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What is memory? 
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 Memory 
 Just an “ocean of bits” 

 Many technologies are available 

 Key issues 
 Technology (how bits are stored) 

 Placement (where bits are stored) 

 Identification (finding the right bits) 

 Replacement (finding space for new bits) 

 Write policy (propagating changes to bits) 

 
 Must answer these regardless of memory type 
 

 

Cf Von-Neumann model: 
Random Access Memory 



Ideal Memory 
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1. Infinite capacity 

2. Infinite bandwidth 

3. Zero latency 

4. Persistence (non-volatility) 

5. Very low implementation cost 

6. Very low power consumption 

 

 Non-existent ... 

 But maintain the illusion… 



Latency versus Bandwidth 
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 Latency 

 a form of time  

 time between issuing a request and receiving a response 

 latency time = response time = service time + queueing time 

 service time: minimum, depends on HW 

 queueing time: time to get access to a resource, can be zero 

 driven by technology, very difficult to improve (done by avoiding serialization) 

 Bandwidth 

 a form of quantity/time 

 number of requests that can be handled, rate of request handling  

 can be > 1/latency in case of concurrent handling of multiple requests 

 raw or peak bandwidth: neglect all potential bottlenecks in system 

 sustainable bandwidth: considers bottlenecks, but not necessarily real-life 
access patterns 

 driven by product cost, such as number of wires (trivially higher bandwidth) 



Real Memories 
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Type Size Speed Cost/bit 

Register < 1KB < 1ns €€€€ 

On-chip SRAM 8KB-6MB < 10ns €€€ 

Off-chip SRAM 1Mb – 16Mb < 20ns €€ 

DRAM 64MB – 1TB < 100ns € 

Disk 40GB – 1PB < 20ms ~0 
disclaimer: 
numbers are several years old 



Memory Hierarchy 
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 Try to place and access data as much as possible in 
top of hierarchy 
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Example: Intel Itanium 
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 800MHz 

 L1 32KB (I- en D-) 

 L2 96KB 

 L3 4MB 

 CPU core: 25M transistors 

 Caches: 300M transistors 
(denser) 

 

Today: up to ¾ of die area is cache... 



Example: Intel Core 2 Duo 
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Notice the big caches 
but also all the small  
memories (caches, 
tables) inside the cores. 



Example: AMD Barcelona 
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Locality and Caching (1) 
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 Two forms of locality in most if not all programs 

 

 temporal locality: 
repeated accesses 
to same data occurring  

 close together in time 

 

 spatial locality: 
consecutive accesses 
to neighbouring data 

 

 Enables us to move data up in the hierarchy at run time to access it 
there instead of in lower, slower, higher-energy memories: caches 

 Can give us the impression of large, low latency, high bandwidth 
memories 



Locality & Caching (2) 
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CPU 

I & D L1 Cache 

Shared L2 Cache 

Main Memory 

Disk 

Temporal Locality 
•Keep recently referenced 
items at higher levels 
 Future references 

satisfied quickly 

Spatial Locality 
•Bring neighbors of recently 
referenced to higher levels 
 Future references 

satisfied quickly 



Terminology 
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 Hit: when some data is found in a memory 

 Miss: when it is not, need to look in lower memory 

 Results are miss and hit rates 

 

 Global: for all levels down to a component 

 Local: only for accesses that reach as deep as a component 

 

 Example:  

 Global hit rate L2$  
       = local hit rate L1$ + local miss rate L1$ * local hit rate L2 

 Latency = sum hit rate of level i * latency of level i 



Multilevel Cache Hierarchies [574] 
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 Average access time with 1 cache level: 
 

  hit_timeL1 + miss_rateL1 x latentieMEM 

 

 Average access time with 2 cache levels: 

 

 hit_timeL1 + miss_rateL1 x (hit_timeL2 + miss_rateL2 x latentieMEM) 

 

 In other words: fewer accesses have to reach to main memory 

 Is expensive in terms of hardware 

 



