
L E C T U R E 3 : I N S T R U C T I O N S T R E A M S [5 . 1]

B R A N C H P R E D I C T I O N
E F F I C I E N T F E T C H I N G
E F F I C I E N T D E C O D I N G

E F F I C I E N T D I S P A T C H I N G

J A N L E M E I R E

Advanced Computer
Architecture

12/10/2012

1

Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

Program Control Flow

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

2

 Control flows irregularly through a program

 conditional branches

 unconditional branches

 indirect branches (instruction

specifing the address of the next

instruction to execute)

 Problem: how do we get
instructions into the pipeline?

Instruction Streams

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

3

 Goal: issue as much as possible useful instructions as
early as possible (to keep pipeline filled)

 Correct branch prediction is extremely important
 Even more important when

 pipelines become deeper (mispredication penalty)

 width of architecture increases (superscalar)

 branch instructions are more complex

 Efficient fetching & decoding is important
 high bandwidth

 high frequencies

 also for CISC architectures!!!

Problems with Branches

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

4

 Potentially big
pipeline bubbles

Branch Prediction

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

5

 Main idea: predict where control will be transferred,
fetch and execute speculatively

 Observation
 temporal locality in branching (loops)

 can predict if we keep track of past

 often can predict really well
 (+95% for some programs)

 Three tasks
1. branch condition speculation/prediction

2. branch target speculation/prediction

3. branch mispredictions recovery

Static vs Dynamic Condition Prediction

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

6

 Static

 one prediction per conditional branch in binary code

 determined by software (or hardware convention)

 statically at compile time1

 Dynamic

 many predictions possible, based on local or global branching
history

 determined by hardware

 dynamically at run time1

1 In proper English, one writes "compile-time optimization" and "optimization at run time".

Static Branch Condition Prediction (1)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

7

 Determine statically for each branch what its
predicted condition will be (taken or not-taken)

 Condition determined by

 conventions

 hint bit in the instruction encoding

 Three options

 rule-based

 program-based

 profile-based

Static Branch Condition Prediction (2)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

8

 Pro

 Cheap, not complex, little hardware

 Con

 Not adaptive to program input

 Not adaptive to dynamic program behavior

 Interesting for

 hybrid static-dynamic predictors

 low-power embedded processors

 compiler optimization such as code layout

Static Branch Condition Prediction (3)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

9

 Rule-based

 Never taken

 simple hardware, sequential fetching

 Always taken

 more complex hardware, need to know (PC-relative) target address

 need to fill branch delay slot (hard in OoO processors, hard for compilers)

 Backward taken, forward not taken (BTFNT)

 only backward branches (corresponding to loops) are mostly taken

 for others, compiler can play with code layout

 In common: based on low-level (machine code) properties

Static Branch Condition Prediction (4)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

10

 Program-based

 Requires a hint bit in instruction encoding

 Features and structure of the source language determine hints

 loop branch: predict taken

 NULL-test for pointers: predict non-NULL

 pointer comparison: predict not equal

 More accurate than rule-based because of high-level decision
logic

Static Branch Condition Prediction (5)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

11

 Profile-based

 Requires a hint bit in instruction encoding

 Profile application to collect condition statistics

 Feed back the statistics to 2nd compiler run, fills in bits

 hint is taken when branch was taken more than 50% of the time

 More accurate than program-based because program-based
rules can be tuned

 Requires representative inputs

Dynamic Branch Condition Prediction (1)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

12

 More accurate 80%-97% (↔ static 70%-80%)

 Some branches are hard to predict statically, but easy
dynamically
 First half of program not-taken, second hald taken

 Alternating taken and non-taken

 Input-dependent branches

 Adapts to dynamic behavior of a program
 Prediction depends on context of branches

 Common in all predictors

 Finite state machines keep track of recent histories to determine
current prediction: pattern history tables

 Some indirection scheme to choose a particular finite state machine

Dynamic Branch Condition Prediction (2) [225]

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

13

 Finite state machines : 2-bit saturating counters

 Design decision: favoring taken or not-taken

 2-bit states

 lookup

 00: predict not-taken

 01: predict not-taken

 10: predict taken

 11: predict taken

 update

 taken: +1 (saturating arithmetic)

 not taken: -1

Dynamic Branch Condition Prediction (3)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

