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Program Control Flow 
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 Control flows irregularly through a program 

 conditional branches 

 unconditional branches 

 indirect branches (instruction  

specifing the address of the next  

instruction to execute) 

 

 Problem: how do we get  
instructions into the pipeline? 



Instruction Streams 
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 Goal: issue as much as possible useful instructions as 
early as possible (to keep pipeline filled) 

 Correct branch prediction is extremely important 
 Even more important when 

 pipelines become deeper (mispredication penalty) 

 width of architecture increases (superscalar) 

 branch instructions are more complex 

 Efficient fetching & decoding is important 
 high bandwidth 

 high frequencies 

 also for CISC architectures!!! 



Problems with Branches 
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 Potentially big 
pipeline bubbles 



Branch Prediction 
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 Main idea: predict where control will be transferred, 
fetch and execute speculatively 

 Observation 
 temporal locality in branching (loops) 

 can predict if we keep track of past 

 often can predict really well  
       (+95% for some programs) 

 Three tasks 
1. branch condition speculation/prediction 

2. branch target speculation/prediction 

3. branch mispredictions recovery 



Static vs Dynamic Condition Prediction 
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 Static 

 one prediction per conditional branch in binary code 

 determined by software (or hardware convention) 

 statically at compile time1 

 

 Dynamic 

 many predictions possible, based on local or global branching 
history 

 determined by hardware 

 dynamically at run time1 

1 In proper English, one writes "compile-time optimization" and "optimization at run time". 



Static Branch Condition Prediction (1) 
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 Determine statically for each branch what its 
predicted condition will be (taken or not-taken) 

 

 Condition determined by  

 conventions 

 hint bit in the instruction encoding 

 Three options 

 rule-based  

 program-based 

 profile-based 



Static Branch Condition Prediction (2) 
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 Pro 

 Cheap, not complex, little hardware 

 Con 

 Not adaptive to program input 

 Not adaptive to dynamic program behavior 

 Interesting for 

 hybrid static-dynamic predictors 

 low-power embedded processors 

 compiler optimization such as code layout 

 



Static Branch Condition Prediction (3) 
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 Rule-based 

 Never taken 

 simple hardware, sequential fetching 

 Always taken 

 more complex hardware, need to know (PC-relative) target address 

 need to fill branch delay slot (hard in OoO processors, hard for compilers) 

 Backward taken, forward not taken (BTFNT) 

 only backward branches (corresponding to loops) are mostly taken 

 for others, compiler can play with code layout 

 

 In common: based on low-level  (machine code) properties 



Static Branch Condition Prediction (4) 
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 Program-based 

 Requires a hint bit in instruction encoding 

 

 Features and structure of the source language determine hints 

 loop branch: predict taken 

 NULL-test for pointers: predict non-NULL 

 pointer comparison: predict not equal 

 

 More accurate than rule-based because of high-level decision 
logic  



Static Branch Condition Prediction (5) 
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 Profile-based 

 Requires a hint bit in instruction encoding 

 

 Profile application to collect condition statistics 

 

 Feed back the statistics to 2nd compiler run, fills in bits 

 hint is taken when branch was taken more than  50%  of the time 

 

 More accurate than program-based because program-based 
rules can be tuned 

 Requires representative inputs 



Dynamic Branch Condition Prediction (1)  
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 More accurate 80%-97% (↔ static 70%-80%) 

 Some branches are hard to predict statically, but easy 
dynamically 
 First half of program not-taken, second hald taken 

 Alternating taken and non-taken 

 Input-dependent branches 

 Adapts to dynamic behavior of a program 
 Prediction depends on context of branches 

 Common in all predictors 

 Finite state machines keep track of recent histories to determine 
current prediction: pattern history tables 

 Some indirection scheme to choose a particular finite state machine 

 

 



Dynamic Branch Condition Prediction (2) [225]  
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 Finite state machines : 2-bit saturating counters 

 Design decision: favoring taken or not-taken 

 2-bit states 

 lookup 

 00: predict not-taken 

 01: predict not-taken 

 10: predict taken 

 11: predict taken 

 update 

 taken: +1 (saturating arithmetic) 

 not taken: -1 

 

 



Dynamic Branch Condition Prediction (3)  
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 2-bit saturating counters: suppose the following sequence of branch 
directions 

 branch direction state before updated state prediction 

0 00 00 0 

0 00 00 0 

1 00 01 0 

1 01 10 0 

1 10 11 1 

1 11 11 1 

0 11 10 1 

1 10 11 1 

1 11 11 1 

0 11 10 1 

0 10 01 1 

 
  
