Advanced Computer
Architecture

Advanced Computer Architecture — Jan Lemeire — VUB - 2012-2013 - Lecture 3 12/10/2012

Program Control Flow

» Control flows irregularly through a program
conditional branches
unconditional branches
indirect branches (instruction

[——— ——

specifing the address of the next

instruction to execute)

» Problem: how do we get]
instructions into the pipeline? | i

(a)

Goal: issue as much as possible useful instructions as
early as possible (to keep pipeline filled)

Correct branch prediction is extremely important

Even more important when
pipelines become deeper (mispredication penalty)
width of architecture increases (superscalar)
branch instructions are more complex

Efficient fetching & decoding is important
high bandwidth

high frequencies
also for CISC architectures!!!

Problems with Branches

Sl e Fetch

» Potentially big
pipeline bubbles

indirect

[Register
indirect
with
offset

1
1
1
1
1
1
1
|
Register | L _ .
H Decode
1
1
1
1
1
1
1
1
1

Decode buffer

Dispatch buffer

I Y

[R FU) MU S S N U W iy MU S NN by SO NN |) N —— stations

oo o Branch

Execute

Finish

Completion buffer

Complete

v
v

Retire

Advanced Computer Architecture — Jan Lemeire

Store buffer

Reservation

Branch Prediction

» Main idea: predict where control will be transferred,
fetch and execute speculatively

» Observation
temporal locality in branching (loops)
can predict if we keep track of past

often can predict really well
(+95% for some programs)

» Three tasks

branch condition speculation/prediction
branch target speculation/prediction
branch mispredictions recovery

Static vs Dynamic Condition Prediction

Advanced Computer Architecture — Jan Lemeire — VUB - 2012-2013 - Lecture 3 12/10/2012

Determine statically for each branch what its
predicted condition will be (taken or not-taken)

Condition determined by

conventions
hint bit in the instruction encoding

Three options
rule-based

program-based
profile-based

Static Branch Condition Prediction (2)

Advanced Computer Architecture — Jan Lemeire — VUB - 2012-2013 - Lecture 3 12/10/2012

» Rule-based

Never taken
simple hardware, sequential fetching

Always taken
more complex hardware, need to know (PC-relative) target address
need to fill branch delay slot (hard in OoO processors, hard for compilers)

Backward taken, forward not taken (BTFNT)

only backward branches (corresponding to loops) are mostly taken
for others, compiler can play with code layout

In common: based on low-level (machine code) properties

Static Branch Condition Prediction (4)

» Program-based
o Requires a hint bit in instruction encoding

o Features and structure of the source language determine hints
« loop branch: predict taken
« NULL-test for pointers: predict non-NULL
« pointer comparison: predict not equal

o More accurate than rule-based because of high-level decision
logic

Advanced Computer Architecture — Jan Lemeire — VUB - 2012-2013 - Lecture 3 12/10/2012

Static Branch Condition Prediction (5)

» Profile-based

o Requires a hint bit in instruction encoding
o Profile application to collect condition statistics

o Feed back the statistics to 27 compiler run, fills in bits
~ hint is taken when branch was taken more than 50% of the time

o More accurate than program-based because program-based
rules can be tuned

O Requires representative inputs

Advanced Computer Architecture — Jan Lemeire — VUB - 2012-2013 - Lecture 3 12/10/2012

Dynamic Branch Condition Prediction (1)

» More accurate 80%-97% (< static 70%-80%)

» Some branches are hard to predict statically, but easy
dynamically
First half of program not-taken, second hald taken
Alternating taken and non-taken
Input-dependent branches
» Adapts to dynamic behavior of a program
Prediction depends on context of branches

» Common in all predictors

Finite state machines keep track of recent histories to determine
current prediction: pattern history tables

Some indirection scheme to choose a particular finite state machine

Dynamic Branch Condition Prediction (2) [225]

» Finite state machines : 2-bit saturating counters
o Design decision: favoring taken or not-taken
o 2-bit states

o lookup
« 00: predict not-taken

« 01: predict not-taken
« 10: predict taken

Initial
« 11: predict taken state
Branch
history
- update Predicted \
« taken: +1 (saturating arithmetic) direction Actual direction
« not taken: -1 (a)

Advanced Computer Architecture — Jan Lemeire — VUB - 2012-2013 - Lecture 3 12/10/2012

Dynamic Branch Condition Prediction (3)

» 2-bit saturating counters: suppose the following sequence of branch
directions

branch direction state before updated state

Advanced Computer Architecture — Jan Lemeire — VUB - 2012-2013 - Lecture 3 12/10/2012

