back-end is in order 

in between:  
data-flow-like 
dynamic execution  
core 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



Reservation Stations (1) [256] 
44 

 reservation station entry has the entry 
been allocated 

are all src 
operands 
available 

indicates if 
the operand 
is a value or 
a tag 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 

1. dispatching 
 search non-busy entry 

 load operands and tags into 

 entry 

 set busy bit 

2. waiting  
 monitor the tag bus 

 latch operand when it becomes 
available 

 set ready bit if all operands are 
valid (= "wake-up") 

3. issuing 
 "select" a ready instruction 

 reset busy bit 

 with scheduling heuristic 

 complexity increases with 
#inputs and #outputs/cycle 

 reservation station 



Reservation Stations (2) 
45 

 Long latency operations can be reselected and 
reissued 

 for example loads that miss in the cache 

 instead of blocking the pipeline, go back to waiting state 

 reissue the instruction later when data is available 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



Reorder Buffer 
46 

 Tracks the state of all instructions in flight 

 being executed 

 finished execution but not completed  

 awaiting execution in reservation slot 

 Bits indicate state 

 possibly tags when speculating 
beyond multiple branches 

 Implemented as a circular queue 

 Completion bandwidth 

 determins number of instructions that 
can complete from head pointer 

 depends on logic and the number of  
register writeback ports 

 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



Instruction Window 
47 

 Reservation station and reorder buffer can be 
combined in one structure: 
the instruction window 

 Pro 

 no duplication of data (i.e. total area is smaller) 

 everything combined in one controller 

 Con 

 one large structure instead of two smaller ones 

 hence long connections 

 is problematic for high frequencies 

 

 12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



48 

Dynamic Instruction Scheduling (1) 

 Two variations on reservation station/instruction window 
 data captured scheduling 

 entries in reservation station hold values of source operands 

 contents read from RF before dispatch 

 see previous slides 

 non-data captured scheduling 
 entries in reservation station do not hold values of source operands 

 values are read from RF after selection, just prior to execution 

 there is no OF stage in pipeline front-end 

 only renaming registers occur in reservation stations 

 values are fetched from renaming registes on wake-up 

 is smaller and less complex 

 no register contents 

 no wires to distribute values over all instructions in reservation 
stations or in instruction window 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



49 

Dynamic Instruction Scheduling (2) 

reservation station 

FU FU FU 

wakeup by means of  
tags and data 

 Data captured 

 

 

 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



50 

Dynamic Instruction Scheduling (3) 

reservation station 

fysical register file 

FU FU FU 

wakeup by  
means of tags 

 Non Data captured 

 

 

 

if not pipelined: wake-up, selection, reading the register file, execution 
and tag distribution must happen all in the same clock cycle 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



51 

Dynamic Instruction Scheduling (4) 

reservation station 

register file 

FU FU FU 

wakeup by means of 
tags of dest operands 

selected instructions 

input operand tags 

instructions (opcodes + operands) 

= old results 

tags and data destination operands 

3 

3 
= = = = = 

3 

3 

tags  
and 
data 

 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



52 

Dynamic Instruction Scheduling (5) 

 Four pipeline stages 

 Wake-up and select 

 Read register file 

 Execute instruction 

 Write result in register file 

 Consequences 

 Wake-up and selection in one cycle 

 Instruction execution and bypassing in one cycle 

 Hence no increased instruction execution latency 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



So far: reach the data flow limit 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 

53 

 Try all kinds of techniques 

 branch prediction 

 efficient fetching 

 efficient decoding (caching decoded info) 

 dynamic execution 

 register renaming 

 

 Is this it? 

 Can't we do better? 



Breaking the data flow limit (1) 
54 

 Value prediction 

 like branch prediction, predict operand value at beginning of 
pipeline 

 don't need to wait for operands 

 based on value locality 

 some instructions always produce the same value 

 others generate sequences of values with patterns (loop indexes) 

 store past in a table, and predict future 

 need to validate prediction 

 misprediction should have minimal cost 

 hybrid designs obtain 8-23% IPC increase on SPEC 
benchmarks 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



Breaking the data flow limit (2) 
55 

 Dynamic Instruction Reuse 

 often instructions are executed repeatedly on the same inputs 

 don't need to to reexecute them if outcome was saved 
somewhere 

 even happens for sequences of instructions 

 dynamic instruction reuse 

 eliminates nodes (computations) and edges in the data flow graph 

 whereas value prediction only eliminated edges 

 is not speculative, so no validation required 

 

 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



Breaking the data flow limit (3) 
56 

 Micro-instruction fusion 
 CISC ISA instructions are broken down into micro-

instructions 

 ISA remains unchanged 

 micro-architecture changes over time (pipeline depth, etc.) 

 optimal mapping between ISA instructions and micro-
instructions also varies over time 

 one-to-many mapping is not necessarily optimal 

 solution:  

 first brake down CISC instructions into micro-operations 

 than fuse micro-operations (from multiple CISC instructions) into 
micro-operations that fit pipeline better 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



Breaking the data flow limit (4) 
57 

 SIMD (single instruction multiple data) 
 observations 

 many (multimedia) applications operate on smaller data (8-bit, 
16-bit) 

 executing them separately on 32-bit FUs is a waste of resources 

 original solution on RISC/VLIWs 

 adapt the FUs to do multiple narrow operations in parallel 

 add corresponding instructions to the ISA 

 add supporting instructions (packing, unpacking, shuffling, ...) 

 are basically special-purpose instructions 

 some have very cheap implementation  
(How do you implement two 16-bit additions on 32-bit adders?) 

 was originally called subword parallelism  

 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



Breaking the data flow limit (5) 
58 

 SIMD cont'd 
 first solution on CISC (x86) 

 where in need of more registers anyway 

 but need backwards binary compatibility 

 add new MMX registers for MMX instructions only 

 so new registers besides new instructions 

 later extensions 

 even if we don't really need new registers 

 adding wider registers is a cheap way to optimize performance 

 complexity of most of pipeline stays the same 

 only part of the data path gets wider 

 SSEx (also for floating point, cryptography, ...) 

 

 

 12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 



Acknowledgement 
59 

 Thanks for (parts of) slides 

 

 Bjorn De Sutter 

 Lieven Eeckhout 

 Mikko H. Lipasti 

 James C. Hoe 

 John P. Shen 

 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 4 


