
L E C T U R E 2 : M E M O R Y

M E M O R Y H I E R A R C H I E S

M E M O R Y D A T A F L O W

M E M O R Y A C C E S S O P T I M I Z A T I O N

J A N L E M E I R E

Advanced Computer
Architecture

1

Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2 12/10/2012

What is memory?

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

2

 Memory
 Just an “ocean of bits”

 Many technologies are available

 Key issues
 Technology (how bits are stored)

 Placement (where bits are stored)

 Identification (finding the right bits)

 Replacement (finding space for new bits)

 Write policy (propagating changes to bits)

 Must answer these regardless of memory type

Cf Von-Neumann model:
Random Access Memory

Ideal Memory

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

3

1. Infinite capacity

2. Infinite bandwidth

3. Zero latency

4. Persistence (non-volatility)

5. Very low implementation cost

6. Very low power consumption

 Non-existent ...

 But maintain the illusion…

Latency versus Bandwidth

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

4

 Latency

 a form of time

 time between issuing a request and receiving a response

 latency time = response time = service time + queueing time

 service time: minimum, depends on HW

 queueing time: time to get access to a resource, can be zero

 driven by technology, very difficult to improve (done by avoiding serialization)

 Bandwidth

 a form of quantity/time

 number of requests that can be handled, rate of request handling

 can be > 1/latency in case of concurrent handling of multiple requests

 raw or peak bandwidth: neglect all potential bottlenecks in system

 sustainable bandwidth: considers bottlenecks, but not necessarily real-life
access patterns

 driven by product cost, such as number of wires (trivially higher bandwidth)

Real Memories

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

5

Type Size Speed Cost/bit

Register < 1KB < 1ns €€€€

On-chip SRAM 8KB-6MB < 10ns €€€

Off-chip SRAM 1Mb – 16Mb < 20ns €€

DRAM 64MB – 1TB < 100ns €

Disk 40GB – 1PB < 20ms ~0
disclaimer:
numbers are several years old

Memory Hierarchy

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

6

 Try to place and access data as much as possible in
top of hierarchy

Registers

On-Chip
SRAM

Off-Chip
SRAM

DRAM

Disk

C
A
P
A
C
IT

Y
 a

n
d
 E

N
E
R
G

Y

S
P
E
E
D

 a
n
d
 C

O
S
T

Example: Intel Itanium

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

7

 800MHz

 L1 32KB (I- en D-)

 L2 96KB

 L3 4MB

 CPU core: 25M transistors

 Caches: 300M transistors
(denser)

Today: up to ¾ of die area is cache...

Example: Intel Core 2 Duo

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

8

Notice the big caches
but also all the small
memories (caches,
tables) inside the cores.

Example: AMD Barcelona

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

9

Locality and Caching (1)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

10

 Two forms of locality in most if not all programs

 temporal locality:
repeated accesses
to same data occurring

 close together in time

 spatial locality:
consecutive accesses
to neighbouring data

 Enables us to move data up in the hierarchy at run time to access it
there instead of in lower, slower, higher-energy memories: caches

 Can give us the impression of large, low latency, high bandwidth
memories

Locality & Caching (2)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

11

CPU

I & D L1 Cache

Shared L2 Cache

Main Memory

Disk

Temporal Locality
•Keep recently referenced
items at higher levels
 Future references

satisfied quickly

Spatial Locality
•Bring neighbors of recently
referenced to higher levels
 Future references

satisfied quickly

Terminology

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

12

 Hit: when some data is found in a memory

 Miss: when it is not, need to look in lower memory

 Results are miss and hit rates

 Global: for all levels down to a component

 Local: only for accesses that reach as deep as a component

 Example:

 Global hit rate L2$
 = local hit rate L1$ + local miss rate L1$ * local hit rate L2

 Latency = sum hit rate of level i * latency of level i

Multilevel Cache Hierarchies [574]

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

13

 Average access time with 1 cache level:

 hit_timeL1 + miss_rateL1 x latentieMEM

 Average access time with 2 cache levels:

 hit_timeL1 + miss_rateL1 x (hit_timeL2 + miss_rateL2 x latentieMEM)

 In other words: fewer accesses have to reach to main memory

 Is expensive in terms of hardware

Cache Organization

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

14

 Cache line or block size: granularity, in number of bytes
with which a cache copies data from lower levels

 Per line, tags store address of bytes stored in a line

 On access:

 hit if tags indicate that data at address is present

 miss if data is not present, is then fetched from lower level

 current data in cache needs to be evicted to make room

 maybe that data needs to be written back to memory

Cache Policies

 Policies for [p. 118]