Cache Organization 
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 Cache line or block size: granularity, in number of bytes 
with which a cache copies data from lower levels 

 Per line, tags store address of bytes stored in a line 

 On access:  

 hit if tags indicate that data at address is present 

 miss if data is not present, is then fetched from lower level 

 current data in cache needs to be evicted to make room 

 maybe that data needs to be written back to memory 
 



Cache Policies 

 Policies for [p. 118] 

A. Locating data 

B. Evicting data 

C. Handle data updates 
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(A) Locating data 
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 (a): direct mapped cache 
 each address mapped to one cache line 

 decoder extracts line from address bits 

 tags indicate which address is on the cache line 

 many-to-one mapping 

 cheap, fast 

 little flexibility in mapping 

 lower IPC 



(A) Locating data 
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 (b): fully associative cache 
 each address can be mapped to all cache lines 

 all locations must be searched for each access (many, expensive concurrent accesses) 

 selection of data is time-consuming (large crossbar – multi input mux) 

 many-to-many mapping 

 Slow ?, complex yes, high energy consumption, but not slow 

 high flexibility 

 higher IPC 



(A) Locating data 
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 (c): N-way set-associative cache 
 each address can be mapped to a number of cache lines 

 decoder extracts "set" of line from address bits, key is used to searched within the set 

 selection of data is time-consuming (large crossbar – multi input mux) 

 many-to-few mapping 

 compromise between direct-mapped and fully associative 

 the numbers of lines per set is also called the number of "ways": 2-way, 4-way, 8-way, ... 



(B) Evicting data 
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 Replacement policy 

 in case of associative caches, have to choose which way to evict and replace 

 several options 

 least-recently used (LRU) way is evicted  

 excellent performance (IPC) 

 very good model (for worst-case-execution-time estimation) 

 difficult to implement 

 not-most-recently-used (NMRU) 

 performance close to LRU 

 much simpler to implement (fewer bits, only remember MRU instead of total 
order) 

 not as easy to model as LRU 

 random 

 good average performance 

 implemented with pseudo-random generator 

 difficult to model 

 

 



(C) Handle data updates  
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 Several options to handling updates to a block 

 write-through 

 pass each write to lower level immediately 

 two options for writing to non present block 

 write-allocate: fetch a block on a write 

 write-no-allocate: do not fetch a block on a write 

 write-no-allocate is better if streaming writes overwrite a full block without 
reading from it 

 write-back 

 only write back data when you have to 

 on eviction 

 when another processor needs the data 

 a dirty bit indicates whether data was changed and needs to be written back 

 write-back most often used because much less bandwidth is needed 

 write-through sometimes used when both levels are on chip and bandwidth 
is available and cheap  

 



Cache Organization: varia 
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 Caches may be shared or separate (non shared) 

 shared includes code and data 

 usually L1$ not shared, but L2$ shared 

 because otherwise too many ports and too many conflicts 

 Caches may be inclusive or exclusive 

 inclusive 

 L2$ contains all data that is in L1$ 

 loses some space 

 line size may be different 

 easier for coherency: external processors need to check only L2 

 exclusive: data in L1$ is not in L2$ 

 save space 

 must have same line size 

 

 



Measuring Cache Performance (1) 
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 Misses are categorized 

 Cold or compulsary misses 

 when a block or line is accessed for the first time 

 fundamental, cannot be avoided by caching 

 Capacity misses 

 result from cache being too small, not fundamental 

 Conflict misses 

 result from small associativity or eviction policy 

 not fundamental 

 fully associative can eliminate all conflict misses assuming a perfect 
eviction policy 

 



Measuring Cache Performance (2) 
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 How to measure? 

 ma: #misses in the cache being measured 

 mf: #misses in same cache, but fully associative 

 mc: #misses in cache with same block size, but infinite and fully associative 

 Then 

 cold misses = mc 

 capacity misses = mf –mc 

 conflict misses = ma - mf 

 