Dynamic Branch Condition Prediction (4)

» Basic bimodal branch predictor

2m 2-bit saturating counters

m bits

as in a cache, multiple (branch)
addresses are mapped

- onto the same line

- onto the same FSM

this can result in aliasing

Advanced Computer Architecture — Jan Lemeire — VUB - 2012-2013 - Lecture 3 12/10/2012

Dynamic Branch Condition Prediction (5)

Two-level adaptive predictors

BHSR (recently executed branches) Pattern history table (PHT)
o global (G)
o individual (P)

Branch instruction address

* PHT Branch history shift
o global: 1 table (g) register (BHSR)
o individual: 1 table (Shuft left whiet tpdate)
per branch (p) »(1[0]1 11

o shared: 1 table for a
small number of
branches (s)

 history-based FSM
o adaptive (A)

» Allows several designs
o GAg, PAg, PAs, ... with varying table sizes Branch result
o alarge design space, try to find optimal cost/performance

Prediction

When branches correlate with behavior of other branches

Advanced Computer Architecture — Jan Lemeire — VUB - 2012-2013 - Lecture 3 12/10/2012

Dynamic Branch Condition Prediction (6) [234]

» Alternative: gshare (McFarling, 1993)

| Branch address I

Global branch history bit
shift register (BHSR) g

i

.@ .
k bits max{k, j} bits

PHT of 2maxtkJj} x 2

Advanced Computer Architecture — Jan Lemeire — VUB - 2012-2013 - Lecture 3

Prediction

12/10/2012

Two-level adaptive
Gshare

work because of correlation between branches
e.g., branches that test same variable
or just statistically correlated
best with global predictors

works because of recurring patterns
best with local (individual) predictors

different parameters for different correlations and
patterns

Hybrid Branch Condition Prediction (1)

» Sometimes prediction still goes wrong

Branch can be hard to predict
Predictor is still being trained
Some branches behave truly random
Tables are limited in size
Interference, conflicts or aliasing
o Can be negative, neutral or positive (correlated jumps)
Two possible reasons
o Tables too small for number of branches
o Hash function maps branches to same lines

Behavior or branch does not fit type of predictor

» Solution: hybrid branch predictor

General idea: combine different predictors

Some branches will be predicted better by one of the
predictors

Remember which predictor is best for each branch

Several types
tournament
static
branch classification
multi-hybrid
etc.

Tournament Predictor (1) [491]

|} l l

Advanced Computer Architecture — Jan Lemeire — VUB - 2012-2013 - Lecture 3 12/10/2012

» Meta predictor is two-bit counter that decides
which predictor is used

If <2 > P1;if 22 > P2

» Update meta predictor
Do nothing if both predictions correct
Decrement if P1 correct and P2 incorrect
Increment if P1 incorrect and P2 correct

» Update both predictors on update

» Typically have a global and a local predictor

Branch Classification (1)

branhades

meta predictor

branch hints

Advanced Computer Architecture — Jan Lemeire — VUB - 2012-2013 - Lecture 3

12/10/2012

» Use static predictor for branches that predict well
statically (e.g., +95% changes)

» Predict other branches dynamically

* Pro:
less branches in tables
hence less aliasing and better performance

» Con:
hints are available in ID stage only

Hybrid predictor consisting of

Local PAg

1st level: 1K 10-bit elements

2nd level: 1K 3-bit saturating counters
Globale GAg

4K 2-bit saturating counters

12 bits global branch history
Meta predictor

4K 2-bit saturating counters

Indexed as global predictor

Hybride predictor consisting of
Bimodal predictor
16K 1-bit saturating counters
Gshare predictor
16K 1-bit saturating counters
11 bits global history
Meta predictor
16K 1-bit saturating counters
Indexed like gshare predictor

Branch Target Buffers [226]

* need to know in time from where to fetch
o when condition is speculated for conditional branches
o always for non-conditional branches

» branch target buffer (or branch target access cache)

o cache
o indexed by branch instruction Branch instruction Branch target
address I-cache address field address field
o lookup returns branch target
BTB
address BIA BTA
» if address is not present,
assume not taken PC
» very early in pipeline!
» update on retirement ;
t b n v tak Speculative
» store all branches or only taken taroet address

Advanced Computer Architecture — Jan Lemeire — VUB - 2012-2013 - Lecture 3 12/10/2012

many extensions exist
trace cache (in a couple of slides)

return address stack
keep a small stack of return addresses
push on call
pop return address on return

to save time, different tables and caches are accessed together and
concurrently, then choice is made !

