
L E C T U R E 3 : I N S T R U C T I O N S T R E A M S [5 . 1]

B R A N C H P R E D I C T I O N
E F F I C I E N T F E T C H I N G
E F F I C I E N T D E C O D I N G

E F F I C I E N T D I S P A T C H I N G

J A N L E M E I R E

Advanced Computer
Architecture

12/10/2012

1

Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

Program Control Flow

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

2

 Control flows irregularly through a program

 conditional branches

 unconditional branches

 indirect branches (instruction

specifing the address of the next

instruction to execute)

 Problem: how do we get
instructions into the pipeline?

Instruction Streams

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

3

 Goal: issue as much as possible useful instructions as
early as possible (to keep pipeline filled)

 Correct branch prediction is extremely important
 Even more important when

 pipelines become deeper (mispredication penalty)

 width of architecture increases (superscalar)

 branch instructions are more complex

 Efficient fetching & decoding is important
 high bandwidth

 high frequencies

 also for CISC architectures!!!

Problems with Branches

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

4

 Potentially big
pipeline bubbles

Branch Prediction

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

5

 Main idea: predict where control will be transferred,
fetch and execute speculatively

 Observation
 temporal locality in branching (loops)

 can predict if we keep track of past

 often can predict really well
 (+95% for some programs)

 Three tasks
1. branch condition speculation/prediction

2. branch target speculation/prediction

3. branch mispredictions recovery

Static vs Dynamic Condition Prediction

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

6

 Static

 one prediction per conditional branch in binary code

 determined by software (or hardware convention)

 statically at compile time1

 Dynamic

 many predictions possible, based on local or global branching
history

 determined by hardware

 dynamically at run time1

1 In proper English, one writes "compile-time optimization" and "optimization at run time".

Static Branch Condition Prediction (1)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

7

 Determine statically for each branch what its
predicted condition will be (taken or not-taken)

 Condition determined by

 conventions

 hint bit in the instruction encoding

 Three options

 rule-based

 program-based

 profile-based

Static Branch Condition Prediction (2)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

8

 Pro

 Cheap, not complex, little hardware

 Con

 Not adaptive to program input

 Not adaptive to dynamic program behavior

 Interesting for

 hybrid static-dynamic predictors

 low-power embedded processors

 compiler optimization such as code layout

Static Branch Condition Prediction (3)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

9

 Rule-based

 Never taken

 simple hardware, sequential fetching

 Always taken

 more complex hardware, need to know (PC-relative) target address

 need to fill branch delay slot (hard in OoO processors, hard for compilers)

 Backward taken, forward not taken (BTFNT)

 only backward branches (corresponding to loops) are mostly taken

 for others, compiler can play with code layout

 In common: based on low-level (machine code) properties

Static Branch Condition Prediction (4)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

10

 Program-based

 Requires a hint bit in instruction encoding

 Features and structure of the source language determine hints

 loop branch: predict taken

 NULL-test for pointers: predict non-NULL

 pointer comparison: predict not equal

 More accurate than rule-based because of high-level decision
logic

Static Branch Condition Prediction (5)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

11

 Profile-based

 Requires a hint bit in instruction encoding

 Profile application to collect condition statistics

 Feed back the statistics to 2nd compiler run, fills in bits

 hint is taken when branch was taken more than 50% of the time

 More accurate than program-based because program-based
rules can be tuned

 Requires representative inputs

Dynamic Branch Condition Prediction (1)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

12

 More accurate 80%-97% (↔ static 70%-80%)

 Some branches are hard to predict statically, but easy
dynamically
 First half of program not-taken, second hald taken

 Alternating taken and non-taken

 Input-dependent branches

 Adapts to dynamic behavior of a program
 Prediction depends on context of branches

 Common in all predictors

 Finite state machines keep track of recent histories to determine
current prediction: pattern history tables

 Some indirection scheme to choose a particular finite state machine

Dynamic Branch Condition Prediction (2) [225]

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

13

 Finite state machines : 2-bit saturating counters

 Design decision: favoring taken or not-taken

 2-bit states

 lookup

 00: predict not-taken

 01: predict not-taken

 10: predict taken

 11: predict taken

 update

 taken: +1 (saturating arithmetic)

 not taken: -1

Dynamic Branch Condition Prediction (3)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

