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What is memory? 
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 Memory 
 Just an “ocean of bits” 

 Many technologies are available 

 Key issues 
 Technology (how bits are stored) 

 Placement (where bits are stored) 

 Identification (finding the right bits) 

 Replacement (finding space for new bits) 

 Write policy (propagating changes to bits) 

 
 Must answer these regardless of memory type 
 

 

Cf Von-Neumann model: 
Random Access Memory 



Ideal Memory 
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1. Infinite capacity 

2. Infinite bandwidth 

3. Zero latency 

4. Persistence (non-volatility) 

5. Very low implementation cost 

6. Very low power consumption 

 

 Non-existent ... 

 But maintain the illusion… 



Latency versus Bandwidth 
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 Latency 

 a form of time  

 time between issuing a request and receiving a response 

 latency time = response time = service time + queueing time 

 service time: minimum, depends on HW 

 queueing time: time to get access to a resource, can be zero 

 driven by technology, very difficult to improve (done by avoiding serialization) 

 Bandwidth 

 a form of quantity/time 

 number of requests that can be handled, rate of request handling  

 can be > 1/latency in case of concurrent handling of multiple requests 

 raw or peak bandwidth: neglect all potential bottlenecks in system 

 sustainable bandwidth: considers bottlenecks, but not necessarily real-life 
access patterns 

 driven by product cost, such as number of wires (trivially higher bandwidth) 



Real Memories 
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Type Size Speed Cost/bit 

Register < 1KB < 1ns €€€€ 

On-chip SRAM 8KB-6MB < 10ns €€€ 

Off-chip SRAM 1Mb – 16Mb < 20ns €€ 

DRAM 64MB – 1TB < 100ns € 

Disk 40GB – 1PB < 20ms ~0 
disclaimer: 
numbers are several years old 



Memory Hierarchy 
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 Try to place and access data as much as possible in 
top of hierarchy 

Registers 
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Example: Intel Itanium 
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 800MHz 

 L1 32KB (I- en D-) 

 L2 96KB 

 L3 4MB 

 CPU core: 25M transistors 

 Caches: 300M transistors 
(denser) 

 

Today: up to ¾ of die area is cache... 



Example: Intel Core 2 Duo 
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Notice the big caches 
but also all the small  
memories (caches, 
tables) inside the cores. 



Example: AMD Barcelona 
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Locality and Caching (1) 
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 Two forms of locality in most if not all programs 

 

 temporal locality: 
repeated accesses 
to same data occurring  

 close together in time 

 

 spatial locality: 
consecutive accesses 
to neighbouring data 

 

 Enables us to move data up in the hierarchy at run time to access it 
there instead of in lower, slower, higher-energy memories: caches 

 Can give us the impression of large, low latency, high bandwidth 
memories 



Locality & Caching (2) 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2 

11 

CPU 

I & D L1 Cache 

Shared L2 Cache 

Main Memory 

Disk 

Temporal Locality 
•Keep recently referenced 
items at higher levels 
 Future references 

satisfied quickly 

Spatial Locality 
•Bring neighbors of recently 
referenced to higher levels 
 Future references 

satisfied quickly 



Terminology 
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 Hit: when some data is found in a memory 

 Miss: when it is not, need to look in lower memory 

 Results are miss and hit rates 

 

 Global: for all levels down to a component 

 Local: only for accesses that reach as deep as a component 

 

 Example:  

 Global hit rate L2$  
       = local hit rate L1$ + local miss rate L1$ * local hit rate L2 

 Latency = sum hit rate of level i * latency of level i 



Multilevel Cache Hierarchies [574] 
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 Average access time with 1 cache level: 
 

  hit_timeL1 + miss_rateL1 x latentieMEM 

 

 Average access time with 2 cache levels: 

 

 hit_timeL1 + miss_rateL1 x (hit_timeL2 + miss_rateL2 x latentieMEM) 

 

 In other words: fewer accesses have to reach to main memory 

 Is expensive in terms of hardware 

 



