
L E C T U R E 2 : M E M O R Y

M E M O R Y H I E R A R C H I E S

M E M O R Y D A T A F L O W

M E M O R Y A C C E S S O P T I M I Z A T I O N

J A N L E M E I R E

Advanced Computer
Architecture

1

Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2 12/10/2012

What is memory?

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

2

 Memory
 Just an “ocean of bits”

 Many technologies are available

 Key issues
 Technology (how bits are stored)

 Placement (where bits are stored)

 Identification (finding the right bits)

 Replacement (finding space for new bits)

 Write policy (propagating changes to bits)

 Must answer these regardless of memory type

Cf Von-Neumann model:
Random Access Memory

Ideal Memory

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

3

1. Infinite capacity

2. Infinite bandwidth

3. Zero latency

4. Persistence (non-volatility)

5. Very low implementation cost

6. Very low power consumption

 Non-existent ...

 But maintain the illusion…

Latency versus Bandwidth

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

4

 Latency

 a form of time

 time between issuing a request and receiving a response

 latency time = response time = service time + queueing time

 service time: minimum, depends on HW

 queueing time: time to get access to a resource, can be zero

 driven by technology, very difficult to improve (done by avoiding serialization)

 Bandwidth

 a form of quantity/time

 number of requests that can be handled, rate of request handling

 can be > 1/latency in case of concurrent handling of multiple requests

 raw or peak bandwidth: neglect all potential bottlenecks in system

 sustainable bandwidth: considers bottlenecks, but not necessarily real-life
access patterns

 driven by product cost, such as number of wires (trivially higher bandwidth)

Real Memories

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

5

Type Size Speed Cost/bit

Register < 1KB < 1ns €€€€

On-chip SRAM 8KB-6MB < 10ns €€€

Off-chip SRAM 1Mb – 16Mb < 20ns €€

DRAM 64MB – 1TB < 100ns €

Disk 40GB – 1PB < 20ms ~0
disclaimer:
numbers are several years old

Memory Hierarchy

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

6

 Try to place and access data as much as possible in
top of hierarchy

Registers

On-Chip
SRAM

Off-Chip
SRAM

DRAM

Disk

C
A
P
A
C
IT

Y
 a

n
d
 E

N
E
R
G

Y

S
P
E
E
D

 a
n
d
 C

O
S
T

Example: Intel Itanium

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

7

 800MHz

 L1 32KB (I- en D-)

 L2 96KB

 L3 4MB

 CPU core: 25M transistors

 Caches: 300M transistors
(denser)

Today: up to ¾ of die area is cache...

Example: Intel Core 2 Duo

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

8

Notice the big caches
but also all the small
memories (caches,
tables) inside the cores.

Example: AMD Barcelona

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

9

Locality and Caching (1)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

10

 Two forms of locality in most if not all programs

 temporal locality:
repeated accesses
to same data occurring

 close together in time

 spatial locality:
consecutive accesses
to neighbouring data

 Enables us to move data up in the hierarchy at run time to access it
there instead of in lower, slower, higher-energy memories: caches

 Can give us the impression of large, low latency, high bandwidth
memories

Locality & Caching (2)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

11

CPU

I & D L1 Cache

Shared L2 Cache

Main Memory

Disk

Temporal Locality
•Keep recently referenced
items at higher levels
 Future references

satisfied quickly

Spatial Locality
•Bring neighbors of recently
referenced to higher levels
 Future references

satisfied quickly

Terminology

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

12

 Hit: when some data is found in a memory

 Miss: when it is not, need to look in lower memory

 Results are miss and hit rates

 Global: for all levels down to a component

 Local: only for accesses that reach as deep as a component

 Example:

 Global hit rate L2$
 = local hit rate L1$ + local miss rate L1$ * local hit rate L2

 Latency = sum hit rate of level i * latency of level i

Multilevel Cache Hierarchies [574]

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

13

 Average access time with 1 cache level:

 hit_timeL1 + miss_rateL1 x latentieMEM

 Average access time with 2 cache levels:

 hit_timeL1 + miss_rateL1 x (hit_timeL2 + miss_rateL2 x latentieMEM)

 In other words: fewer accesses have to reach to main memory

 Is expensive in terms of hardware

Cache Organization

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

14

 Cache line or block size: granularity, in number of bytes
with which a cache copies data from lower levels

 Per line, tags store address of bytes stored in a line

 On access:

 hit if tags indicate that data at address is present

 miss if data is not present, is then fetched from lower level

 current data in cache needs to be evicted to make room

 maybe that data needs to be written back to memory

Cache Policies

 Policies for [p. 118]