 

 
 

 
  
 



Dynamic Branch Condition Prediction (4)  
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 Basic bimodal branch predictor 

... 

branch address 

2m 2-bit saturating counters 
 
as in a cache, multiple (branch)  
addresses are mapped  
 - onto the same line 
 - onto the same FSM 
 
this can result in aliasing  

m bits 



Dynamic Branch Condition Prediction (5)  
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 Two-level adaptive predictors 

 BHSR (recently executed branches) 

 global (G) 

 individual (P) 

 PHT 
 global: 1 table (g) 

 individual: 1 table 
per branch (p) 

 shared: 1 table for a  
small number of  
branches (s) 

 history-based FSM 
 adaptive (A) 

 Allows several designs 
 GAg, PAg, PAs, ... with varying table sizes 

 a large design space, try to find optimal cost/performance 

 

When branches correlate with behavior of other branches 



Dynamic Branch Condition Prediction (6) [234]  
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 Alternative: gshare (McFarling, 1993) 



Dynamic Branch Condition Prediction (7)  
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 Two-level adaptive 

 Gshare 

 work because of correlation between branches 

 e.g., branches that test same variable 

 or just statistically correlated 

 best with global predictors 

 works because of recurring patterns 

 best with local (individual) predictors 

 different parameters for different correlations and 
patterns 



Hybrid Branch Condition Prediction (1) 
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 Sometimes prediction still goes wrong 
 Branch can be hard to predict 

 Predictor is still being trained 

 Some branches behave truly random 

 Tables are limited in size 
 Interference, conflicts or aliasing 

 Can be negative, neutral or positive (correlated jumps) 

 Two possible reasons 

 Tables too small for number of branches 

 Hash function maps branches to same lines 

 Behavior or branch does not fit type of predictor 

 Solution: hybrid branch predictor 
 



Hybrid Branch Condition Prediction (2) 
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 General idea: combine different predictors 

 Some branches will be predicted better by one of the 
predictors 

 Remember which predictor is best for each branch 

 Several types 

 tournament 

 static 

 branch classification 

 multi-hybrid 

 etc. 

 



Tournament Predictor (1) [491] 
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branch address 

P1 P2 

meta predictor 
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Tournament Predictor (2) 

 Meta predictor  is two-bit counter that decides 
which predictor is used 
 If <2  P1; if ≥2  P2 

 Update meta predictor 
 Do nothing if both predictions correct 

 Decrement if P1 correct and P2 incorrect 

 Increment if P1 incorrect and P2 correct 

 Update both predictors on update 

 

 Typically have a global and a local predictor 
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Branch Classification (1) 
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branch address 

P1 P2 meta predictor 

instruction register 
0 

1 
branch hints 



Branch Classification (2) 
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 Use static predictor for branches that predict well 
statically (e.g., +95% changes) 

 Predict other branches dynamically 

 Pro:  

 less branches in tables 

 hence less aliasing and better performance 

 Con:  

 hints are available in ID stage only 
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Example 1: Alpha 21264 

 Hybrid predictor consisting of 
 Local PAg 

 1st level: 1K 10-bit elements 

 2nd level: 1K 3-bit saturating counters 

 Globale GAg 

 4K 2-bit saturating counters 

 12 bits global branch history 

 Meta predictor 

 4K 2-bit saturating counters 

 Indexed as global predictor 
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Vb. 2: IBM POWER4 

 Hybride predictor consisting of 
 Bimodal predictor 

 16K 1-bit saturating counters 

 Gshare predictor 

 16K 1-bit saturating counters 

 11 bits global history 

 Meta predictor 

 16K 1-bit saturating counters 

 Indexed like gshare predictor 
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Branch Target Buffers [226] 
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 need to know in time from where to fetch 
 when condition is speculated for conditional branches 

 always for non-conditional branches 

 branch target buffer (or branch target access cache) 
 cache 

 indexed by branch instruction 
address 

 lookup returns branch target  
address 

 if address is not present,  
assume not taken 

 very early in pipeline! 

 update on retirement 

 store all branches or only taken ones (to require smaller tables) 

 



Other Branch Prediction Techniques 
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 many extensions exist 

 

 trace cache (in a couple of slides) 

 

 return address stack 

 keep a small stack of return addresses 

 push on call 

 pop return address on return 

 

 to save time, different tables and caches are accessed together and 
concurrently, then choice is made ! 