14

 2-bit saturating counters: suppose the following sequence of branch
directions

 branch direction state before updated state prediction

0 00 00 0

0 00 00 0

1 00 01 0

1 01 10 0

1 10 11 1

1 11 11 1

0 11 10 1

1 10 11 1

1 11 11 1

0 11 10 1

0 10 01 1

Dynamic Branch Condition Prediction (4)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

15

 Basic bimodal branch predictor

...

branch address

2m 2-bit saturating counters

as in a cache, multiple (branch)
addresses are mapped
 - onto the same line
 - onto the same FSM

this can result in aliasing

m bits

Dynamic Branch Condition Prediction (5)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

16

 Two-level adaptive predictors

 BHSR (recently executed branches)

 global (G)

 individual (P)

 PHT
 global: 1 table (g)

 individual: 1 table
per branch (p)

 shared: 1 table for a
small number of
branches (s)

 history-based FSM
 adaptive (A)

 Allows several designs
 GAg, PAg, PAs, ... with varying table sizes

 a large design space, try to find optimal cost/performance

When branches correlate with behavior of other branches

Dynamic Branch Condition Prediction (6) [234]

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

17

 Alternative: gshare (McFarling, 1993)

Dynamic Branch Condition Prediction (7)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

18

 Two-level adaptive

 Gshare

 work because of correlation between branches

 e.g., branches that test same variable

 or just statistically correlated

 best with global predictors

 works because of recurring patterns

 best with local (individual) predictors

 different parameters for different correlations and
patterns

Hybrid Branch Condition Prediction (1)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

19

 Sometimes prediction still goes wrong
 Branch can be hard to predict

 Predictor is still being trained

 Some branches behave truly random

 Tables are limited in size
 Interference, conflicts or aliasing

 Can be negative, neutral or positive (correlated jumps)

 Two possible reasons

 Tables too small for number of branches

 Hash function maps branches to same lines

 Behavior or branch does not fit type of predictor

 Solution: hybrid branch predictor

Hybrid Branch Condition Prediction (2)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

20

 General idea: combine different predictors

 Some branches will be predicted better by one of the
predictors

 Remember which predictor is best for each branch

 Several types

 tournament

 static

 branch classification

 multi-hybrid

 etc.

Tournament Predictor (1) [491]

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

21

branch address

P1 P2

meta predictor

22

Tournament Predictor (2)

 Meta predictor is two-bit counter that decides
which predictor is used
 If <2  P1; if ≥2  P2

 Update meta predictor
 Do nothing if both predictions correct

 Decrement if P1 correct and P2 incorrect

 Increment if P1 incorrect and P2 correct

 Update both predictors on update

 Typically have a global and a local predictor

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

Branch Classification (1)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

23

branch address

P1 P2 meta predictor

instruction register
0

1
branch hints

Branch Classification (2)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

24

 Use static predictor for branches that predict well
statically (e.g., +95% changes)

 Predict other branches dynamically

 Pro:

 less branches in tables

 hence less aliasing and better performance

 Con:

 hints are available in ID stage only

25

Example 1: Alpha 21264

 Hybrid predictor consisting of
 Local PAg

 1st level: 1K 10-bit elements

 2nd level: 1K 3-bit saturating counters

 Globale GAg

 4K 2-bit saturating counters

 12 bits global branch history

 Meta predictor

 4K 2-bit saturating counters

 Indexed as global predictor

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

26

Vb. 2: IBM POWER4

 Hybride predictor consisting of
 Bimodal predictor

 16K 1-bit saturating counters

 Gshare predictor

 16K 1-bit saturating counters

 11 bits global history

 Meta predictor

 16K 1-bit saturating counters

 Indexed like gshare predictor

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

Branch Target Buffers [226]

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

27

 need to know in time from where to fetch
 when condition is speculated for conditional branches

 always for non-conditional branches

 branch target buffer (or branch target access cache)
 cache

 indexed by branch instruction
address

 lookup returns branch target
address

 if address is not present,
assume not taken

 very early in pipeline!

 update on retirement

 store all branches or only taken ones (to require smaller tables)

Other Branch Prediction Techniques

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

28

 many extensions exist

 trace cache (in a couple of slides)

 return address stack

 keep a small stack of return addresses

 push on call

 pop return address on return

 to save time, different tables and caches are accessed together and
concurrently, then choice is made !