Main Memory: DRAM (1) 
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 Memory wall: compared to the CPU, main memory is becoming slower 
and slower 
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Main Memory: DRAM (2) 
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 Access: 
 First specify row address 

 Load a row into the row buffer (=precharging) 

 Then choose bytes with column address 

 Data in row buffer can be reused (form of caching) 

 Data needs to be refreshed 

 

 Trends: 
 better signaling 

 synchronuous interface (SDRAM) 

 use rising and falling clock edges 
to double data rate (DDR) 

 

 Data bus shared for reads and  
writes => when they alternate, 
have bus turnaround time 



Main Memory: DRAM (3) 
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 Interleaving (banking) and parallelism 

1. serial access 
 control signal selects a single  

DRAM that outputs its data 

 output data width limited to that of  
a single DRAM module 

 needs control signal wires 

 can share other wires 

2. parallel access 
 addresses send to multiple components 

 output data is concatenated to wider 
word 

 no control signal, sharing of other wires 

3. interleaving 
 multiple banks with separate control 

 can handle independent accesses in parallel 

 cost is extra controllers and wires 
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Virtual Memory (1) 

 Programmer experiences 32-bit or 64-bit memory space, physical 
memory is smaller than 264 bits 

 Virtual memory system translates programmer's image (virtual 
addresses) to real hardware (physical addresses) 

 Gives impression that full virtual memory is available 

 And does this concurrently for multiple processes, each with their own 
full address space  time-sharing 

 This requires the translation of virtual to physical addresses and 
demand paging 

 Older than caching (first paper in 1962) 

 But is a form of caching, the same mechanism/principles 

 different implementation, extra functionalities necessary 
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Virtual Memory (2) 
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 Virtual memory is partitioned into pages (4K, 8K, ...) 

 a page's data resides on disc or in main memory 

 on access, processors verifies that page is in main memory 

 if not, a page fault exception is raised 

 operating system (OS) catches it, and fetches page into 
physical page in memory 

 if necessary, OS also evicts dirty page back to disc 

 is called "demand paging" 

 through lazy allocation 

 CPU helps OS  

 translation of addresses 

 page faults 

 OS helps CPU 

 maintains a page table 

 



Virtual Memory (3) 
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 Replacement and eviction policy 

 LRU is best, but too complex to implement (too many pages) 

 approximated by clock algorithm 

 cooperation between OS and CPU 

 upon every access to a page, CPU sets "referenced bit" 

 every so many milliseconds, OS clears reference bits 

 when eviction is necessary, only pages with cleared bits are chosen 

 alternative: FIFO or others, always rely on reference bits 

 

 Access to backing store (disk, network) is slow 

 process that has to wait will be put to sleep, other will get CPU 



Virtual Memory (4) 
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 Memory protection 

 when multiple processes have pages in memory, they need to 
protected from each other 

 furthermore, it may be useful to share data up to some point, 
but not anymore as soon as one process tries to update it 

 

 read, write and execute access are set per page 

 with bits like dirty bit, referenced bit 

 cacheable bit: indicates whether or not a page can be cached 

 is important for memory-mapped IO 

 for simplicity of maintaining coherency 



Virtual Memory (5) 
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 Page tables 

 OS maintains tables that store all relevant operation 

 CPU uses those pages 

 entries in page table look like this 



Virtual Memory (6) 
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 Implementation 1: Multilevel Forward Table 

 

 

 

 

 

 

 

 

 Efficient for sparsely populated address space  

 Only need leaf nodes in memory for pages actually in use 

 but this can be more than the number of physical pages! 

 Nodes can be stored on backing store themselves 

 pageable page table, need OS support 

 Large pages to avoid page tables as big as memory! 