Cache Organization 
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 Cache line or block size: granularity, in number of bytes 
with which a cache copies data from lower levels 

 Per line, tags store address of bytes stored in a line 

 On access:  

 hit if tags indicate that data at address is present 

 miss if data is not present, is then fetched from lower level 

 current data in cache needs to be evicted to make room 

 maybe that data needs to be written back to memory 
 



Cache Policies 

 Policies for [p. 118] 

A. Locating data 

B. Evicting data 

C. Handle data updates 
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(A) Locating data 
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 (a): direct mapped cache 
 each address mapped to one cache line 

 decoder extracts line from address bits 

 tags indicate which address is on the cache line 

 many-to-one mapping 

 cheap, fast 

 little flexibility in mapping 

 lower IPC 



(A) Locating data 
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 (b): fully associative cache 
 each address can be mapped to all cache lines 

 all locations must be searched for each access (many, expensive concurrent accesses) 

 selection of data is time-consuming (large crossbar – multi input mux) 

 many-to-many mapping 

 Slow ?, complex yes, high energy consumption, but not slow 

 high flexibility 

 higher IPC 



(A) Locating data 
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 (c): N-way set-associative cache 
 each address can be mapped to a number of cache lines 

 decoder extracts "set" of line from address bits, key is used to searched within the set 

 selection of data is time-consuming (large crossbar – multi input mux) 

 many-to-few mapping 

 compromise between direct-mapped and fully associative 

 the numbers of lines per set is also called the number of "ways": 2-way, 4-way, 8-way, ... 



(B) Evicting data 
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 Replacement policy 

 in case of associative caches, have to choose which way to evict and replace 

 several options 

 least-recently used (LRU) way is evicted  

 excellent performance (IPC) 

 very good model (for worst-case-execution-time estimation) 

 difficult to implement 

 not-most-recently-used (NMRU) 

 performance close to LRU 

 much simpler to implement (fewer bits, only remember MRU instead of total 
order) 

 not as easy to model as LRU 

 random 

 good average performance 

 implemented with pseudo-random generator 

 difficult to model 

 

 



(C) Handle data updates  
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 Several options to handling updates to a block 

 write-through 

 pass each write to lower level immediately 

 two options for writing to non present block 

 write-allocate: fetch a block on a write 

 write-no-allocate: do not fetch a block on a write 

 write-no-allocate is better if streaming writes overwrite a full block without 
reading from it 

 write-back 

 only write back data when you have to 

 on eviction 

 when another processor needs the data 

 a dirty bit indicates whether data was changed and needs to be written back 

 write-back most often used because much less bandwidth is needed 

 write-through sometimes used when both levels are on chip and bandwidth 
is available and cheap  

 



Cache Organization: varia 
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 Caches may be shared or separate (non shared) 

 shared includes code and data 

 usually L1$ not shared, but L2$ shared 

 because otherwise too many ports and too many conflicts 

 Caches may be inclusive or exclusive 

 inclusive 

 L2$ contains all data that is in L1$ 

 loses some space 

 line size may be different 

 easier for coherency: external processors need to check only L2 

 exclusive: data in L1$ is not in L2$ 

 save space 

 must have same line size 

 

 



Measuring Cache Performance (1) 
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 Misses are categorized 

 Cold or compulsary misses 

 when a block or line is accessed for the first time 

 fundamental, cannot be avoided by caching 

 Capacity misses 

 result from cache being too small, not fundamental 

 Conflict misses 

 result from small associativity or eviction policy 

 not fundamental 

 fully associative can eliminate all conflict misses assuming a perfect 
eviction policy 

 



Measuring Cache Performance (2) 
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 How to measure? 

 ma: #misses in the cache being measured 

 mf: #misses in same cache, but fully associative 

 mc: #misses in cache with same block size, but infinite and fully associative 

 Then 

 cold misses = mc 

 capacity misses = mf –mc 

 conflict misses = ma - mf 

 