A. Locating data

B. Evicting data

C. Handle data updates

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

15

(A) Locating data

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

16

 (a): direct mapped cache
 each address mapped to one cache line

 decoder extracts line from address bits

 tags indicate which address is on the cache line

 many-to-one mapping

 cheap, fast

 little flexibility in mapping

 lower IPC

(A) Locating data

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

17

 (b): fully associative cache
 each address can be mapped to all cache lines

 all locations must be searched for each access (many, expensive concurrent accesses)

 selection of data is time-consuming (large crossbar – multi input mux)

 many-to-many mapping

 Slow ?, complex yes, high energy consumption, but not slow

 high flexibility

 higher IPC

(A) Locating data

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

18

 (c): N-way set-associative cache
 each address can be mapped to a number of cache lines

 decoder extracts "set" of line from address bits, key is used to searched within the set

 selection of data is time-consuming (large crossbar – multi input mux)

 many-to-few mapping

 compromise between direct-mapped and fully associative

 the numbers of lines per set is also called the number of "ways": 2-way, 4-way, 8-way, ...

(B) Evicting data

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

19

 Replacement policy

 in case of associative caches, have to choose which way to evict and replace

 several options

 least-recently used (LRU) way is evicted

 excellent performance (IPC)

 very good model (for worst-case-execution-time estimation)

 difficult to implement

 not-most-recently-used (NMRU)

 performance close to LRU

 much simpler to implement (fewer bits, only remember MRU instead of total
order)

 not as easy to model as LRU

 random

 good average performance

 implemented with pseudo-random generator

 difficult to model

(C) Handle data updates

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

20

 Several options to handling updates to a block

 write-through

 pass each write to lower level immediately

 two options for writing to non present block

 write-allocate: fetch a block on a write

 write-no-allocate: do not fetch a block on a write

 write-no-allocate is better if streaming writes overwrite a full block without
reading from it

 write-back

 only write back data when you have to

 on eviction

 when another processor needs the data

 a dirty bit indicates whether data was changed and needs to be written back

 write-back most often used because much less bandwidth is needed

 write-through sometimes used when both levels are on chip and bandwidth
is available and cheap

Cache Organization: varia

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

21

 Caches may be shared or separate (non shared)

 shared includes code and data

 usually L1$ not shared, but L2$ shared

 because otherwise too many ports and too many conflicts

 Caches may be inclusive or exclusive

 inclusive

 L2$ contains all data that is in L1$

 loses some space

 line size may be different

 easier for coherency: external processors need to check only L2

 exclusive: data in L1$ is not in L2$

 save space

 must have same line size

Measuring Cache Performance (1)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

22

 Misses are categorized

 Cold or compulsary misses

 when a block or line is accessed for the first time

 fundamental, cannot be avoided by caching

 Capacity misses

 result from cache being too small, not fundamental

 Conflict misses

 result from small associativity or eviction policy

 not fundamental

 fully associative can eliminate all conflict misses assuming a perfect
eviction policy

Measuring Cache Performance (2)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

23

 How to measure?

 ma: #misses in the cache being measured

 mf: #misses in same cache, but fully associative

 mc: #misses in cache with same block size, but infinite and fully associative

 Then

 cold misses = mc

 capacity misses = mf –mc

 conflict misses = ma - mf

Main Memory: DRAM (1)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

24

 Memory wall: compared to the CPU, main memory is becoming slower
and slower

1

10

100

1,000

10,000

100,000

1980 1985 1990 1995 2000 2005 2010

Year

P
e

rf
o

rm
a

n
c

e

Memory

Processor

Main Memory: DRAM (2)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

25

 Access:
 First specify row address

 Load a row into the row buffer (=precharging)

 Then choose bytes with column address

 Data in row buffer can be reused (form of caching)

 Data needs to be refreshed

 Trends:
 better signaling

 synchronuous interface (SDRAM)

 use rising and falling clock edges
to double data rate (DDR)

 Data bus shared for reads and
writes => when they alternate,
have bus turnaround time

Main Memory: DRAM (3)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

26

 Interleaving (banking) and parallelism

1. serial access
 control signal selects a single

DRAM that outputs its data

 output data width limited to that of
a single DRAM module

 needs control signal wires

 can share other wires

2. parallel access
 addresses send to multiple components

 output data is concatenated to wider
word

 no control signal, sharing of other wires

3. interleaving
 multiple banks with separate control

 can handle independent accesses in parallel

 cost is extra controllers and wires

27

Virtual Memory (1)