Misprediction Recovery [218-219]

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

29

 Speculative instructions are tagged (with tag specific for branch)

 When branch is really executed, prediction is validated

 Upon misprediction
 mispredicted instructions

are discarded

 fetching at correct place
is initiated

Efficient Instruction Fetching (1) [504]

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

30

 Branch predictors reduce control flow dependencies

 Still fetching instructions from I$ in program order

 Problem 1: what if fetch block spans more than one I$ line

 Problem 2: together with a taken branch, non-executed
instructions may be stored in cache

Efficient Instruction Fetching (2)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

31

 Solution 1: Compiler optimizes code layout to place basic
blocks at good cache alignment
 problem: code generation becomes microarchitecture-dependent

 far from optimal

 Solution 2: Auto-realignment hardware

Efficient Instruction Fetching (3) [506]

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

32

 Alternative: trace cache
 instead of storing static instructions based on their address

 store dynamic instructions (traces) based on their address and on branch
outcomes, higher bandwidth can be obtained

Efficient Instruction Fetching (4)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

33

 Alternative: trace cache
 instead of storing static instructions based on their address

 store dynamic instructions (traces) based on their address and on branch
outcomes, higher bandwidth can be obtained

 fetch-time storing or completion-time storing

Efficient Instruction Fetching (5) [509]

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

34

 High frequency fetching

 many techniques to speculate where to fetch

 large tables of precise predictors are slow (multiple cycles)

 overriding branch predictors (©2000)

 very accurate predictors are complex and slow

 hence first use a simple, single-cycle predictor

 override it one or more cycles later by complex, multi-cycle predictor

Efficient Instruction Decoding (1) [195]

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

36

 Decoding determines
 what the individual instruction types in the fetch group are

 what their types are, operands, etc...

 identify dependencies & branch instructions

=> Comparators & multi-ported registers

 Complexity depends on
 ISA

 width of superscalar pipeline

 frequency to be obtained

 RISC: easy
 fixed instruction width

 limited nr of instruction types

 CISC: much more complex -> several stages

Efficient Instruction Decoding (2)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

36

 CISC instruction widths vary

 Hence decoding is very difficult

 Requires multiple pipeline stages

 Early on in pipeline -> bad for branch misprediction penalties

 Is very hard to parallelize (sequential dependence on width)

 Need to generate micro-ops

 Intel: micro-operations

 AMD: RISC operations

 Intel: 1.5 – 2 micro-ops/instruction

Intel P6

Efficient Instruction Decoding (3)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

37

 Alternative: predecoding [198]
 (partly) decode when instruction are brought in from memory

 Intel: trace cache in Pentium 4

 AMD: regular I$

 Pro:
 decoding only once (more or less)

 much easier decoding

 Con:
 larger caches

 higher cache-memory
latency

 RISC? Yes, also
 to identify branches

 independent ops in fetch block
AMD K5

Efficient Instruction Dispatching (1)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

38

 Routing instructions to functional units

 Decentralizes
 previous pipeline stages

are centralized

 FU pipelines are
decentralized

 Parallel
 types are already known

 Dispatch instructions to
 reservation station(s)

 temporary buffers

 waiting for operands

Efficient Instruction Dispatching (2)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

39

 Centralized reservation station

 Pro

 less blocking

 higher IPC

 Con

 long and complex wiring

 complex decision logic

 Example

 Intel Pentium Pro

Efficient Instruction Dispatching (3)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

40

 Distributed reservation station

 Pro

 smaller structure, less wiring

 simple decision logic

 low hardware complexity

 Con

 Worse overall utilization

 Saturation/blocking possible

 lower IPC

 Example

 IBM PowerPC 650

 Also combinations possible

Efficient Instruction Dispatching (4)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

41

 Terminology

 Dispatch

 push instruction into reservation station

 in OoO architecture: push into reorder buffer

 decentralized reservation stations: routing to correct station

 Issue

 select an instruction from reservation station

 start its execution in the functional unit (pipeline)

Acknowledgement

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

42

 Thanks for (parts of) slides

 Bjorn De Sutter

 Lieven Eeckhout

 Mikko H. Lipasti

 James C. Hoe

 John P. Shen