Main Memory: DRAM (1) 
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 Memory wall: compared to the CPU, main memory is becoming slower 
and slower 
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Main Memory: DRAM (2) 
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 Access: 
 First specify row address 

 Load a row into the row buffer (=precharging) 

 Then choose bytes with column address 

 Data in row buffer can be reused (form of caching) 

 Data needs to be refreshed 

 

 Trends: 
 better signaling 

 synchronuous interface (SDRAM) 

 use rising and falling clock edges 
to double data rate (DDR) 

 

 Data bus shared for reads and  
writes => when they alternate, 
have bus turnaround time 



Main Memory: DRAM (3) 
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 Interleaving (banking) and parallelism 

1. serial access 
 control signal selects a single  

DRAM that outputs its data 

 output data width limited to that of  
a single DRAM module 

 needs control signal wires 

 can share other wires 

2. parallel access 
 addresses send to multiple components 

 output data is concatenated to wider 
word 

 no control signal, sharing of other wires 

3. interleaving 
 multiple banks with separate control 

 can handle independent accesses in parallel 

 cost is extra controllers and wires 
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Virtual Memory (1) 

 Programmer experiences 32-bit or 64-bit memory space, physical 
memory is smaller than 264 bits 

 Virtual memory system translates programmer's image (virtual 
addresses) to real hardware (physical addresses) 

 Gives impression that full virtual memory is available 

 And does this concurrently for multiple processes, each with their own 
full address space  time-sharing 

 This requires the translation of virtual to physical addresses and 
demand paging 

 Older than caching (first paper in 1962) 

 But is a form of caching, the same mechanism/principles 

 different implementation, extra functionalities necessary 
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Virtual Memory (2) 
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 Virtual memory is partitioned into pages (4K, 8K, ...) 

 a page's data resides on disc or in main memory 

 on access, processors verifies that page is in main memory 

 if not, a page fault exception is raised 

 operating system (OS) catches it, and fetches page into 
physical page in memory 

 if necessary, OS also evicts dirty page back to disc 

 is called "demand paging" 

 through lazy allocation 

 CPU helps OS  

 translation of addresses 

 page faults 

 OS helps CPU 

 maintains a page table 

 



Virtual Memory (3) 
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 Replacement and eviction policy 

 LRU is best, but too complex to implement (too many pages) 

 approximated by clock algorithm 

 cooperation between OS and CPU 

 upon every access to a page, CPU sets "referenced bit" 

 every so many milliseconds, OS clears reference bits 

 when eviction is necessary, only pages with cleared bits are chosen 

 alternative: FIFO or others, always rely on reference bits 

 

 Access to backing store (disk, network) is slow 

 process that has to wait will be put to sleep, other will get CPU 



Virtual Memory (4) 
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 Memory protection 

 when multiple processes have pages in memory, they need to 
protected from each other 

 furthermore, it may be useful to share data up to some point, 
but not anymore as soon as one process tries to update it 

 

 read, write and execute access are set per page 

 with bits like dirty bit, referenced bit 

 cacheable bit: indicates whether or not a page can be cached 

 is important for memory-mapped IO 

 for simplicity of maintaining coherency 



Virtual Memory (5) 
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 Page tables 

 OS maintains tables that store all relevant operation 

 CPU uses those pages 

 entries in page table look like this 



Virtual Memory (6) 
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 Implementation 1: Multilevel Forward Table 

 

 

 

 

 

 

 

 

 Efficient for sparsely populated address space  

 Only need leaf nodes in memory for pages actually in use 

 but this can be more than the number of physical pages! 

 Nodes can be stored on backing store themselves 

 pageable page table, need OS support 

 Large pages to avoid page tables as big as memory! 