 Programmer experiences 32-bit or 64-bit memory space, physical
memory is smaller than 264 bits

 Virtual memory system translates programmer's image (virtual
addresses) to real hardware (physical addresses)

 Gives impression that full virtual memory is available

 And does this concurrently for multiple processes, each with their own
full address space time-sharing

 This requires the translation of virtual to physical addresses and
demand paging

 Older than caching (first paper in 1962)

 But is a form of caching, the same mechanism/principles

 different implementation, extra functionalities necessary

 12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

Virtual Memory (2)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

28

 Virtual memory is partitioned into pages (4K, 8K, ...)

 a page's data resides on disc or in main memory

 on access, processors verifies that page is in main memory

 if not, a page fault exception is raised

 operating system (OS) catches it, and fetches page into
physical page in memory

 if necessary, OS also evicts dirty page back to disc

 is called "demand paging"

 through lazy allocation

 CPU helps OS

 translation of addresses

 page faults

 OS helps CPU

 maintains a page table

Virtual Memory (3)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

29

 Replacement and eviction policy

 LRU is best, but too complex to implement (too many pages)

 approximated by clock algorithm

 cooperation between OS and CPU

 upon every access to a page, CPU sets "referenced bit"

 every so many milliseconds, OS clears reference bits

 when eviction is necessary, only pages with cleared bits are chosen

 alternative: FIFO or others, always rely on reference bits

 Access to backing store (disk, network) is slow

 process that has to wait will be put to sleep, other will get CPU

Virtual Memory (4)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

30

 Memory protection

 when multiple processes have pages in memory, they need to
protected from each other

 furthermore, it may be useful to share data up to some point,
but not anymore as soon as one process tries to update it

 read, write and execute access are set per page

 with bits like dirty bit, referenced bit

 cacheable bit: indicates whether or not a page can be cached

 is important for memory-mapped IO

 for simplicity of maintaining coherency

Virtual Memory (5)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

31

 Page tables

 OS maintains tables that store all relevant operation

 CPU uses those pages

 entries in page table look like this

Virtual Memory (6)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

32

 Implementation 1: Multilevel Forward Table

 Efficient for sparsely populated address space

 Only need leaf nodes in memory for pages actually in use

 but this can be more than the number of physical pages!

 Nodes can be stored on backing store themselves

 pageable page table, need OS support

 Large pages to avoid page tables as big as memory!

Page Table Base Register

Virtual Address

Physical Address

Virtual Memory (7)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

33

 Implementation 2: Inverted or hashed page tables

 Page table entries are now in a set (set-associative), needs to be searched

 Only entries for allocated pages are needed

 #entries = physical memory size/page size

 whole table always fits in memory, no paging of page table, no OS support for that

 Conflict misses: use second hash, and try there (rarely both fail)

 Problem: OS needs to store PTE's of non-allocated pages somewhere else

Virtual Address

usually XOR page table entry

Virtual Memory (8)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

34

 Translation Lookaside Buffer

 fully associative cache holding page table entries

 then hardware does not need to look in actual page tables

 Hardware-controlled cache of ‘cache’ map

 Two maintenance modes:

 software TLB miss handler

 on a miss in the TLB, an exception is raised

 on exception handler in the OS uses privileged instructions to
update the TLB

 hardware TLB miss handler

 hardware goes looking in the page tables itself

Memory Hierachy Implementation (1)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

35

 D$ and TLB combined

 Option 1: physically addressed D$

 Drawback: TLB access and D$ are serialized -> extra pipeline steps

Memory Hierachy Implementation (2)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

36

 Option 2: Virtually Indexed, Physically Tagged Caches

 Disadvantages

 Page size equals the size of one way

 Hence direct-mapped cache cannot be bigger than a page

 Can only become bigger by adding associativity, which increases latency (problematic
for L1$)

physical page number!

Memory Flow in OoO Processors [5.3]

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

37

 BASIC addressing mode
 base register + immediate offset

 LOAD: Typically three steps
1. add base address and offset

2. TLB access (may cause miss)

3. load access (may cause miss)

 STORE: Two pipeline steps
1. add base address and offset

2. TLB access (may cause miss)

Then the data is written in the store buffer

and in the reorder buffer. When it leaves

the reorder buffer (in order), the instruction

is considered completed, and the store

buffer is informed that the data can actually

be written to memory (i.e, retiring, in order).

Speculative operation is not a problem since

speculative instructions do not retire.