A. Locating data

B. Evicting data

C. Handle data updates

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

15

(A) Locating data

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

16

 (a): direct mapped cache
 each address mapped to one cache line

 decoder extracts line from address bits

 tags indicate which address is on the cache line

 many-to-one mapping

 cheap, fast

 little flexibility in mapping

 lower IPC

(A) Locating data

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

17

 (b): fully associative cache
 each address can be mapped to all cache lines

 all locations must be searched for each access (many, expensive concurrent accesses)

 selection of data is time-consuming (large crossbar – multi input mux)

 many-to-many mapping

 Slow ?, complex yes, high energy consumption, but not slow

 high flexibility

 higher IPC

(A) Locating data

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

18

 (c): N-way set-associative cache
 each address can be mapped to a number of cache lines

 decoder extracts "set" of line from address bits, key is used to searched within the set

 selection of data is time-consuming (large crossbar – multi input mux)

 many-to-few mapping

 compromise between direct-mapped and fully associative

 the numbers of lines per set is also called the number of "ways": 2-way, 4-way, 8-way, ...

(B) Evicting data

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

19

 Replacement policy

 in case of associative caches, have to choose which way to evict and replace

 several options

 least-recently used (LRU) way is evicted

 excellent performance (IPC)

 very good model (for worst-case-execution-time estimation)

 difficult to implement

 not-most-recently-used (NMRU)

 performance close to LRU

 much simpler to implement (fewer bits, only remember MRU instead of total
order)

 not as easy to model as LRU

 random

 good average performance

 implemented with pseudo-random generator

 difficult to model

(C) Handle data updates

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

20

 Several options to handling updates to a block

 write-through

 pass each write to lower level immediately

 two options for writing to non present block

 write-allocate: fetch a block on a write

 write-no-allocate: do not fetch a block on a write

 write-no-allocate is better if streaming writes overwrite a full block without
reading from it

 write-back

 only write back data when you have to

 on eviction

 when another processor needs the data

 a dirty bit indicates whether data was changed and needs to be written back

 write-back most often used because much less bandwidth is needed

 write-through sometimes used when both levels are on chip and bandwidth
is available and cheap

Cache Organization: varia

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

21

 Caches may be shared or separate (non shared)

 shared includes code and data

 usually L1$ not shared, but L2$ shared

 because otherwise too many ports and too many conflicts

 Caches may be inclusive or exclusive

 inclusive

 L2$ contains all data that is in L1$

 loses some space

 line size may be different

 easier for coherency: external processors need to check only L2

 exclusive: data in L1$ is not in L2$

 save space

 must have same line size

Measuring Cache Performance (1)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

22

 Misses are categorized

 Cold or compulsary misses

 when a block or line is accessed for the first time

 fundamental, cannot be avoided by caching

 Capacity misses

 result from cache being too small, not fundamental

 Conflict misses

 result from small associativity or eviction policy

 not fundamental

 fully associative can eliminate all conflict misses assuming a perfect
eviction policy

Measuring Cache Performance (2)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

23

 How to measure?

 ma: #misses in the cache being measured

 mf: #misses in same cache, but fully associative

 mc: #misses in cache with same block size, but infinite and fully associative

 Then

 cold misses = mc

 capacity misses = mf –mc

 conflict misses = ma - mf

Main Memory: DRAM (1)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

24

 Memory wall: compared to the CPU, main memory is becoming slower
and slower

1

10

100

1,000

10,000

100,000

1980 1985 1990 1995 2000 2005 2010

Year

P
e

rf
o

rm
a

n
c

e

Memory

Processor

Main Memory: DRAM (2)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

25

 Access:
 First specify row address

 Load a row into the row buffer (=precharging)

 Then choose bytes with column address

 Data in row buffer can be reused (form of caching)

 Data needs to be refreshed

 Trends:
 better signaling

 synchronuous interface (SDRAM)

 use rising and falling clock edges
to double data rate (DDR)

 Data bus shared for reads and
writes => when they alternate,
have bus turnaround time

Main Memory: DRAM (3)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

26

 Interleaving (banking) and parallelism

1. serial access
 control signal selects a single

DRAM that outputs its data

 output data width limited to that of
a single DRAM module

 needs control signal wires

 can share other wires

2. parallel access
 addresses send to multiple components

 output data is concatenated to wider
word

 no control signal, sharing of other wires

3. interleaving
 multiple banks with separate control

 can handle independent accesses in parallel

 cost is extra controllers and wires

27

Virtual Memory (1)