Page Table Base Register 

Virtual Address 

Physical  Address 



Virtual Memory (7) 
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 Implementation 2: Inverted or hashed page tables 

 

 

 

 

 

 

 
 

 

 Page table entries are now in a set (set-associative), needs to be searched 

 Only entries for allocated pages are needed 

 #entries = physical memory size/page size 

 whole table always fits in memory, no paging of page table, no OS support for that 

 Conflict misses: use second hash, and try there (rarely both fail) 

 Problem: OS needs to store PTE's of non-allocated pages somewhere else  

Virtual Address 

usually XOR page table entry 



Virtual Memory (8) 
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 Translation Lookaside Buffer 

 fully associative cache holding page table entries 

 then hardware does not need to look in actual page tables 

 Hardware-controlled cache of ‘cache’ map 

 Two maintenance modes: 

 software TLB miss handler 

 on a miss in the TLB, an exception is raised  

 on exception handler in the OS uses privileged instructions to 
update the TLB 

 hardware TLB miss handler 

 hardware goes looking in the page tables itself 



Memory Hierachy Implementation (1) 
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 D$ and TLB  combined 

 Option 1: physically addressed D$ 

 

 

 

 

 

 

 
 

 

 Drawback: TLB access and D$ are serialized -> extra pipeline steps 



Memory Hierachy Implementation (2) 
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 Option 2: Virtually Indexed, Physically Tagged Caches 

 

 

 

 

 

 
 Disadvantages 

 Page size equals the size of one way 

 Hence direct-mapped cache cannot be bigger than a page 

 Can only become bigger by adding associativity, which increases latency (problematic 
for L1$) 

   

 

physical page number! 



Memory Flow in OoO Processors [5.3] 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2 

37 

 BASIC addressing mode 
 base register + immediate offset 

 LOAD: Typically three steps 
1. add base address and offset 

2. TLB access (may cause miss) 

3. load access (may cause miss) 

 

 STORE: Two pipeline steps 
1. add base address and offset 

2. TLB access (may cause miss) 

 

Then the data is written in the store buffer 

and in the reorder buffer. When it leaves 

the reorder buffer (in order), the instruction 

is considered completed, and the store  

buffer is informed that the data can actually 

be written to memory (i.e, retiring, in order). 

Speculative operation is not a problem since 

speculative instructions do not retire. 

 

Architecturally completed 

instruction: in processor 

completed in system 



Data dependencies through memory 
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 Same as ordinary data dependencies when accessing same address 
 RAW, WAW, WAR 

 In-order execution of load/stores is simple 

 Out-of-order execution is better, but more complex 

 WAW and WAR dependencies are not a problem because of in-order 
retirement 

 RAW may be a problem ... 

 

 Goal: 
Try to avoid that a load needs to wait for all stores to be completed 

 

 Idea: dependency means that data is at CPU! 



Load/Store Reordering 
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 To recover from exceptions, writes need to be retired in order 

 

 Is also best for sequential consistency model in multithreaded 
programs 

 sequential consistency model requires that all threads see all changes to the 
shared memory in program order 

 

 WAW and WAR are no problem when writes retire in program order 

 

 Again, RAW data dependencies remain to be enforced 

 

 Problem: unlike for register renaming, RAW dependencies are not 
known after decoding the instruction 



Load Bypassing 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2 

40 

 Goal: execute loads out-of-order, as early as possible 
 they are usually followed immediately by uses of the loaded value 

 

 

 

 

 

 

 

 

 

 

 Load bypassing: execute a load before previous store 
 all stores in flight are in store buffer 

 so check the store buffer for aliasing (write addresses are present in store buffer) 

 check (matching) can be on fewer bits, a bit pessimistic, but no problem in practice 

 

may be speculative 
 instructions 

instructions complete  
by reorder buffer 

+11-19% 



Load Forwarding 
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 If match is found in store buffer 

 forward value instead of just blocking the load 

 matching requires full addresses now 

 ordering mechanism for when multiple stores are in store buffer, may be of 
different sized data 

 

gains:  
11%-19% for load bypassing 
1%-4% extra for load forwarding 

+1-4% 



Multiported Caches [273] 
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 When width of superscalar increases, memory accesses become a bottleneck. 