14

 2-bit saturating counters: suppose the following sequence of branch
directions

 branch direction state before updated state prediction

0 00 00 0

0 00 00 0

1 00 01 0

1 01 10 0

1 10 11 1

1 11 11 1

0 11 10 1

1 10 11 1

1 11 11 1

0 11 10 1

0 10 01 1

Dynamic Branch Condition Prediction (4)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

15

 Basic bimodal branch predictor

...

branch address

2m 2-bit saturating counters

as in a cache, multiple (branch)
addresses are mapped
 - onto the same line
 - onto the same FSM

this can result in aliasing

m bits

Dynamic Branch Condition Prediction (5)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

16

 Two-level adaptive predictors

 BHSR (recently executed branches)

 global (G)

 individual (P)

 PHT
 global: 1 table (g)

 individual: 1 table
per branch (p)

 shared: 1 table for a
small number of
branches (s)

 history-based FSM
 adaptive (A)

 Allows several designs
 GAg, PAg, PAs, ... with varying table sizes

 a large design space, try to find optimal cost/performance

When branches correlate with behavior of other branches

Dynamic Branch Condition Prediction (6) [234]

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

17

 Alternative: gshare (McFarling, 1993)

Dynamic Branch Condition Prediction (7)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

18

 Two-level adaptive

 Gshare

 work because of correlation between branches

 e.g., branches that test same variable

 or just statistically correlated

 best with global predictors

 works because of recurring patterns

 best with local (individual) predictors

 different parameters for different correlations and
patterns

Hybrid Branch Condition Prediction (1)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

19

 Sometimes prediction still goes wrong
 Branch can be hard to predict

 Predictor is still being trained

 Some branches behave truly random

 Tables are limited in size
 Interference, conflicts or aliasing

 Can be negative, neutral or positive (correlated jumps)

 Two possible reasons

 Tables too small for number of branches

 Hash function maps branches to same lines

 Behavior or branch does not fit type of predictor

 Solution: hybrid branch predictor

Hybrid Branch Condition Prediction (2)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

20

 General idea: combine different predictors

 Some branches will be predicted better by one of the
predictors

 Remember which predictor is best for each branch

 Several types

 tournament

 static

 branch classification

 multi-hybrid

 etc.

Tournament Predictor (1) [491]

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

21

branch address

P1 P2

meta predictor

22

Tournament Predictor (2)

 Meta predictor is two-bit counter that decides
which predictor is used
 If <2 P1; if ≥2 P2

 Update meta predictor
 Do nothing if both predictions correct

 Decrement if P1 correct and P2 incorrect

 Increment if P1 incorrect and P2 correct

 Update both predictors on update

 Typically have a global and a local predictor

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

Branch Classification (1)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

23

branch address

P1 P2 meta predictor

instruction register
0

1
branch hints

Branch Classification (2)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

24

 Use static predictor for branches that predict well
statically (e.g., +95% changes)

 Predict other branches dynamically

 Pro:

 less branches in tables

 hence less aliasing and better performance

 Con:

 hints are available in ID stage only

25

Example 1: Alpha 21264

 Hybrid predictor consisting of
 Local PAg

 1st level: 1K 10-bit elements

 2nd level: 1K 3-bit saturating counters

 Globale GAg

 4K 2-bit saturating counters

 12 bits global branch history

 Meta predictor

 4K 2-bit saturating counters

 Indexed as global predictor

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

26

Vb. 2: IBM POWER4

 Hybride predictor consisting of
 Bimodal predictor

 16K 1-bit saturating counters

 Gshare predictor

 16K 1-bit saturating counters

 11 bits global history

 Meta predictor

 16K 1-bit saturating counters

 Indexed like gshare predictor

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

Branch Target Buffers [226]

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

27

 need to know in time from where to fetch
 when condition is speculated for conditional branches

 always for non-conditional branches

 branch target buffer (or branch target access cache)
 cache

 indexed by branch instruction
address

 lookup returns branch target
address

 if address is not present,
assume not taken

 very early in pipeline!

 update on retirement

 store all branches or only taken ones (to require smaller tables)

Other Branch Prediction Techniques

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

28

 many extensions exist

 trace cache (in a couple of slides)

 return address stack

 keep a small stack of return addresses

 push on call

 pop return address on return

 to save time, different tables and caches are accessed together and
concurrently, then choice is made !

