
L E C T U R E  1 :  P I P E L I N I N G  

 

J A N  L E M E I R E  

 

S H E N  &  L I P A S T I  C H A P T E R S  2  &  4  

Advanced Computer 
Architecture 

10/12/2012 

1 

Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 



Historic Perspective 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

2 

 First employed in early 1960s 

 During the 1980s, it was the cornerstone of RISC 
approach 

 Intel i486 was first pipelined CISC processor (1989) 

 Today, almost all processors are pipelined 



Throughput vs Latency 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

3 

 Latency: time between start and finish of a job 

 Throughput: number of jobs per second/hour/day/... 

 

 Example: sending letters via airmail 

 More letters on a plane: more throughput, but same latency 

 More planes with same amount of letters: latency decreases and 
throughput increases 

 Less planes, with more letters: same throughput, higher latency 



Pipelining Principle 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

4 

 Goal: increase throughput without much additional HW 
           and without additional latency 



Pipelining Principle 

 Long operations 
 

 

 Combination of short operations 
 

 

 Pipelining 

 

 

 
 

1 2 3 4 

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 

GPU Programming 

time 

IF 

ID 

OF 

EX 

1 

1 

1 

1 2 

2 

2 

2 

3 

3 

3 

3 

4 

4 

4 

4 



Pipelining Overhead 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

6 

 Pipelining Idealisms 
 Uniform subcomputations 

 Can pipeline into stages with equal delay 

 Balance pipeline stages, otherwise have internal fragmentation 

 Also: no additional delay by the interstage buffers/clocking requirements 

 Identical computations 

 Can fill pipeline with identical work and no unused pipeline stages 

 Unify instruction types (example later) to avoid external fragmentation 

 Independent computations 

 No relationships between work units 

 Minimize pipeline stalls (dynamic external fragmentation) 

 Are these practical? 
 No, but can get close enough to get significant speedup 

 Deviations determine performance loss (inefficiencies) 

 



Pipeline Design Tasks 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

7 

 Perform stage quantization 

 to create uniform, balanced pipeline stages 

 Unify different resource requirements for different 
instruction types 

 to minimize the underuse of resources 

 to enable execution of all instruction types 

 Deal with dependent operations 

 Since not all instructions will be independent 

 Must not punish execution of independent instructions 

 



Impact on ISA 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

8 

 Uniform subcomputations 

 longest latency undividable instruction must be found 

 is usually the memory access 

 this should not be slowed down by complex addressing modes 

 caches are required because of high latency to main memory 

 Unifying the resource requirements 

 is easier for simple, less diverse RISC instructions 

 Deal with dependencies 

 is very hard in HW with complex addressing modes 

 can be done in HW (RISC) or in SW (VLIW) 



Pipeline Design: Balanced Stages (1) 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

9 

 Typically five tasks in instruction execution 

 IF: instruction fetch 

 ID: instruction decode 

 OF: operand fetch 

 EX: instruction execution 

 OS: operand store,  
often called write-back WB 



Pipeline Design: Balanced Stages (2) 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

10 

Two techniques 

1) merge stages 2) subdivide stages 



Pipeline Design: Balanced Stages (3) 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

11 

 More stages is more complex 

 more concurrent register file 
accesses 

 more concurrent memory accesses 

 pipelined memory accesses are 
complex 



Pipeline Design: Unified Instruction Types (1)  

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

12 

 Different types of instructions 

 ALU instructions 

 Memory accesses 

 Branch Instructions 

 Coalescing of requirements 

 Analyze subcomputation sequences and resource requirements 

 Find commonalities and merge them 

 In case of flexibility, shift or reorder subcomputations to ease 
merging  

 



Pipeline Design: Unified Instruction Types (2)  

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

13 



Pipeline Design: Unified Instruction Types (3)  

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

14 

 Objectives 

 minimize the total number of resources 

 maximize utilization, minimize idling stages 

 limit instruction latency 

 put idle cycles at the end (to minimize dependencies) 



Pipeline Design: Unified Instruction Types (4)  

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

15 

source registers 

operation to be performed 

destination register 



Pipeline Design: Unified Instruction Types (5)  

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

16 



Pipeline Design: Minimize Pipeline Stalls (1) 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

17 

 Multiple instructions in pipeline, in different stages 

 Be carefull with data dependencies 

Suppose I4 consumes  
value produced by I2. 
 

Need to avoid that 
I4 reads operands before 
I2 writes them. 

Solution: detect 
dependence and delay 
instruction I4. 



18 

Pipeline Design: Minimize Pipeline Stalls (2) 

 Data dependencies 

 

 True dependence = read-after-write (RAW) 

 

 

 Anti dependence = write-after-read (WAR) 

 

 

 Output dependence = write-after-write (WAW) 

 

 A hazard: messing up the program by not respecting a  
dependency 

V3 ← V1 op V2 

V4 ← V3 op V5  

V3 ← V1 op V2 

V1 ← V4 op V5  

V3 ← V1 op V2 

V3 ← V4 op V5  

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 



Pipeline Design: Minimize Pipeline Stalls (3) 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

19 

 Dependencies Through Memory? 

