
L E C T U R E 1 : P I P E L I N I N G

J A N L E M E I R E

S H E N & L I P A S T I C H A P T E R S 2 & 4

Advanced Computer
Architecture

10/12/2012

1

Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

Historic Perspective

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

2

 First employed in early 1960s

 During the 1980s, it was the cornerstone of RISC
approach

 Intel i486 was first pipelined CISC processor (1989)

 Today, almost all processors are pipelined

Throughput vs Latency

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

3

 Latency: time between start and finish of a job

 Throughput: number of jobs per second/hour/day/...

 Example: sending letters via airmail

 More letters on a plane: more throughput, but same latency

 More planes with same amount of letters: latency decreases and
throughput increases

 Less planes, with more letters: same throughput, higher latency

Pipelining Principle

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

4

 Goal: increase throughput without much additional HW
 and without additional latency

Pipelining Principle

 Long operations

 Combination of short operations

 Pipelining

1 2 3 4

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

GPU Programming

time

IF

ID

OF

EX

1

1

1

1 2

2

2

2

3

3

3

3

4

4

4

4

Pipelining Overhead

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

6

 Pipelining Idealisms
 Uniform subcomputations

 Can pipeline into stages with equal delay

 Balance pipeline stages, otherwise have internal fragmentation

 Also: no additional delay by the interstage buffers/clocking requirements

 Identical computations

 Can fill pipeline with identical work and no unused pipeline stages

 Unify instruction types (example later) to avoid external fragmentation

 Independent computations

 No relationships between work units

 Minimize pipeline stalls (dynamic external fragmentation)

 Are these practical?
 No, but can get close enough to get significant speedup

 Deviations determine performance loss (inefficiencies)

Pipeline Design Tasks

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

7

 Perform stage quantization

 to create uniform, balanced pipeline stages

 Unify different resource requirements for different
instruction types

 to minimize the underuse of resources

 to enable execution of all instruction types

 Deal with dependent operations

 Since not all instructions will be independent

 Must not punish execution of independent instructions

Impact on ISA

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

8

 Uniform subcomputations

 longest latency undividable instruction must be found

 is usually the memory access

 this should not be slowed down by complex addressing modes

 caches are required because of high latency to main memory

 Unifying the resource requirements

 is easier for simple, less diverse RISC instructions

 Deal with dependencies

 is very hard in HW with complex addressing modes

 can be done in HW (RISC) or in SW (VLIW)

Pipeline Design: Balanced Stages (1)

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

9

 Typically five tasks in instruction execution

 IF: instruction fetch

 ID: instruction decode

 OF: operand fetch

 EX: instruction execution

 OS: operand store,
often called write-back WB

Pipeline Design: Balanced Stages (2)

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

10

Two techniques

1) merge stages 2) subdivide stages

Pipeline Design: Balanced Stages (3)

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

11

 More stages is more complex

 more concurrent register file
accesses

 more concurrent memory accesses

 pipelined memory accesses are
complex

Pipeline Design: Unified Instruction Types (1)

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

12

 Different types of instructions

 ALU instructions

 Memory accesses

 Branch Instructions

 Coalescing of requirements

 Analyze subcomputation sequences and resource requirements

 Find commonalities and merge them

 In case of flexibility, shift or reorder subcomputations to ease
merging

Pipeline Design: Unified Instruction Types (2)

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

13

Pipeline Design: Unified Instruction Types (3)

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

14

 Objectives

 minimize the total number of resources

 maximize utilization, minimize idling stages

 limit instruction latency

 put idle cycles at the end (to minimize dependencies)

Pipeline Design: Unified Instruction Types (4)

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

15

source registers

operation to be performed

destination register

Pipeline Design: Unified Instruction Types (5)

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

16

Pipeline Design: Minimize Pipeline Stalls (1)

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

17

 Multiple instructions in pipeline, in different stages

 Be carefull with data dependencies

Suppose I4 consumes
value produced by I2.

Need to avoid that
I4 reads operands before
I2 writes them.

Solution: detect
dependence and delay
instruction I4.

18

Pipeline Design: Minimize Pipeline Stalls (2)

 Data dependencies

 True dependence = read-after-write (RAW)

 Anti dependence = write-after-read (WAR)

 Output dependence = write-after-write (WAW)

 A hazard: messing up the program by not respecting a
dependency

V3 ← V1 op V2

V4 ← V3 op V5

V3 ← V1 op V2

V1 ← V4 op V5

V3 ← V1 op V2

V3 ← V4 op V5

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

Pipeline Design: Minimize Pipeline Stalls (3)

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

19

 Dependencies Through Memory?

