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Program Control Flow 
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 Control flows irregularly through a program 

 conditional branches 

 unconditional branches 

 indirect branches (instruction  

specifing the address of the next  

instruction to execute) 

 

 Problem: how do we get  
instructions into the pipeline? 



Instruction Streams 
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 Goal: issue as much as possible useful instructions as 
early as possible (to keep pipeline filled) 

 Correct branch prediction is extremely important 
 Even more important when 

 pipelines become deeper (mispredication penalty) 

 width of architecture increases (superscalar) 

 branch instructions are more complex 

 Efficient fetching & decoding is important 
 high bandwidth 

 high frequencies 

 also for CISC architectures!!! 



Problems with Branches 
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 Potentially big 
pipeline bubbles 



Branch Prediction 
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 Main idea: predict where control will be transferred, 
fetch and execute speculatively 

 Observation 
 temporal locality in branching (loops) 

 can predict if we keep track of past 

 often can predict really well  
       (+95% for some programs) 

 Three tasks 
1. branch condition speculation/prediction 

2. branch target speculation/prediction 

3. branch mispredictions recovery 



Static vs Dynamic Condition Prediction 
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 Static 

 one prediction per conditional branch in binary code 

 determined by software (or hardware convention) 

 statically at compile time1 

 

 Dynamic 

 many predictions possible, based on local or global branching 
history 

 determined by hardware 

 dynamically at run time1 

1 In proper English, one writes "compile-time optimization" and "optimization at run time". 



Static Branch Condition Prediction (1) 
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 Determine statically for each branch what its 
predicted condition will be (taken or not-taken) 

 

 Condition determined by  

 conventions 

 hint bit in the instruction encoding 

 Three options 

 rule-based  

 program-based 

 profile-based 



Static Branch Condition Prediction (2) 
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 Pro 

 Cheap, not complex, little hardware 

 Con 

 Not adaptive to program input 

 Not adaptive to dynamic program behavior 

 Interesting for 

 hybrid static-dynamic predictors 

 low-power embedded processors 

 compiler optimization such as code layout 

 



Static Branch Condition Prediction (3) 
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 Rule-based 

 Never taken 

 simple hardware, sequential fetching 

 Always taken 

 more complex hardware, need to know (PC-relative) target address 

 need to fill branch delay slot (hard in OoO processors, hard for compilers) 

 Backward taken, forward not taken (BTFNT) 

 only backward branches (corresponding to loops) are mostly taken 

 for others, compiler can play with code layout 

 

 In common: based on low-level  (machine code) properties 



Static Branch Condition Prediction (4) 
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 Program-based 

 Requires a hint bit in instruction encoding 

 

 Features and structure of the source language determine hints 

 loop branch: predict taken 

 NULL-test for pointers: predict non-NULL 

 pointer comparison: predict not equal 

 

 More accurate than rule-based because of high-level decision 
logic  



Static Branch Condition Prediction (5) 
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 Profile-based 

 Requires a hint bit in instruction encoding 

 

 Profile application to collect condition statistics 

 

 Feed back the statistics to 2nd compiler run, fills in bits 

 hint is taken when branch was taken more than  50%  of the time 

 

 More accurate than program-based because program-based 
rules can be tuned 

 Requires representative inputs 



Dynamic Branch Condition Prediction (1)  
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 More accurate 80%-97% (↔ static 70%-80%) 

 Some branches are hard to predict statically, but easy 
dynamically 
 First half of program not-taken, second hald taken 

 Alternating taken and non-taken 

 Input-dependent branches 

 Adapts to dynamic behavior of a program 
 Prediction depends on context of branches 

 Common in all predictors 

 Finite state machines keep track of recent histories to determine 
current prediction: pattern history tables 

 Some indirection scheme to choose a particular finite state machine 

 

 



Dynamic Branch Condition Prediction (2) [225]  
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 Finite state machines : 2-bit saturating counters 

 Design decision: favoring taken or not-taken 

 2-bit states 

 lookup 

 00: predict not-taken 

 01: predict not-taken 

 10: predict taken 

 11: predict taken 

 update 

 taken: +1 (saturating arithmetic) 

 not taken: -1 

 

 



Dynamic Branch Condition Prediction (3)  
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 2-bit saturating counters: suppose the following sequence of branch 
directions 

 branch direction state before updated state prediction 

0 00 00 0 

0 00 00 0 

1 00 01 0 

1 01 10 0 

1 10 11 1 

1 11 11 1 

0 11 10 1 

1 10 11 1 

1 11 11 1 

0 11 10 1 

0 10 01 1 

 
  