Misprediction Recovery [218-219]

Advanced Computer Architecture — Jan Lemeire — VUB - 2012-2013 - Lecture 3 12/10/2012

Branch predictors reduce control flow dependencies
Still fetching instructions from I$ in program order
Problem 1: what if fetch block spans more than one I$ line

Problem 2: together with a taken branch, non-executed
instructions may be stored in cache T vE——

—> E | F |G
<H ik

Solution 1: Compiler optimizes code layout to place basic
blocks at good cache alignment

problem: code generation becomes microarchitecture-dependent

far from optimal

Solution 2: Auto-realignment hardware

Efficient Instruction Fetching (3) [506]

Trace cache

Advanced Computer Architecture — Jan Lemeire — VUB - 2012-2013 - Lecture 3 12/10/2012

Efficient Instruction Fetching (4)

Instruction Instruction reorder buffer
cache

T From

I
Il Trace const buf.

race construction buffer

Trace cache Store when Store when
trace complete trace complete

a

Advanced Computer Architecture — Jan Lemeire — VUB - 2012-2013 - Lecture 3 12/10/2012

Efficient Instruction Fetching (5) [509]

» High frequency fetching

o many techniques to speculate where to fetch
o large tables of precise predictors are slow (multiple cycles)

o overriding branch predictors (©2000)
« very accurate predictors are complex and slow

« hence first use a simple, single-cycle predictor
« override it one or more cycles later by complex, multi-cycle predictor

Advanced Computer Architecture — Jan Lemeire — VUB - 2012-2013 - Lecture 3 12/10/2012

Efficient Instruction Decoding (1) [195]

» Decoding determines

o what the individual instruction types in the fetch group are
o what their types are, operands, etc...

o identify dependencies & branch instructions

=> Comparators & multi-ported registers

» Complexity depends on
o ISA
o width of superscalar pipeline
o frequency to be obtained

» RISC: easy

o fixed instruction width
o limited nr of instruction types

» CISC: much more complex -> several stages

Advanced Computer Architecture — Jan Lemeire — VUB - 2012-2013 - Lecture 3 12/10/2012

Efficient Instruction Decoding (2)

» CISC instruction widths vary
» Hence decoding is very difficult
» Requires multiple pipeline stages
o Early on in pipeline -> bad for branch misprediction penalties
» Isvery hard to parallelize (sequential dependence on width)
» Need to generate micro-ops

0O Intel. micro—operations Macro-instruction bytes from IFU
O AMD RISC Operatlons Instruction buffer 16 bytes I ng':::;
o Intel: 1.5 — 2 micro-ops/instruction calculation
Y Y Y
LROM - " Dec(c))der - Dec;)der I Deczoder I \) T
-—r = = Branch
> address
‘ 4 pops 1 pop 1 pop calculation
Y Y Y
©op queue (6) |

Intel P6 oy

Advanced Computer Architecture — Jan Lemeire — VUB - 2012-2013 - Lecture 3 12/10/2012

Efficient Instruction Decoding (3)

From memory

or less)

Byte2| +++ | Byes

5 bits 5 bits 5 bits

—— —— —A—
(ot | Jowez] | o [owes]

Decode, translate,
and dispatch

Up to 4 ROPs ROP1 ROP2 ROP3 ROP4

Advanced Computer Architecture — Jan Lemeire — VUB - 2012-2013 - Lecture 3 12/10/2012

Efficient Instruction Dispatching (1)

Instruction fetching

Instruction decoding

Instruction dispatching

Advanced Computer Architecture — Jan Lemeire — VUB - 2012-2013 - Lecture 3 12/10/2012

Efficient Instruction Dispatching (2)

Centralized reservation
station (dispatch buffer

Advanced Computer Architecture — Jan Lemeire — VUB - 2012-2013 - Lecture 3 12/10/2012

Efficient Instruction Dispatching (3)

Dispatch

Distributed

L L N P L] [] reservation

stations

Advanced Computer Architecture — Jan Lemeire — VUB - 2012-2013 - Lecture 3 12/10/2012

Efficient Instruction Dispatching (4)

Advanced Computer Architecture — Jan Lemeire — VUB - 2012-2013 - Lecture 3 12/10/2012

Acknowledgement

Advanced Computer Architecture — Jan Lemeire — VUB - 2012-2013 - Lecture 3 12/10/2012