Misprediction Recovery [218-219]

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

29

 Speculative instructions are tagged (with tag specific for branch)

 When branch is really executed, prediction is validated

 Upon misprediction
 mispredicted instructions

are discarded

 fetching at correct place
is initiated

Efficient Instruction Fetching (1) [504]

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

30

 Branch predictors reduce control flow dependencies

 Still fetching instructions from I$ in program order

 Problem 1: what if fetch block spans more than one I$ line

 Problem 2: together with a taken branch, non-executed
instructions may be stored in cache

Efficient Instruction Fetching (2)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

31

 Solution 1: Compiler optimizes code layout to place basic
blocks at good cache alignment
 problem: code generation becomes microarchitecture-dependent

 far from optimal

 Solution 2: Auto-realignment hardware

Efficient Instruction Fetching (3) [506]

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

32

 Alternative: trace cache
 instead of storing static instructions based on their address

 store dynamic instructions (traces) based on their address and on branch
outcomes, higher bandwidth can be obtained

Efficient Instruction Fetching (4)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

33

 Alternative: trace cache
 instead of storing static instructions based on their address

 store dynamic instructions (traces) based on their address and on branch
outcomes, higher bandwidth can be obtained

 fetch-time storing or completion-time storing

Efficient Instruction Fetching (5) [509]

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

34

 High frequency fetching

 many techniques to speculate where to fetch

 large tables of precise predictors are slow (multiple cycles)

 overriding branch predictors (©2000)

 very accurate predictors are complex and slow

 hence first use a simple, single-cycle predictor

 override it one or more cycles later by complex, multi-cycle predictor

Efficient Instruction Decoding (1) [195]

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

36

 Decoding determines
 what the individual instruction types in the fetch group are

 what their types are, operands, etc...

 identify dependencies & branch instructions

=> Comparators & multi-ported registers

 Complexity depends on
 ISA

 width of superscalar pipeline

 frequency to be obtained

 RISC: easy
 fixed instruction width

 limited nr of instruction types

 CISC: much more complex -> several stages

Efficient Instruction Decoding (2)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

36

 CISC instruction widths vary

 Hence decoding is very difficult

 Requires multiple pipeline stages

 Early on in pipeline -> bad for branch misprediction penalties

 Is very hard to parallelize (sequential dependence on width)

 Need to generate micro-ops

 Intel: micro-operations

 AMD: RISC operations

 Intel: 1.5 – 2 micro-ops/instruction

Intel P6

Efficient Instruction Decoding (3)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

37

 Alternative: predecoding [198]
 (partly) decode when instruction are brought in from memory

 Intel: trace cache in Pentium 4

 AMD: regular I$

 Pro:
 decoding only once (more or less)

 much easier decoding

 Con:
 larger caches

 higher cache-memory
latency

 RISC? Yes, also
 to identify branches

 independent ops in fetch block
AMD K5

Efficient Instruction Dispatching (1)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

38

 Routing instructions to functional units

 Decentralizes
 previous pipeline stages

are centralized

 FU pipelines are
decentralized

 Parallel
 types are already known

 Dispatch instructions to
 reservation station(s)

 temporary buffers

 waiting for operands

Efficient Instruction Dispatching (2)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

39

 Centralized reservation station

 Pro

 less blocking

 higher IPC

 Con

 long and complex wiring

 complex decision logic

 Example

 Intel Pentium Pro

Efficient Instruction Dispatching (3)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

40

 Distributed reservation station

 Pro

 smaller structure, less wiring

 simple decision logic

 low hardware complexity

 Con

 Worse overall utilization

 Saturation/blocking possible

 lower IPC

 Example

 IBM PowerPC 650

 Also combinations possible

Efficient Instruction Dispatching (4)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

41

 Terminology

 Dispatch

 push instruction into reservation station

 in OoO architecture: push into reorder buffer

 decentralized reservation stations: routing to correct station

 Issue

 select an instruction from reservation station

 start its execution in the functional unit (pipeline)

Acknowledgement

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 3

42

 Thanks for (parts of) slides

 Bjorn De Sutter

 Lieven Eeckhout

 Mikko H. Lipasti

 James C. Hoe

 John P. Shen