Not possible since (1) only one stage accesses memory, and
 (2) all instructions pass through mem stage in program order.

Pipeline Design: Minimize Pipeline Stalls (4)

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

20

 What about WAW hazards through registers?

Not possible since (1) all writes to register happen in single WB stage, and
 (2) all instructions pass through WB stage in program order.

Pipeline Design: Minimize Pipeline Stalls (5)

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

21

 What about WAR hazards through registers?

Not possible since (1) writes occur in WB stage after reads in RD stage, and
 (2) all instructions pass through these stages in program order

Pipeline Design: Minimize Pipeline Stalls (6)

10/12/2012

22

 RAW hazards

Suppose I4 consumes
value produced by I2.

Need to avoid that
I4 reads operands before
I2 writes them.

Solution: detect
dependence and delay
instruction I4.

Result: pipeline bubble or stall, performance drop

Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

Pipeline Design: Minimize Pipeline Stalls (7)
23

 RAW hazards: forwarding

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

Pipeline Design: Minimize Pipeline Stalls (8)
24

 Forwarding implementation

Delay lines

Comparators

Multiplexors

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

Pipeline Design: Minimize Pipeline Stalls (9)

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

25

 What about control dependencies and branches

EVERY 5th-6th
instruction is a

branch!

Pipeline Design: Minimize Pipeline Stalls (A)

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

26

 Similar solution: branch forwarding to save a cycle

Pipeline Design: Minimize Pipeline Stalls (B)

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

27

 Additional solution: branch not taken prediction

 keep fetching & decoding & ...

 If branch is not taken, oke, keep executing

 If branch is taken: flush all the instructions past the branch
from the pipeline, and start fetching again

 Another solution: delay slot

 keep fetching & decoding & executing delay slot instructions

 compiler places only instructions in the delay slot that are
executed on taken and non-taken path

 instructions in delay slot need not be flushed!

Pipeline Design: Minimize Pipeline Stalls (C)
28

IF

ID

OF

EX

MEM

WB

 br t

 br

 br

x x+1 x+2 x+3 x+4

 br

 br

x+5

inst

correct not-taken prediction:
penalty = 0 cycli

inst inst

inst

inst

inst

inst

inst

inst

inst

inst

inst

inst

inst

inst

 br

inst inst

not-
taken taken

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

Pipeline Design: Minimize Pipeline Stalls (D)
29

IF

ID

OF

EX

MEM

WB

 br t

 br

 br

x x+1 x+2 x+3 x+4

 br

 br

x+5

inst

incorrect not-taken prediction:
penalty = 4 cycli

inst inst

inst

inst

inst

inst

inst

inst

inst

inst

 br

inst inst

not-
taken taken

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

Pipeline Design: Minimize Pipeline Stalls (E)
30

IF

ID

OF

EX

MEM

WB

 br t

 br

 br

x x+1 x+2 x+3 x+4

 br

 br

x+5

inst

incorrect not-taken prediction:
penalty with delay slot = 3 cycli

inst inst

inst

inst

inst

inst

inst

inst

inst

inst

 br

inst inst

not-
taken taken inst

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

31

Limitations to Scalar Pipelines

 Instruction type unification is a problem

 e.g.: floating-point addition vs. integer addition

 Fundamental limit: IPC ≤ 1

 In-order execution: IPC < 1

 stalls caused by dependencies

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

32

Problem 1: Unification

IF

ID

OF

EX

MEM

WB

EX has to execute integer
addition as well as floating-point
addition in one cycle ...
Solution: diversification

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

33

Solution 1: Diversified Pipeline

IF

ID

OF

FP (1)

FP (2)

FP (3)

FP (4)

FP (5)

FP (6)

WB

INT MEM (1)

MEM (2)

MEM (3)

BR

higher clock frequency than
unified pipeline

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

34

Problems of Diversification

 Out-of-order completion

 Writing back the results can happen out-of-order
(= WAW hazard)

 Potentially more write operations to register file in
WB stage per klok cycle (= structural hazard)

 Exceptions

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

35

Out-of-order completion

R4←ld[MEM]

R3←R1+R2

IF ID OF MEM1 MEM2 MEM3 WB

 IF ID OF EX WB

t

... is not really a problem (except for exceptions—see later)...

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

36

but ...