Page Table Base Register 

Virtual Address 

Physical  Address 



Virtual Memory (7) 
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 Implementation 2: Inverted or hashed page tables 

 

 

 

 

 

 

 
 

 

 Page table entries are now in a set (set-associative), needs to be searched 

 Only entries for allocated pages are needed 

 #entries = physical memory size/page size 

 whole table always fits in memory, no paging of page table, no OS support for that 

 Conflict misses: use second hash, and try there (rarely both fail) 

 Problem: OS needs to store PTE's of non-allocated pages somewhere else  

Virtual Address 

usually XOR page table entry 



Virtual Memory (8) 
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 Translation Lookaside Buffer 

 fully associative cache holding page table entries 

 then hardware does not need to look in actual page tables 

 Hardware-controlled cache of ‘cache’ map 

 Two maintenance modes: 

 software TLB miss handler 

 on a miss in the TLB, an exception is raised  

 on exception handler in the OS uses privileged instructions to 
update the TLB 

 hardware TLB miss handler 

 hardware goes looking in the page tables itself 



Memory Hierachy Implementation (1) 
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 D$ and TLB  combined 

 Option 1: physically addressed D$ 

 

 

 

 

 

 

 
 

 

 Drawback: TLB access and D$ are serialized -> extra pipeline steps 



Memory Hierachy Implementation (2) 
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 Option 2: Virtually Indexed, Physically Tagged Caches 

 

 

 

 

 

 
 Disadvantages 

 Page size equals the size of one way 

 Hence direct-mapped cache cannot be bigger than a page 

 Can only become bigger by adding associativity, which increases latency (problematic 
for L1$) 

   

 

physical page number! 



Memory Flow in OoO Processors [5.3] 
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 BASIC addressing mode 
 base register + immediate offset 

 LOAD: Typically three steps 
1. add base address and offset 

2. TLB access (may cause miss) 

3. load access (may cause miss) 

 

 STORE: Two pipeline steps 
1. add base address and offset 

2. TLB access (may cause miss) 

 

Then the data is written in the store buffer 

and in the reorder buffer. When it leaves 

the reorder buffer (in order), the instruction 

is considered completed, and the store  

buffer is informed that the data can actually 

be written to memory (i.e, retiring, in order). 

Speculative operation is not a problem since 

speculative instructions do not retire. 

 

Architecturally completed 

instruction: in processor 

completed in system 



Data dependencies through memory 
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 Same as ordinary data dependencies when accessing same address 
 RAW, WAW, WAR 

 In-order execution of load/stores is simple 

 Out-of-order execution is better, but more complex 

 WAW and WAR dependencies are not a problem because of in-order 
retirement 

 RAW may be a problem ... 

 

 Goal: 
Try to avoid that a load needs to wait for all stores to be completed 

 

 Idea: dependency means that data is at CPU! 



Load/Store Reordering 
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 To recover from exceptions, writes need to be retired in order 

 

 Is also best for sequential consistency model in multithreaded 
programs 

 sequential consistency model requires that all threads see all changes to the 
shared memory in program order 

 

 WAW and WAR are no problem when writes retire in program order 

 

 Again, RAW data dependencies remain to be enforced 

 

 Problem: unlike for register renaming, RAW dependencies are not 
known after decoding the instruction 



Load Bypassing 
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 Goal: execute loads out-of-order, as early as possible 
 they are usually followed immediately by uses of the loaded value 

 

 

 

 

 

 

 

 

 

 

 Load bypassing: execute a load before previous store 
 all stores in flight are in store buffer 

 so check the store buffer for aliasing (write addresses are present in store buffer) 

 check (matching) can be on fewer bits, a bit pessimistic, but no problem in practice 

 

may be speculative 
 instructions 

instructions complete  
by reorder buffer 

+11-19% 



Load Forwarding 
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 If match is found in store buffer 

 forward value instead of just blocking the load 

 matching requires full addresses now 

 ordering mechanism for when multiple stores are in store buffer, may be of 
different sized data 

 

gains:  
11%-19% for load bypassing 
1%-4% extra for load forwarding 

+1-4% 



Multiported Caches [273] 
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 When width of superscalar increases, memory accesses become a bottleneck. 