Architecturally completed

instruction: in processor

completed in system

Data dependencies through memory

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

38

 Same as ordinary data dependencies when accessing same address
 RAW, WAW, WAR

 In-order execution of load/stores is simple

 Out-of-order execution is better, but more complex

 WAW and WAR dependencies are not a problem because of in-order
retirement

 RAW may be a problem ...

 Goal:
Try to avoid that a load needs to wait for all stores to be completed

 Idea: dependency means that data is at CPU!

Load/Store Reordering

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

39

 To recover from exceptions, writes need to be retired in order

 Is also best for sequential consistency model in multithreaded
programs

 sequential consistency model requires that all threads see all changes to the
shared memory in program order

 WAW and WAR are no problem when writes retire in program order

 Again, RAW data dependencies remain to be enforced

 Problem: unlike for register renaming, RAW dependencies are not
known after decoding the instruction

Load Bypassing

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

40

 Goal: execute loads out-of-order, as early as possible
 they are usually followed immediately by uses of the loaded value

 Load bypassing: execute a load before previous store
 all stores in flight are in store buffer

 so check the store buffer for aliasing (write addresses are present in store buffer)

 check (matching) can be on fewer bits, a bit pessimistic, but no problem in practice

may be speculative
 instructions

instructions complete
by reorder buffer

+11-19%

Load Forwarding

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

41

 If match is found in store buffer

 forward value instead of just blocking the load

 matching requires full addresses now

 ordering mechanism for when multiple stores are in store buffer, may be of
different sized data

gains:
11%-19% for load bypassing
1%-4% extra for load forwarding

+1-4%

Multiported Caches [273]

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

42

 When width of superscalar increases, memory accesses become a bottleneck.

 Three implementations for multiported caches

 true multiported memory: very expensive and slow and power hungry, no conflicts
whatsoever

 duplicate caches: is expensive, but no conflicts in reading

 cache banks: is cheaper (no duplication), but conflict resolution required

Pipelined Caches

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

43

 Alternative to multiported caches

 Pro

 less hardware

 Con

 dependences may cause blocking

 This is the current trend

Non-blocking Caches [274]

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

44

 Instead of blocking the loads unit pipeline on a cache miss, put load in a load
missed load queue where it waits for the cache to fetch the data.

 In the mean time, other loads can be handled => overlap load miss penalties

 Complication: caches misses come in bursts => handled in pipelined fashion

 Must cache misses of speculative loads be handled? Trade-off with memory
bandwidth

+15%

Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2 12/10/2012

45

THE OTHER PROBLEM:
COLD MISSES

Prefetching Caches [275]

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

46

 Memory reference
prediction table stores
 load instruction address

 previous data address

 stride of previous accesses

 Stride + current data
address is a good guess
for the next execution of
this instruction

 current data address
- previous data address
becomes new stride

 Prefetch queue steers
prefetching of data (with
low priority).

 Take care not to pollute
the cache or evict data too early.

Prefetching Stream Buffers

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

47

 On cache miss, also fetch the next block, and store this in a
stream buffer

 If a later load accesses the data in the stream buffer, it was a
correct prediction, so again load the next block, storing the
current one in the cache

 Multiple stream buffers are possible

Load address prediction [277]

 Issue speculative load instruction with predicted
address

 As soon as new load instruction is encountered

 No need to wait for decoding, dispatching and
register values to be available

 Instructions dependent on this data won’t have to
wait

 Prefetching Cache technique: instruction still needs
to be executed

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

48

49

Software Prefetching

 Add instructions to ISA that
 do not load data into a register

 but only load it into the cache

 Faulting or non-faulting
 Typically non-faulting

 Extra instructions do cause overhead

 Is often useful when combined with software pipelining,
loop unrolling, ... where multiple iterations of a loop are
intertwined and addresses are hence known upfront

 Usefulness depends (as with all data prefetching) on access
patterns: direct array accesses in regular loop are easier to
predict than iterating through a linked list

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2 12/10/2012

50

FURTHER CACHE
OPTIMIZATIONS &

ISSUES TO CONSIDER

Efficient Cache loading

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

51

 At level 1, cache lines are typically 32 to 128 bytes wide

 Data accesses are typically less than 8 bytes wide

 Accessed data may not be first in a cache line

 Two techniques

 Early restart

 As soon as the requested word of the block arrives, send it to the CPU and
let the CPU continue execution

 Spatial locality tend to want next sequential word, so the benefit of just
early restart is not clear

 Critical word first

 fetch the accessed data first, send it to the CPU immediately, and then
fetch the rest of the block

 widely used now that cache blocks are larger

Cache Access Prioritization

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

52

 Give priority to load cache misses over stores

 Write-through D-cache

 To avoid blocking: write buffer (not the same as store buffer)