 Programmer experiences 32-bit or 64-bit memory space, physical
memory is smaller than 264 bits

 Virtual memory system translates programmer's image (virtual
addresses) to real hardware (physical addresses)

 Gives impression that full virtual memory is available

 And does this concurrently for multiple processes, each with their own
full address space  time-sharing

 This requires the translation of virtual to physical addresses and
demand paging

 Older than caching (first paper in 1962)

 But is a form of caching, the same mechanism/principles

 different implementation, extra functionalities necessary

 12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

Virtual Memory (2)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

28

 Virtual memory is partitioned into pages (4K, 8K, ...)

 a page's data resides on disc or in main memory

 on access, processors verifies that page is in main memory

 if not, a page fault exception is raised

 operating system (OS) catches it, and fetches page into
physical page in memory

 if necessary, OS also evicts dirty page back to disc

 is called "demand paging"

 through lazy allocation

 CPU helps OS

 translation of addresses

 page faults

 OS helps CPU

 maintains a page table

Virtual Memory (3)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

29

 Replacement and eviction policy

 LRU is best, but too complex to implement (too many pages)

 approximated by clock algorithm

 cooperation between OS and CPU

 upon every access to a page, CPU sets "referenced bit"

 every so many milliseconds, OS clears reference bits

 when eviction is necessary, only pages with cleared bits are chosen

 alternative: FIFO or others, always rely on reference bits

 Access to backing store (disk, network) is slow

 process that has to wait will be put to sleep, other will get CPU

Virtual Memory (4)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

30

 Memory protection

 when multiple processes have pages in memory, they need to
protected from each other

 furthermore, it may be useful to share data up to some point,
but not anymore as soon as one process tries to update it

 read, write and execute access are set per page

 with bits like dirty bit, referenced bit

 cacheable bit: indicates whether or not a page can be cached

 is important for memory-mapped IO

 for simplicity of maintaining coherency

Virtual Memory (5)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

31

 Page tables

 OS maintains tables that store all relevant operation

 CPU uses those pages

 entries in page table look like this

Virtual Memory (6)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

32

 Implementation 1: Multilevel Forward Table

 Efficient for sparsely populated address space

 Only need leaf nodes in memory for pages actually in use

 but this can be more than the number of physical pages!

 Nodes can be stored on backing store themselves

 pageable page table, need OS support

 Large pages to avoid page tables as big as memory!

Page Table Base Register

Virtual Address

Physical Address

Virtual Memory (7)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

33

 Implementation 2: Inverted or hashed page tables

 Page table entries are now in a set (set-associative), needs to be searched

 Only entries for allocated pages are needed

 #entries = physical memory size/page size

 whole table always fits in memory, no paging of page table, no OS support for that

 Conflict misses: use second hash, and try there (rarely both fail)

 Problem: OS needs to store PTE's of non-allocated pages somewhere else

Virtual Address

usually XOR page table entry

Virtual Memory (8)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

34

 Translation Lookaside Buffer

 fully associative cache holding page table entries

 then hardware does not need to look in actual page tables

 Hardware-controlled cache of ‘cache’ map

 Two maintenance modes:

 software TLB miss handler

 on a miss in the TLB, an exception is raised

 on exception handler in the OS uses privileged instructions to
update the TLB

 hardware TLB miss handler

 hardware goes looking in the page tables itself

Memory Hierachy Implementation (1)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

35

 D$ and TLB combined

 Option 1: physically addressed D$

 Drawback: TLB access and D$ are serialized -> extra pipeline steps

Memory Hierachy Implementation (2)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

36

 Option 2: Virtually Indexed, Physically Tagged Caches

 Disadvantages

 Page size equals the size of one way

 Hence direct-mapped cache cannot be bigger than a page

 Can only become bigger by adding associativity, which increases latency (problematic
for L1$)



physical page number!

Memory Flow in OoO Processors [5.3]

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

37

 BASIC addressing mode
 base register + immediate offset

 LOAD: Typically three steps
1. add base address and offset

2. TLB access (may cause miss)

3. load access (may cause miss)

 STORE: Two pipeline steps
1. add base address and offset

2. TLB access (may cause miss)

Then the data is written in the store buffer

and in the reorder buffer. When it leaves

the reorder buffer (in order), the instruction

is considered completed, and the store

buffer is informed that the data can actually

be written to memory (i.e, retiring, in order).

Speculative operation is not a problem since

speculative instructions do not retire.