 

 

 

 

 

 

 

 

 

 Three implementations for multiported caches 

 true multiported memory: very expensive and slow and power hungry, no conflicts 
whatsoever 

 duplicate caches: is expensive, but no conflicts in reading 

 cache banks: is cheaper (no duplication), but conflict resolution required 



Pipelined Caches 
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 Alternative to multiported caches 

 Pro 

 less hardware 

 Con 

 dependences may cause blocking 

 

 This is the current trend  

 



Non-blocking Caches [274] 

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2 

44 

 Instead of blocking the loads unit pipeline on a cache miss, put load in a load 
missed load queue where it waits for the cache to fetch the data. 

 In the mean time, other loads can be handled => overlap load miss penalties  

 

 

 

 

 

 

 

 

 

 Complication: caches misses come in bursts => handled in pipelined fashion 

 Must cache misses of speculative loads be handled? Trade-off with memory 
bandwidth 

+15% 



Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2 12/10/2012 

45 

THE OTHER PROBLEM: 
COLD MISSES 



Prefetching Caches [275] 
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 Memory reference 
prediction table stores 
 load instruction address 

 previous data address 

 stride of previous accesses 

 Stride + current data  
address is a good guess 
for the next execution of  
this instruction 

 current data address 
- previous data address 
becomes new stride 

 Prefetch queue steers 
prefetching of data (with 
low priority). 

 Take care not to pollute 
the cache or evict data too early. 

 



Prefetching Stream Buffers 
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 On cache miss, also fetch the next block, and store this in a 
stream buffer 

 If a later load accesses the data in the stream buffer, it was a 
correct prediction, so again load the next block, storing the 
current one in the cache 

 Multiple stream buffers are possible 



Load address prediction [277] 

 Issue speculative load instruction with predicted 
address 

 As soon as new load instruction is encountered 

 No need to wait for decoding, dispatching and 
register values to be available 

 Instructions dependent on this data won’t have to 
wait 

 Prefetching Cache technique: instruction still needs 
to be executed 
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Software Prefetching 

 Add instructions to ISA that  
 do not load data into a register 

 but only load it into the cache 

 Faulting or non-faulting 
 Typically non-faulting 

 Extra instructions do cause overhead 

 Is often useful when combined with software pipelining, 
loop unrolling, ... where multiple iterations of a loop are 
intertwined and addresses are hence known upfront 

 

 Usefulness depends (as with all data prefetching) on access 
patterns: direct array accesses in regular loop are easier to 
predict than iterating through a linked list 
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FURTHER CACHE 
OPTIMIZATIONS & 

ISSUES TO CONSIDER 



Efficient Cache loading 
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 At level 1, cache lines are typically 32 to 128 bytes wide 

 Data accesses are typically less than 8 bytes wide 

 Accessed data may not be first in a cache line 

 Two techniques 

 Early restart 

 As soon as the requested word of the block arrives, send it to the CPU and 
let the CPU continue execution 

 Spatial locality  tend to want next sequential word, so the benefit of just 
early restart is not clear 

 Critical word first 

 fetch the accessed data first, send it to the CPU immediately, and then 
fetch the rest of the block 

 widely used now that cache blocks are larger 

 



Cache Access Prioritization 
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 Give priority to load cache misses over stores 

 

 Write-through D-cache 

 To avoid blocking: write buffer (not the same as store buffer) 

 Store data to be written temporarily until bus is available 

 On load miss, first check the write buffer for data 

 

 Write-back D-cache 

 Suppose load-miss results in eviction that requires write-back 

 First write-back and then load? Nope 

 Instead: copy write-back block to write buffer, fetch new block, and then 
write from write buffer to memory 

 



Merged Writing of Cached Data 
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 Merging Write Buffer 

 Write buffer to allow processor to continue while waiting to write to 
memory 

 If buffer contains modified blocks, the addresses can be checked to 
see if address of new data matches the address of a valid write 
buffer entry  