Not possible since (1) only one stage accesses memory, and  
                                  (2) all instructions pass through mem stage in program order. 



Pipeline Design: Minimize Pipeline Stalls (4) 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

20 

 What about WAW hazards through registers? 

Not possible since (1) all writes to register happen in single WB stage, and  
                                  (2) all instructions pass through WB stage in program order. 



Pipeline Design: Minimize Pipeline Stalls (5) 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

21 

 What about WAR hazards through registers? 

Not possible since (1) writes occur in WB stage after reads in RD stage, and  
                                  (2) all instructions pass through these stages in program order 



Pipeline Design: Minimize Pipeline Stalls (6) 

10/12/2012 

22 

 RAW hazards 

Suppose I4 consumes  
value produced by I2. 
 

Need to avoid that 
I4 reads operands before 
I2 writes them. 

Solution: detect 
dependence and delay 
instruction I4. 

Result: pipeline bubble or stall, performance drop 

Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 



Pipeline Design: Minimize Pipeline Stalls (7) 
23 

 RAW hazards: forwarding 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 



Pipeline Design: Minimize Pipeline Stalls (8) 
24 

 Forwarding implementation 

Delay lines 

Comparators 

Multiplexors 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 



Pipeline Design: Minimize Pipeline Stalls (9) 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

25 

 What about control dependencies and branches 

EVERY 5th-6th 
instruction is a 

branch! 



Pipeline Design: Minimize Pipeline Stalls (A) 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

26 

 Similar solution: branch forwarding to save a cycle 



Pipeline Design: Minimize Pipeline Stalls (B) 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

27 

 Additional solution: branch not taken prediction 

 keep fetching & decoding & ... 

 If branch is not taken, oke, keep executing 

 If branch is taken: flush all the instructions past the branch 
from the pipeline, and start fetching again 

 Another solution: delay slot 

 keep fetching & decoding & executing delay slot instructions 

 compiler places only instructions in the delay slot that are 
executed on taken and non-taken path 

 instructions in delay slot need not be flushed! 

 

 



Pipeline Design: Minimize Pipeline Stalls (C) 
28 

IF 

ID 

OF 

EX 

MEM 

WB 

 br t 

 br 

 br 

x x+1 x+2 x+3 x+4 

 br 

 br 

x+5 

inst 

correct not-taken prediction: 
penalty = 0 cycli 

inst inst 

inst 

inst 

inst 

inst 

inst 

inst 

inst 

inst 

inst 

inst 

inst 

inst 

 br 

inst inst 

not- 
taken taken 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 



Pipeline Design: Minimize Pipeline Stalls (D) 
29 

IF 

ID 

OF 

EX 

MEM 

WB 

 br t 

 br 

 br 

x x+1 x+2 x+3 x+4 

 br 

 br 

x+5 

inst 

incorrect not-taken prediction: 
penalty = 4 cycli 

inst inst 

inst 

inst 

inst 

inst 

inst 

inst 

inst 

inst 

 br 

inst inst 

not- 
taken taken 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 



Pipeline Design: Minimize Pipeline Stalls (E) 
30 

IF 

ID 

OF 

EX 

MEM 

WB 

 br t 

 br 

 br 

x x+1 x+2 x+3 x+4 

 br 

 br 

x+5 

inst 

incorrect not-taken prediction: 
penalty with delay slot = 3 cycli 

inst inst 

inst 

inst 

inst 

inst 

inst 

inst 

inst 

inst 

 br 

inst inst 

not- 
taken taken inst 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 



31 

Limitations to Scalar Pipelines 

 Instruction type unification is a problem 

 e.g.: floating-point addition vs. integer addition 

 

 Fundamental limit: IPC ≤ 1 

 

 In-order execution: IPC < 1 

 stalls caused by dependencies 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 



32 

Problem 1: Unification 

IF 

ID 

OF 

EX 

MEM 

WB 

EX has to execute integer  
addition as well as floating-point 
addition in one cycle ... 
Solution: diversification 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 



33 

Solution 1: Diversified Pipeline 

IF 

ID 

OF 

FP (1) 

FP (2) 

FP (3) 

FP (4) 

FP (5) 

FP (6) 

WB 

INT  MEM (1) 

MEM (2) 

MEM (3) 

BR 

higher clock frequency than 
unified pipeline 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 



34 

Problems of Diversification 

 Out-of-order completion 

 Writing back the results can happen out-of-order  
(= WAW hazard) 

 Potentially more write operations to register file in 
WB stage per klok cycle (= structural hazard) 

 Exceptions 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 



35 

Out-of-order completion 

R4←ld[MEM] 

R3←R1+R2  

IF   ID   OF   MEM1 MEM2 MEM3 WB 

     IF   ID   OF   EX   WB  

t 

... is not really a problem (except for exceptions—see later)... 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 



36 

but ...  