 Store data to be written temporarily until bus is available

 On load miss, first check the write buffer for data

 Write-back D-cache

 Suppose load-miss results in eviction that requires write-back

 First write-back and then load? Nope

 Instead: copy write-back block to write buffer, fetch new block, and then
write from write buffer to memory

Merged Writing of Cached Data

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

53

 Merging Write Buffer

 Write buffer to allow processor to continue while waiting to write to
memory

 If buffer contains modified blocks, the addresses can be checked to
see if address of new data matches the address of a valid write
buffer entry

 If so, new data are combined with that entry

 This way, separate narrow writes are merged into single wider
writes, which are more efficient (bus-contention, ...) and result in
less blockings caused by a full write buffer

 The Sun T1 (Niagara) processor, among many others, uses write
merging

Victim Caches

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

54

 Small, fully associative cache

 Blocks that are evicted from a cache are stored in the victim
cache

 On L1 cache miss

 first look at victim cache

 victim cache hit: swap blocks in L1 cache and victim cache

 victim cache miss: access main memory

 Intended to reduce the number of conflict misses

 In AMD Athlon: victim cache with 8 elements

Cache Line Size Tuning

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

55

 Larger blocks exploit spatial locality more
 eliminates cold misses

 at the cost of higher miss latency

 with fixed total size: larger blocks are at the cost of number of sets or
associativity, hence more conflict and capacity misses

 For fixed cache sizes, optimal line sizes exist

 Solution: vary it over the different cache levels
 For example

 32-128 bytes for L1

 64-256 bytes for L2

Cache Size Tuning

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

56

 Bigger caches are the trend these days because of

 increasing gap between processor and memory clock frequencies
(memory wall)

 higher number of transistors that is available

 For example, 6MB L3 cache on chip (Intel Itanium 2)

 But

 it has a high cost

 larger sized caches are slower (can be compensated with banking)

Cache Associativity Tuning

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

57

 Higher associativity is usually better for hit rate

 2:1 rule

 A direct-mapped cache with size N has a comparable miss rate to a 2-
way set-associative cache of size N/2

 Drawback

 Higher associativity results in larger hit time, which might be a
problem for the clock frequency

Compiler Optimization (1)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

58

 For code caches

 determine code such that frequently executed code does not
cause conflicts in cache

 align basic blocks at cache block boundaries

 Also for data compiler optimizations exist

 goal is usually to increase temporal locality

 avoid long live ranges (time over which a value needs to be kept
somewhere)

 make reuse distance smaller (this is the numbers of other locations
accessed between two accesses to one location), larger reuse
distance increases the risk for eviction

 sometimes to increase spatial locality

Compiler Optimization (2)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

59

 Loop interchange

 Inner loop has better spatial locality

 /* before */

 for (j = 0; j < 100; j++)

 for (i = 0; i < 5000; i++)

 x [i][j] = 2 * x [i][j];

 /* after */

 for (i = 0; i < 5000; i++)

 for (j = 0; j < 100; j++)

 x [i][j] = 2 * x [i][j];

Compiler Optimization (3)

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

60

 Loop tiling

 "Before" iterates N times over N elements of array b

 "After" iterates N/T * N/T * T times over T elements of array B

 "After" has reuse distance T within b, while "Before" has reuse distance N

 In other words: T elements might fit in cache when N do not

/* before */

for (i=0; i<N; i++)

 for (j=0; j<N; j++)

 c[i] = c[i]+ a[i,j]*b[j];

/* after */

for (i=0; i<N; i+=T)

 for (j=0; j<N; j+=T)

 for (ii=i; ii<min(i+T,N); ii++)

 for (jj=j; jj<min(j+T,N); jj++)

 c[ii] =c[ii]+ a[ii,jj]*b[jj];

Exercise

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

61

 We have seen a huge number of hardware and software techniques

 Categorize each of them under one or more of the following qualifiers:

 reduces hit latency

 reduces miss latency

 reduces load latency in front-end of the pipeline

 reduces load latency in the back-end of the pipeline

 increases bandwidth

 hides miss latency

 lowers miss rates

 ...

 You may also add other useful qualifiers.

 This exercise is useful to see how all aspects of memory behavior are
being optimized, and it presents insights in the cooperation of all
techniques.

Acknowledgement

12/10/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 2

62

 Thanks for (parts of) slides

 Bjorn De Sutter

 Lieven Eeckhout

 Mikko H. Lipasti

 James C. Hoe

 John P. Shen

 Per Lindgren