Architecturally completed

instruction: in processor

completed in system

Data dependencies through memory

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

38

 Same as ordinary data dependencies when accessing same address
 RAW, WAW, WAR

 In-order execution of load/stores is simple

 Out-of-order execution is better, but more complex

 WAW and WAR dependencies are not a problem because of in-order
retirement

 RAW may be a problem ...

 Goal:
Try to avoid that a load needs to wait for all stores to be completed

 Idea: dependency means that data is at CPU!

Load/Store Reordering

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

39

 To recover from exceptions, writes need to be retired in order

 Is also best for sequential consistency model in multithreaded
programs

 sequential consistency model requires that all threads see all changes to the
shared memory in program order

 WAW and WAR are no problem when writes retire in program order

 Again, RAW data dependencies remain to be enforced

 Problem: unlike for register renaming, RAW dependencies are not
known after decoding the instruction

Load Bypassing

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

40

 Goal: execute loads out-of-order, as early as possible
 they are usually followed immediately by uses of the loaded value

 Load bypassing: execute a load before previous store
 all stores in flight are in store buffer

 so check the store buffer for aliasing (write addresses are present in store buffer)

 check (matching) can be on fewer bits, a bit pessimistic, but no problem in practice

may be speculative
 instructions

instructions complete
by reorder buffer

+11-19%

Load Forwarding

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

41

 If match is found in store buffer

 forward value instead of just blocking the load

 matching requires full addresses now

 ordering mechanism for when multiple stores are in store buffer, may be of
different sized data

gains:
11%-19% for load bypassing
1%-4% extra for load forwarding

+1-4%

Multiported Caches [273]

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

42

 When width of superscalar increases, memory accesses become a bottleneck.

 Three implementations for multiported caches

 true multiported memory: very expensive and slow and power hungry, no conflicts
whatsoever

 duplicate caches: is expensive, but no conflicts in reading

 cache banks: is cheaper (no duplication), but conflict resolution required

Pipelined Caches

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

43

 Alternative to multiported caches

 Pro

 less hardware

 Con

 dependences may cause blocking

 This is the current trend

Non-blocking Caches [274]

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

44

 Instead of blocking the loads unit pipeline on a cache miss, put load in a load
missed load queue where it waits for the cache to fetch the data.

 In the mean time, other loads can be handled => overlap load miss penalties

 Complication: caches misses come in bursts => handled in pipelined fashion

 Must cache misses of speculative loads be handled? Trade-off with memory
bandwidth

+15%

Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2 12/10/2012

45

THE OTHER PROBLEM:
COLD MISSES

Prefetching Caches [275]

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

46

 Memory reference
prediction table stores
 load instruction address

 previous data address

 stride of previous accesses

 Stride + current data
address is a good guess
for the next execution of
this instruction

 current data address
- previous data address
becomes new stride

 Prefetch queue steers
prefetching of data (with
low priority).

 Take care not to pollute
the cache or evict data too early.

Prefetching Stream Buffers

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

47

 On cache miss, also fetch the next block, and store this in a
stream buffer

 If a later load accesses the data in the stream buffer, it was a
correct prediction, so again load the next block, storing the
current one in the cache

 Multiple stream buffers are possible

Load address prediction [277]

 Issue speculative load instruction with predicted
address

 As soon as new load instruction is encountered

 No need to wait for decoding, dispatching and
register values to be available

 Instructions dependent on this data won’t have to
wait

 Prefetching Cache technique: instruction still needs
to be executed

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

48

49

Software Prefetching

 Add instructions to ISA that
 do not load data into a register

 but only load it into the cache

 Faulting or non-faulting
 Typically non-faulting

 Extra instructions do cause overhead

 Is often useful when combined with software pipelining,
loop unrolling, ... where multiple iterations of a loop are
intertwined and addresses are hence known upfront

 Usefulness depends (as with all data prefetching) on access
patterns: direct array accesses in regular loop are easier to
predict than iterating through a linked list

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2 12/10/2012

50

FURTHER CACHE
OPTIMIZATIONS &

ISSUES TO CONSIDER

Efficient Cache loading

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

51

 At level 1, cache lines are typically 32 to 128 bytes wide

 Data accesses are typically less than 8 bytes wide

 Accessed data may not be first in a cache line

 Two techniques

 Early restart

 As soon as the requested word of the block arrives, send it to the CPU and
let the CPU continue execution

 Spatial locality  tend to want next sequential word, so the benefit of just
early restart is not clear

 Critical word first

 fetch the accessed data first, send it to the CPU immediately, and then
fetch the rest of the block

 widely used now that cache blocks are larger

Cache Access Prioritization

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

52

 Give priority to load cache misses over stores

 Write-through D-cache

 To avoid blocking: write buffer (not the same as store buffer)