 

 
 

 
  
 



Dynamic Branch Condition Prediction (4)  
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 Basic bimodal branch predictor 

... 

branch address 

2m 2-bit saturating counters 
 
as in a cache, multiple (branch)  
addresses are mapped  
 - onto the same line 
 - onto the same FSM 
 
this can result in aliasing  

m bits 



Dynamic Branch Condition Prediction (5)  
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 Two-level adaptive predictors 

 BHSR (recently executed branches) 

 global (G) 

 individual (P) 

 PHT 
 global: 1 table (g) 

 individual: 1 table 
per branch (p) 

 shared: 1 table for a  
small number of  
branches (s) 

 history-based FSM 
 adaptive (A) 

 Allows several designs 
 GAg, PAg, PAs, ... with varying table sizes 

 a large design space, try to find optimal cost/performance 

 

When branches correlate with behavior of other branches 



Dynamic Branch Condition Prediction (6) [234]  
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 Alternative: gshare (McFarling, 1993) 



Dynamic Branch Condition Prediction (7)  
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 Two-level adaptive 

 Gshare 

 work because of correlation between branches 

 e.g., branches that test same variable 

 or just statistically correlated 

 best with global predictors 

 works because of recurring patterns 

 best with local (individual) predictors 

 different parameters for different correlations and 
patterns 



Hybrid Branch Condition Prediction (1) 
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 Sometimes prediction still goes wrong 
 Branch can be hard to predict 

 Predictor is still being trained 

 Some branches behave truly random 

 Tables are limited in size 
 Interference, conflicts or aliasing 

 Can be negative, neutral or positive (correlated jumps) 

 Two possible reasons 

 Tables too small for number of branches 

 Hash function maps branches to same lines 

 Behavior or branch does not fit type of predictor 

 Solution: hybrid branch predictor 
 



Hybrid Branch Condition Prediction (2) 
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 General idea: combine different predictors 

 Some branches will be predicted better by one of the 
predictors 

 Remember which predictor is best for each branch 

 Several types 

 tournament 

 static 

 branch classification 

 multi-hybrid 

 etc. 

 



Tournament Predictor (1) [491] 
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branch address 

P1 P2 

meta predictor 



22 

Tournament Predictor (2) 

 Meta predictor  is two-bit counter that decides 
which predictor is used 
 If <2  P1; if ≥2  P2 

 Update meta predictor 
 Do nothing if both predictions correct 

 Decrement if P1 correct and P2 incorrect 

 Increment if P1 incorrect and P2 correct 

 Update both predictors on update 

 

 Typically have a global and a local predictor 
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Branch Classification (1) 
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branch address 

P1 P2 meta predictor 

instruction register 
0 

1 
branch hints 



Branch Classification (2) 
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 Use static predictor for branches that predict well 
statically (e.g., +95% changes) 

 Predict other branches dynamically 

 Pro:  

 less branches in tables 

 hence less aliasing and better performance 

 Con:  

 hints are available in ID stage only 
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Example 1: Alpha 21264 

 Hybrid predictor consisting of 
 Local PAg 

 1st level: 1K 10-bit elements 

 2nd level: 1K 3-bit saturating counters 

 Globale GAg 

 4K 2-bit saturating counters 

 12 bits global branch history 

 Meta predictor 

 4K 2-bit saturating counters 

 Indexed as global predictor 
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Vb. 2: IBM POWER4 

 Hybride predictor consisting of 
 Bimodal predictor 

 16K 1-bit saturating counters 

 Gshare predictor 

 16K 1-bit saturating counters 

 11 bits global history 

 Meta predictor 

 16K 1-bit saturating counters 

 Indexed like gshare predictor 
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Branch Target Buffers [226] 
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 need to know in time from where to fetch 
 when condition is speculated for conditional branches 

 always for non-conditional branches 

 branch target buffer (or branch target access cache) 
 cache 

 indexed by branch instruction 
address 

 lookup returns branch target  
address 

 if address is not present,  
assume not taken 

 very early in pipeline! 

 update on retirement 

 store all branches or only taken ones (to require smaller tables) 

 



Other Branch Prediction Techniques 
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 many extensions exist 

 

 trace cache (in a couple of slides) 

 

 return address stack 

 keep a small stack of return addresses 

 push on call 

 pop return address on return 

 

 to save time, different tables and caches are accessed together and 
concurrently, then choice is made ! 