 If so, new data are combined with that entry 

 This way, separate narrow writes are merged into single wider 
writes, which are more efficient (bus-contention, ...) and result in 
less blockings caused by a full write buffer 

 The Sun T1 (Niagara) processor, among many others, uses write 
merging 
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 Small, fully associative cache 

 Blocks that are evicted from a cache are stored in the victim 
cache  

 On L1 cache miss 

 first look at victim cache 

 victim cache hit: swap blocks in L1 cache and victim cache 

 victim cache miss: access main memory 

 Intended to reduce the number of conflict misses 

 In AMD Athlon: victim cache with 8 elements 
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 Larger blocks exploit spatial locality more 
 eliminates cold misses 

 at the cost of higher miss latency 

 with fixed total size: larger blocks are at the cost of number of sets or 
associativity, hence more conflict and capacity misses 

 

 For fixed cache sizes, optimal line sizes exist 

 

 Solution: vary it over the different cache levels 
 For example 

 32-128 bytes for L1 

 64-256 bytes for L2 
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 Bigger caches are the trend these days because of 

 increasing gap between processor and memory clock frequencies 
(memory wall) 

 higher number of transistors that is available 

 For example, 6MB L3 cache on chip (Intel Itanium 2) 

 But  

 it has a high cost 

 larger sized caches are slower (can be compensated with banking) 
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 Higher associativity is usually better for hit rate 

 2:1 rule 

 A direct-mapped cache with size N has a comparable miss rate to a 2-
way set-associative cache of size N/2 

 Drawback 

 Higher associativity results in larger hit time, which might be a 
problem for the clock frequency 
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 For code caches 

 determine code such that frequently executed code does not 
cause conflicts in cache 

 align basic blocks at cache block boundaries 

 Also for data compiler optimizations exist 

 goal is usually to increase temporal locality 

 avoid long live ranges (time over which a value needs to be kept 
somewhere) 

 make reuse distance smaller (this is the numbers of other locations 
accessed between two accesses to one location), larger reuse 
distance increases the risk for eviction 

 sometimes to increase spatial locality 

 



Compiler Optimization (2) 
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 Loop interchange 

 

 

 

 

 

 

 

 Inner loop has better spatial locality 

  /* before */ 

  for (j = 0; j < 100; j++) 

     for (i = 0; i < 5000; i++)  

        x [i][j] = 2 * x [i][j]; 

 

 

  /* after */ 

  for (i = 0; i < 5000; i++) 

     for (j = 0; j < 100; j++)  

        x [i][j] = 2 * x [i][j]; 



Compiler Optimization (3) 
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 Loop tiling 

 

 

 

 

 

 

 

 

 "Before" iterates N times over N elements of array b 

 "After" iterates N/T * N/T * T times over T elements of array B 

 "After" has reuse distance T within b, while "Before" has reuse distance N 

 In other words: T elements might fit in cache when N do not 

/* before */ 

for (i=0; i<N; i++) 

    for (j=0; j<N; j++) 

        c[i] = c[i]+ a[i,j]*b[j]; 

/* after */ 

for (i=0; i<N; i+=T) 

    for (j=0; j<N; j+=T) 

        for (ii=i; ii<min(i+T,N); ii++) 

            for (jj=j; jj<min(j+T,N); jj++) 

                c[ii] =c[ii]+ a[ii,jj]*b[jj]; 
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 We have seen a huge number of hardware and software techniques 

 Categorize each of them under one or more of the following qualifiers:  

 reduces hit latency 

 reduces miss latency 

 reduces load latency in front-end of the pipeline 

 reduces load latency in the back-end of the pipeline 

 increases bandwidth 

 hides miss latency 

 lowers miss rates 

 ... 

 You may also add other useful qualifiers. 

 This exercise is useful to see how all aspects of memory behavior are 
being optimized, and it presents insights in the cooperation of all 
techniques. 
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