 Store data to be written temporarily until bus is available

 On load miss, first check the write buffer for data

 Write-back D-cache

 Suppose load-miss results in eviction that requires write-back

 First write-back and then load? Nope

 Instead: copy write-back block to write buffer, fetch new block, and then
write from write buffer to memory

Merged Writing of Cached Data

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

53

 Merging Write Buffer

 Write buffer to allow processor to continue while waiting to write to
memory

 If buffer contains modified blocks, the addresses can be checked to
see if address of new data matches the address of a valid write
buffer entry

 If so, new data are combined with that entry

 This way, separate narrow writes are merged into single wider
writes, which are more efficient (bus-contention, ...) and result in
less blockings caused by a full write buffer

 The Sun T1 (Niagara) processor, among many others, uses write
merging

Victim Caches

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

54

 Small, fully associative cache

 Blocks that are evicted from a cache are stored in the victim
cache

 On L1 cache miss

 first look at victim cache

 victim cache hit: swap blocks in L1 cache and victim cache

 victim cache miss: access main memory

 Intended to reduce the number of conflict misses

 In AMD Athlon: victim cache with 8 elements

Cache Line Size Tuning

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

55

 Larger blocks exploit spatial locality more
 eliminates cold misses

 at the cost of higher miss latency

 with fixed total size: larger blocks are at the cost of number of sets or
associativity, hence more conflict and capacity misses

 For fixed cache sizes, optimal line sizes exist

 Solution: vary it over the different cache levels
 For example

 32-128 bytes for L1

 64-256 bytes for L2

Cache Size Tuning

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

56

 Bigger caches are the trend these days because of

 increasing gap between processor and memory clock frequencies
(memory wall)

 higher number of transistors that is available

 For example, 6MB L3 cache on chip (Intel Itanium 2)

 But

 it has a high cost

 larger sized caches are slower (can be compensated with banking)

Cache Associativity Tuning

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

57

 Higher associativity is usually better for hit rate

 2:1 rule

 A direct-mapped cache with size N has a comparable miss rate to a 2-
way set-associative cache of size N/2

 Drawback

 Higher associativity results in larger hit time, which might be a
problem for the clock frequency

Compiler Optimization (1)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

58

 For code caches

 determine code such that frequently executed code does not
cause conflicts in cache

 align basic blocks at cache block boundaries

 Also for data compiler optimizations exist

 goal is usually to increase temporal locality

 avoid long live ranges (time over which a value needs to be kept
somewhere)

 make reuse distance smaller (this is the numbers of other locations
accessed between two accesses to one location), larger reuse
distance increases the risk for eviction

 sometimes to increase spatial locality

Compiler Optimization (2)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

59

 Loop interchange

 Inner loop has better spatial locality

 /* before */

 for (j = 0; j < 100; j++)

 for (i = 0; i < 5000; i++)

 x [i][j] = 2 * x [i][j];

 /* after */

 for (i = 0; i < 5000; i++)

 for (j = 0; j < 100; j++)

 x [i][j] = 2 * x [i][j];

Compiler Optimization (3)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

60

 Loop tiling

 "Before" iterates N times over N elements of array b

 "After" iterates N/T * N/T * T times over T elements of array B

 "After" has reuse distance T within b, while "Before" has reuse distance N

 In other words: T elements might fit in cache when N do not

/* before */

for (i=0; i<N; i++)

 for (j=0; j<N; j++)

 c[i] = c[i]+ a[i,j]*b[j];

/* after */

for (i=0; i<N; i+=T)

 for (j=0; j<N; j+=T)

 for (ii=i; ii<min(i+T,N); ii++)

 for (jj=j; jj<min(j+T,N); jj++)

 c[ii] =c[ii]+ a[ii,jj]*b[jj];

Exercise

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

61

 We have seen a huge number of hardware and software techniques

 Categorize each of them under one or more of the following qualifiers:

 reduces hit latency

 reduces miss latency

 reduces load latency in front-end of the pipeline

 reduces load latency in the back-end of the pipeline

 increases bandwidth

 hides miss latency

 lowers miss rates

 ...

 You may also add other useful qualifiers.

 This exercise is useful to see how all aspects of memory behavior are
being optimized, and it presents insights in the cooperation of all
techniques.

Acknowledgement

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

62

 Thanks for (parts of) slides

 Bjorn De Sutter

 Lieven Eeckhout

 Mikko H. Lipasti

 James C. Hoe

 John P. Shen

 Per Lindgren