R4←ld[MEM]

R4←R1+R2

IF ID OF MEM1 MEM2 MEM3 WB

 IF ID OF EX WB

... this is a WAW hazard, the solution is ...

t

R4←ld[MEM]

R4←R1+R2

IF ID OF MEM1 MEM2 MEM3 WB

 IF ID OF xx xx EX WB

... blocking the pipeline (a stall)

t

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

37

Multiple WBs per cycle

 Is impossible because of only 1 write port to
register file

 Solution:
 Add a write port, or

 Treat the write port as structural hazard (i.e. an
additional stall)

R4←ld[MEM]

R3←R1+R2

IF ID OF MEM1 MEM2 MEM3 WB

 IF ID OF EX WB

t

R5←R3+R2 IF ID OF EX WB

R5←R3+R2 IF ID OF xx EX WB

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

38

Interrupts vs. exceptions (1)

 Interrupts

 Typically because of external factors

 Asynchronuous with respect to program executing

 Interrupt handling:

 Stop fetching new instructions

 Finish executing instructions in the pipeline

 Save architectural state

 Handle the interrupt

 Restore state and continue executing the program

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

39

Interrupts vs. exceptions (2)

 Exceptions/faults

 Caused by something in the execution of the program

 division by zero, page fault, overflow, etc.

 Precise exception

 Store state from just before instruction

 Handle the exception

 Continue execution from instruction that caused the exception

 What happens with out-of-order completion?

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

40

Exceptions en OoO completion

 Because of OoO completion, precise exceptions
cannot be guaranteed

 Imprecise exceptions

 Hard to support in modern processors, complicates design

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

41

Limitations to Scalar Pipelines

 Instruction type unification is a problem

 e.g.: floating-point addition vs. integer addition

 solved with pipeline diversification

 Fundamental limit: IPC ≤ 1

 In-order execution: IPC < 1

 stalls caused by dependencies

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

42

Solution 2: Superscalar pipeline (1)

FP (1)

FP (2)

FP (3)

FP (4)

FP (5)

FP (6)

INT MEM (1)

MEM (2)

MEM (3)

BR

IF

ID

OF

WB

crossbar

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

Solution 2: Superscalar pipeline (2)

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

43

 Temporal Parallelism

 Pipeline

 Relatively Cheap

 Spatial Parallelism

 Superscalar

 Relatively expensive (more hardware)

 Superscalar pipeline

 Both temporal and spatial parallelism

 Potential speedup of the pipeline: depth * width

Solution 2: Superscalar pipeline (3)

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

44

 Additional HW cost:
 More register ports

 2 x w read ports

 w write ports

 can do with less, at the expense of structural hazards

 More bandwidth to I$ and D$ (caches)

 Interconnections

 To distribute instructions over pipelines

 Complexity w2

 Hazard detection is more complex

Solution 2: Superscalar pipeline (4)

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

45

 Dealing with hazards

 Typically before instruction is executed

 i.e. at operand fetch time

 Once in the function unit (execution stages of pipeline), the
instruction is no longer blocked

Solution 2: Superscalar pipeline (5)

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

46

R4←ld[MEM]

R3←R1+R2

IF ID OF MEM1 MEM2 MEM3 WB

IF ID OF EX WB

t

R5←R3+R2 IF ID OF xx EX WB

First and second instruction executed together as they are independent.
Third instruction is blocked because of RAW hazard with second
instruction. Blocking happens in OF stage.

R6←R1+R2

R3←R1+R6

IF ID OF xx EX WB

IF ID OF xx xx EX WB

R5←R2+R6 IF ID OF xx xx EX WB

47

Limitations to Scalar Pipelines

 Instruction type unification is a problem

 e.g.: floating-point addition vs. integer addition

 solved with pipeline diversification

 Fundamental limit: IPC ≤ 1

 solved with superscalar pipeline

 In-order execution: IPC < 1

 stalls caused by dependencies

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

Problem with in-order execution (1)

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

48

R4←ld[MEM]

R3←R1+R2

IF ID OF MEM1 MEM2 MEM3 WB

IF ID OF EX WB

t

R5←R3+R2 IF ID OF xx EX WB

Fourth to sixth instruction are blocked when second instruction is blocked,
even though they were not dependent on first two instructions. This is a
fundamental problem of in-order issue machines.

R6←R1+R2

R3←R1+R6

IF ID OF xx EX WB

IF ID OF xx xx EX WB

R5←R2+R6 IF ID OF xx xx EX WB

Problem with in-order execution (2)

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

49

t

Problem becomes even worse in case of long latency blocks,
such as multiplication instructions or cache misses.