 

 

 

 

 

 

 

 

 

 Three implementations for multiported caches 

 true multiported memory: very expensive and slow and power hungry, no conflicts 
whatsoever 

 duplicate caches: is expensive, but no conflicts in reading 

 cache banks: is cheaper (no duplication), but conflict resolution required 



Pipelined Caches 
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 Alternative to multiported caches 

 Pro 

 less hardware 

 Con 

 dependences may cause blocking 

 

 This is the current trend  

 



Non-blocking Caches [274] 
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 Instead of blocking the loads unit pipeline on a cache miss, put load in a load 
missed load queue where it waits for the cache to fetch the data. 

 In the mean time, other loads can be handled => overlap load miss penalties  

 

 

 

 

 

 

 

 

 

 Complication: caches misses come in bursts => handled in pipelined fashion 

 Must cache misses of speculative loads be handled? Trade-off with memory 
bandwidth 

+15% 
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THE OTHER PROBLEM: 
COLD MISSES 



Prefetching Caches [275] 
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 Memory reference 
prediction table stores 
 load instruction address 

 previous data address 

 stride of previous accesses 

 Stride + current data  
address is a good guess 
for the next execution of  
this instruction 

 current data address 
- previous data address 
becomes new stride 

 Prefetch queue steers 
prefetching of data (with 
low priority). 

 Take care not to pollute 
the cache or evict data too early. 

 



Prefetching Stream Buffers 
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 On cache miss, also fetch the next block, and store this in a 
stream buffer 

 If a later load accesses the data in the stream buffer, it was a 
correct prediction, so again load the next block, storing the 
current one in the cache 

 Multiple stream buffers are possible 



Load address prediction [277] 

 Issue speculative load instruction with predicted 
address 

 As soon as new load instruction is encountered 

 No need to wait for decoding, dispatching and 
register values to be available 

 Instructions dependent on this data won’t have to 
wait 

 Prefetching Cache technique: instruction still needs 
to be executed 
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Software Prefetching 

 Add instructions to ISA that  
 do not load data into a register 

 but only load it into the cache 

 Faulting or non-faulting 
 Typically non-faulting 

 Extra instructions do cause overhead 

 Is often useful when combined with software pipelining, 
loop unrolling, ... where multiple iterations of a loop are 
intertwined and addresses are hence known upfront 

 

 Usefulness depends (as with all data prefetching) on access 
patterns: direct array accesses in regular loop are easier to 
predict than iterating through a linked list 
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FURTHER CACHE 
OPTIMIZATIONS & 

ISSUES TO CONSIDER 



Efficient Cache loading 
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 At level 1, cache lines are typically 32 to 128 bytes wide 

 Data accesses are typically less than 8 bytes wide 

 Accessed data may not be first in a cache line 

 Two techniques 

 Early restart 

 As soon as the requested word of the block arrives, send it to the CPU and 
let the CPU continue execution 

 Spatial locality  tend to want next sequential word, so the benefit of just 
early restart is not clear 

 Critical word first 

 fetch the accessed data first, send it to the CPU immediately, and then 
fetch the rest of the block 

 widely used now that cache blocks are larger 

 



Cache Access Prioritization 
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 Give priority to load cache misses over stores 

 

 Write-through D-cache 

 To avoid blocking: write buffer (not the same as store buffer) 

 Store data to be written temporarily until bus is available 

 On load miss, first check the write buffer for data 

 

 Write-back D-cache 

 Suppose load-miss results in eviction that requires write-back 

 First write-back and then load? Nope 

 Instead: copy write-back block to write buffer, fetch new block, and then 
write from write buffer to memory 

 



Merged Writing of Cached Data 
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 Merging Write Buffer 

 Write buffer to allow processor to continue while waiting to write to 
memory 

 If buffer contains modified blocks, the addresses can be checked to 
see if address of new data matches the address of a valid write 
buffer entry  

 If so, new data are combined with that entry 

 This way, separate narrow writes are merged into single wider 
writes, which are more efficient (bus-contention, ...) and result in 
less blockings caused by a full write buffer 