Misprediction Recovery [218-219] 
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 Speculative instructions are tagged (with tag specific for branch) 

 When branch is really executed, prediction is validated 

 Upon misprediction 
 mispredicted instructions  

are discarded 

 fetching at correct place 
is initiated 



Efficient Instruction Fetching (1) [504] 
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 Branch predictors reduce control flow dependencies 

 Still fetching instructions from I$ in program order 

 Problem 1: what if fetch block spans more than one I$ line 

 Problem 2: together with a taken branch, non-executed 
instructions may be stored in cache 

 



Efficient Instruction Fetching (2) 
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 Solution 1: Compiler optimizes code layout to place basic 
blocks at good cache alignment 
 problem: code generation becomes microarchitecture-dependent 

 far from optimal 

 

 Solution 2: Auto-realignment hardware 

 



Efficient Instruction Fetching (3) [506] 
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 Alternative: trace cache 
 instead of storing static instructions based on their address 

 store dynamic instructions (traces) based on their address and on branch 
outcomes, higher bandwidth can be obtained 



Efficient Instruction Fetching (4) 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3 

33 

 Alternative: trace cache 
 instead of storing static instructions based on their address 

 store dynamic instructions (traces) based on their address and on branch 
outcomes, higher bandwidth can be obtained 

 fetch-time storing or completion-time storing 



Efficient Instruction Fetching (5) [509] 
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 High frequency fetching 

 many techniques to speculate where to fetch 

 large tables of precise predictors are slow (multiple cycles) 

 overriding branch predictors (©2000) 

 very accurate predictors are complex and slow 

 hence first use a simple, single-cycle predictor 

 override it one or more cycles later by complex, multi-cycle predictor 

 

 

 



Efficient Instruction Decoding (1) [195] 
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 Decoding determines 
 what the individual instruction types in the fetch group are 

 what their types are, operands, etc... 

 identify dependencies & branch instructions 

=>  Comparators & multi-ported registers 

 Complexity depends on  
 ISA 

 width of superscalar pipeline 

 frequency to be obtained 

 RISC: easy 
 fixed instruction width 

 limited nr of instruction types 

 CISC: much more complex -> several stages 

 



Efficient Instruction Decoding (2) 
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 CISC instruction widths vary 

 Hence decoding is very difficult 

 Requires multiple pipeline stages 

 Early on in pipeline -> bad for branch misprediction penalties 

 Is very hard to parallelize (sequential dependence on width) 

 Need to generate micro-ops 

 Intel: micro-operations 

 AMD: RISC operations 

 Intel: 1.5 – 2 micro-ops/instruction 

Intel P6 



Efficient Instruction Decoding (3) 
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 Alternative: predecoding [198] 
 (partly) decode when instruction are brought in from memory 

 Intel: trace cache in Pentium 4 

 AMD: regular I$ 

 Pro: 
 decoding only once (more or less) 

 much easier decoding 

 Con: 
 larger caches 

 higher cache-memory 
latency 

 RISC? Yes, also 
 to identify branches 

 independent ops in fetch block 
AMD K5 



Efficient Instruction Dispatching (1) 
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 Routing instructions to functional units 

 Decentralizes 
 previous pipeline stages 

are centralized 

 FU pipelines are  
decentralized 

 Parallel 
 types are already known 

 Dispatch instructions to  
 reservation station(s) 

 temporary buffers 

 waiting for operands 

 



Efficient Instruction Dispatching (2) 
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 Centralized reservation station 

 Pro 

 less blocking 

 higher IPC 

 Con 

 long and complex wiring 

 complex decision logic 

 Example 

 Intel Pentium Pro 

 



Efficient Instruction Dispatching (3) 
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 Distributed reservation station 

 Pro 

 smaller structure, less wiring 

 simple decision logic 

 low hardware complexity 

 Con 

 Worse overall utilization 

 Saturation/blocking possible 

 lower IPC 

 Example 

 IBM PowerPC 650 

 

 Also combinations possible 

 



Efficient Instruction Dispatching (4) 
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 Terminology 

 

 Dispatch 

 push instruction into reservation station 

 in OoO architecture: push into reorder buffer 

 decentralized reservation stations: routing to correct station 

 

 Issue 

 select an instruction from reservation station 

 start its execution in the functional unit (pipeline) 
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