Misprediction Recovery [218-219] 
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 Speculative instructions are tagged (with tag specific for branch) 

 When branch is really executed, prediction is validated 

 Upon misprediction 
 mispredicted instructions  

are discarded 

 fetching at correct place 
is initiated 



Efficient Instruction Fetching (1) [504] 
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 Branch predictors reduce control flow dependencies 

 Still fetching instructions from I$ in program order 

 Problem 1: what if fetch block spans more than one I$ line 

 Problem 2: together with a taken branch, non-executed 
instructions may be stored in cache 

 



Efficient Instruction Fetching (2) 
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 Solution 1: Compiler optimizes code layout to place basic 
blocks at good cache alignment 
 problem: code generation becomes microarchitecture-dependent 

 far from optimal 

 

 Solution 2: Auto-realignment hardware 

 



Efficient Instruction Fetching (3) [506] 
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 Alternative: trace cache 
 instead of storing static instructions based on their address 

 store dynamic instructions (traces) based on their address and on branch 
outcomes, higher bandwidth can be obtained 



Efficient Instruction Fetching (4) 
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 Alternative: trace cache 
 instead of storing static instructions based on their address 

 store dynamic instructions (traces) based on their address and on branch 
outcomes, higher bandwidth can be obtained 

 fetch-time storing or completion-time storing 



Efficient Instruction Fetching (5) [509] 
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 High frequency fetching 

 many techniques to speculate where to fetch 

 large tables of precise predictors are slow (multiple cycles) 

 overriding branch predictors (©2000) 

 very accurate predictors are complex and slow 

 hence first use a simple, single-cycle predictor 

 override it one or more cycles later by complex, multi-cycle predictor 

 

 

 



Efficient Instruction Decoding (1) [195] 
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 Decoding determines 
 what the individual instruction types in the fetch group are 

 what their types are, operands, etc... 

 identify dependencies & branch instructions 

=>  Comparators & multi-ported registers 

 Complexity depends on  
 ISA 

 width of superscalar pipeline 

 frequency to be obtained 

 RISC: easy 
 fixed instruction width 

 limited nr of instruction types 

 CISC: much more complex -> several stages 

 



Efficient Instruction Decoding (2) 
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 CISC instruction widths vary 

 Hence decoding is very difficult 

 Requires multiple pipeline stages 

 Early on in pipeline -> bad for branch misprediction penalties 

 Is very hard to parallelize (sequential dependence on width) 

 Need to generate micro-ops 

 Intel: micro-operations 

 AMD: RISC operations 

 Intel: 1.5 – 2 micro-ops/instruction 

Intel P6 



Efficient Instruction Decoding (3) 
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 Alternative: predecoding [198] 
 (partly) decode when instruction are brought in from memory 

 Intel: trace cache in Pentium 4 

 AMD: regular I$ 

 Pro: 
 decoding only once (more or less) 

 much easier decoding 

 Con: 
 larger caches 

 higher cache-memory 
latency 

 RISC? Yes, also 
 to identify branches 

 independent ops in fetch block 
AMD K5 



Efficient Instruction Dispatching (1) 
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 Routing instructions to functional units 

 Decentralizes 
 previous pipeline stages 

are centralized 

 FU pipelines are  
decentralized 

 Parallel 
 types are already known 

 Dispatch instructions to  
 reservation station(s) 

 temporary buffers 

 waiting for operands 

 



Efficient Instruction Dispatching (2) 
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 Centralized reservation station 

 Pro 

 less blocking 

 higher IPC 

 Con 

 long and complex wiring 

 complex decision logic 

 Example 

 Intel Pentium Pro 

 



Efficient Instruction Dispatching (3) 
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 Distributed reservation station 

 Pro 

 smaller structure, less wiring 

 simple decision logic 

 low hardware complexity 

 Con 

 Worse overall utilization 

 Saturation/blocking possible 

 lower IPC 

 Example 

 IBM PowerPC 650 

 

 Also combinations possible 

 



Efficient Instruction Dispatching (4) 
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 Terminology 

 

 Dispatch 

 push instruction into reservation station 

 in OoO architecture: push into reorder buffer 

 decentralized reservation stations: routing to correct station 

 

 Issue 

 select an instruction from reservation station 

 start its execution in the functional unit (pipeline) 
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