R4←ld[MEM]

R3←ld[R1]

IF ID OF MEM1 MEM2 MEM3 WB

IF ID OF MEM1 MEM2 MEM3 xx xx WB

R5←R3+R2 IF ID OF xx xx xx xx xx EX WB

R6←R1+R2

R3←R1+R6

IF ID OF xx xx xx xx xx EX WB

IF ID OF xx xx xx xx xx xx EX

R5←R2+R6 IF ID OF xx xx xx xx xx xx EX

cache
miss

Problem with in-order execution (3)

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

50

R4←ld[MEM]

R3←R1+R2

IF ID OF MEM1 MEM2 MEM3 WB

 IF ID OF EX WB

t

R4←R3+R2 IF ID OF xx EX WB

R4←ld[MEM]

R3←R1+R2

IF ID OF MEM1 MEM2 MEM3 xx xx WB

 IF ID OF EX WB

t

R4←R3+R2 IF ID OF xx xx xx EX WB

cache
miss

Suppose there is only one register write port ...
The cost increases very quickly with increasing instruction latencies

Problem with in-order execution (4)

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

51

Scalar pipeline: advance in lockstep fashion (in
order)

Problems:
 A blocking instruction blocks all following

instructions
 even if those are independent
 is particularly problematic for long-latency instructions

 WAW dependencies limit parallelism even though

they are not real dependencies

 Why are WAR dependencies no limitation?

Solution 3: Out-of-order Execution (1)

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

52

 Idea:

 True dependencies (RAW) determine execution

 False (output and anti, WAR and WAW) dependences do
not block instructions

 Except when storing values becomes a resource constraint, see
later

 In other words, the data flow limit is reached, i.e.
instructions are executed as soon as there operands are
available.

 Out-of-order execution implies a dynamic pipeline

Solution 3: Out-of-order Execution (2)

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

53

R4←ld[MEM]

R3←R1+R2

R5←R3+R4

R6←R1+R5

R3←R1+R4

R5←R4+R5

R4←ld[MEM] R3←R1+R2

R5←R3+R4

R6←R1+R5

R3←R1+R4

R5←R4+R5

Only RAW dependencies

Data flow graph determines
order of execution

 Data flow limit

 Approximates upper limit on ILP

Solution 3: Out-of-order Execution (3)

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

54

Solution 3: Out-of-order Execution (4)
55

fetch

dispatch

FP (1)

FP (2)

FP (3)

FP (4)

INT MEM (1)

MEM (2)

MEM (3)

BR

issue buffer

complete

retire store buffer

issue

execute

finish

in
-o

rd
er

in
-o

rd
er

o
u

t-o
f-o

rd
er

decode

store
queue

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

Solution 3: Out-of-order Execution (5)

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

56

 Issue buffer = reservation station
 Instructions are inserted in issue buffer and reorder

buffer in program order
 Instructions are executed on FUs and might leave them in

another order

 Reorder buffer = completion buffer
 Out-of-order finish because of out-of-order issue en non-

uniform execution latencies
 In-order retirement = writing back the results in the

registers
 Enables precise exceptions

 Store queue en store buffer (see later)

Solution 3: Out-of-order Execution (6)

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

57

 "Sequentiality is an illusion"
 Programmer sees instructions executing in program order, i.e.,

sequentially

 In hardware many things happen in parallel

 Temporally by pipelining

 Spatially by exploiting ILP

 In out-of-order processors this even involves instructions that are not
executed in program order

 In-order retirement guarantees sequential appearance

 Parallelism at the instruction level: instruction-level parallelism (ILP)

58

Limitations to Scalar Pipelines

 Instruction type unification is a problem

 e.g.: floating-point addition vs. integer addition

 solved with pipeline diversification

 Fundamental limit: IPC ≤ 1

 solved with superscalar pipeline

 In-order execution: IPC < 1

 stalls caused by dependencies

 solved with out-of-order execution

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

Summary

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

59

 Improve performance with

 Pipelining: temporal parallelism

 Superscalar design: spatial parallelism

 Optimal pipeline depth

 Limitations on deeper pipelines

 Technology aspects, data dependencies, control dependencies in
code

 Superscalar processor

 Execute more than one operation per cycle

 In-order versus out-of-order

Important Streams

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

60

 Instruction stream
 Front-end of the pipeline
 Fetch as many as possible instructions into the pipeline

per cycle
 Lecture 3

 Data stream through registers
 Detect and deal with dependencies between instructions
 OoO execution of instructions
 Lecture 3

 Data stream through memory
 Get as much as possible data in and out of memory
 Lecture 2

Acknowledgement

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1

61

 Thanks for (parts of) slides

 Bjorn De Sutter

 Lieven Eeckhout

 Mikko H. Lipasti

 James C. Hoe

 John P. Shen

Advanced Computer Architecture – Jan Lemeire– VUB - 2012-2013 - Lecture 0