 The Sun T1 (Niagara) processor, among many others, uses write 
merging 

 



Victim Caches 
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 Small, fully associative cache 

 Blocks that are evicted from a cache are stored in the victim 
cache  

 On L1 cache miss 

 first look at victim cache 

 victim cache hit: swap blocks in L1 cache and victim cache 

 victim cache miss: access main memory 

 Intended to reduce the number of conflict misses 

 In AMD Athlon: victim cache with 8 elements 

 



Cache Line Size Tuning 
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 Larger blocks exploit spatial locality more 
 eliminates cold misses 

 at the cost of higher miss latency 

 with fixed total size: larger blocks are at the cost of number of sets or 
associativity, hence more conflict and capacity misses 

 

 For fixed cache sizes, optimal line sizes exist 

 

 Solution: vary it over the different cache levels 
 For example 

 32-128 bytes for L1 

 64-256 bytes for L2 

 



Cache Size Tuning 
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 Bigger caches are the trend these days because of 

 increasing gap between processor and memory clock frequencies 
(memory wall) 

 higher number of transistors that is available 

 For example, 6MB L3 cache on chip (Intel Itanium 2) 

 But  

 it has a high cost 

 larger sized caches are slower (can be compensated with banking) 

 



Cache Associativity Tuning 
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 Higher associativity is usually better for hit rate 

 2:1 rule 

 A direct-mapped cache with size N has a comparable miss rate to a 2-
way set-associative cache of size N/2 

 Drawback 

 Higher associativity results in larger hit time, which might be a 
problem for the clock frequency 

 



Compiler Optimization (1) 
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 For code caches 

 determine code such that frequently executed code does not 
cause conflicts in cache 

 align basic blocks at cache block boundaries 

 Also for data compiler optimizations exist 

 goal is usually to increase temporal locality 

 avoid long live ranges (time over which a value needs to be kept 
somewhere) 

 make reuse distance smaller (this is the numbers of other locations 
accessed between two accesses to one location), larger reuse 
distance increases the risk for eviction 

 sometimes to increase spatial locality 

 



Compiler Optimization (2) 
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 Loop interchange 

 

 

 

 

 

 

 

 Inner loop has better spatial locality 

  /* before */ 

  for (j = 0; j < 100; j++) 

     for (i = 0; i < 5000; i++)  

        x [i][j] = 2 * x [i][j]; 

 

 

  /* after */ 

  for (i = 0; i < 5000; i++) 

     for (j = 0; j < 100; j++)  

        x [i][j] = 2 * x [i][j]; 



Compiler Optimization (3) 
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 Loop tiling 

 

 

 

 

 

 

 

 

 "Before" iterates N times over N elements of array b 

 "After" iterates N/T * N/T * T times over T elements of array B 

 "After" has reuse distance T within b, while "Before" has reuse distance N 

 In other words: T elements might fit in cache when N do not 

/* before */ 

for (i=0; i<N; i++) 

    for (j=0; j<N; j++) 

        c[i] = c[i]+ a[i,j]*b[j]; 

/* after */ 

for (i=0; i<N; i+=T) 

    for (j=0; j<N; j+=T) 

        for (ii=i; ii<min(i+T,N); ii++) 

            for (jj=j; jj<min(j+T,N); jj++) 

                c[ii] =c[ii]+ a[ii,jj]*b[jj]; 



Exercise 
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 We have seen a huge number of hardware and software techniques 

 Categorize each of them under one or more of the following qualifiers:  

 reduces hit latency 

 reduces miss latency 

 reduces load latency in front-end of the pipeline 

 reduces load latency in the back-end of the pipeline 

 increases bandwidth 

 hides miss latency 

 lowers miss rates 

 ... 

 You may also add other useful qualifiers. 

 This exercise is useful to see how all aspects of memory behavior are 
being optimized, and it presents insights in the cooperation of all 
techniques. 
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