R4←ld[MEM] 

R4←R1+R2  

IF   ID   OF   MEM1 MEM2 MEM3 WB 

     IF   ID   OF   EX   WB  

... this is a WAW hazard, the solution is ... 

t 

R4←ld[MEM] 

R4←R1+R2  

IF   ID   OF   MEM1 MEM2 MEM3 WB 

     IF   ID   OF   xx   xx   EX   WB  

... blocking the pipeline (a stall) 

t 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 



37 

Multiple WBs per cycle 

 Is impossible because of only 1 write port to 
register file 

 Solution: 
 Add a write port, or 

 Treat the write port as structural hazard (i.e. an 
additional stall) 

R4←ld[MEM] 

R3←R1+R2  

IF   ID   OF   MEM1 MEM2 MEM3 WB 

     IF   ID   OF   EX   WB  

t 

R5←R3+R2            IF   ID   OF   EX   WB  

R5←R3+R2            IF   ID   OF   xx   EX   WB  

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 



38 

Interrupts vs. exceptions (1) 

 Interrupts 

 Typically because of external factors 

 Asynchronuous with respect to program executing 

 Interrupt handling: 

 Stop fetching new instructions 

 Finish executing instructions in the pipeline 

 Save architectural state 

 Handle the interrupt 

 Restore state and continue executing the program 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 



39 

Interrupts vs. exceptions (2) 

 Exceptions/faults 

 Caused by something in the execution of the program 

 division by zero, page fault, overflow, etc. 

 Precise exception 

 Store state from just before instruction 

 Handle the exception 

 Continue execution from instruction that caused the exception 

 What happens with out-of-order completion? 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 



40 

Exceptions en OoO completion 

 Because of OoO completion, precise exceptions 
cannot be guaranteed 

 Imprecise exceptions 

 Hard to support in modern processors, complicates design 

 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 



41 

Limitations to Scalar Pipelines 

 Instruction type unification is a problem 

 e.g.: floating-point addition vs. integer addition 

 solved with pipeline diversification 

 Fundamental limit: IPC ≤ 1 

 

 In-order execution: IPC < 1 

 stalls caused by dependencies 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 



42 

Solution 2: Superscalar pipeline (1) 

FP (1) 

FP (2) 

FP (3) 

FP (4) 

FP (5) 

FP (6) 

INT  MEM (1) 

MEM (2) 

MEM (3) 

BR 

IF 

ID 

OF 

WB 

crossbar 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 



Solution 2: Superscalar pipeline (2) 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

43 

 Temporal Parallelism 

 Pipeline 

 Relatively Cheap 

 Spatial Parallelism 

 Superscalar 

 Relatively expensive (more hardware) 

 Superscalar pipeline 

 Both temporal and spatial parallelism 

 Potential speedup of the pipeline: depth * width 



Solution 2: Superscalar pipeline (3) 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

44 

 Additional HW cost: 
 More register ports 

 2 x w read ports 

 w write ports 

 can do with less, at the expense of structural hazards 

 

 More bandwidth to I$ and D$ (caches) 

 Interconnections 

 To distribute instructions over pipelines 

 Complexity w2 

 Hazard detection is more complex 

 



Solution 2: Superscalar pipeline (4) 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

45 

 Dealing with hazards 

 Typically before instruction is executed 

 i.e. at operand fetch time 

 Once in the function unit (execution stages of pipeline), the 
instruction is no longer blocked 

 



Solution 2: Superscalar pipeline (5) 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

46 

R4←ld[MEM] 

R3←R1+R2  

IF   ID   OF   MEM1 MEM2 MEM3 WB 

IF   ID   OF   EX   WB  

t 

R5←R3+R2  IF   ID   OF   xx   EX   WB  

First and second instruction executed together as they are independent. 
Third instruction is blocked because of RAW hazard with second 
instruction. Blocking happens in OF stage. 

R6←R1+R2 

R3←R1+R6  

IF   ID   OF   xx   EX   WB 

IF   ID   OF   xx   xx   EX   WB  

R5←R2+R6  IF   ID   OF   xx   xx   EX   WB  



47 

Limitations to Scalar Pipelines 

 Instruction type unification is a problem 

 e.g.: floating-point addition vs. integer addition 

 solved with pipeline diversification 

 Fundamental limit: IPC ≤ 1 

 solved with superscalar pipeline 

 In-order execution: IPC < 1 

 stalls caused by dependencies 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 



Problem with in-order execution (1) 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

48 

R4←ld[MEM] 

R3←R1+R2  

IF   ID   OF   MEM1 MEM2 MEM3 WB 

IF   ID   OF   EX   WB  

t 

R5←R3+R2  IF   ID   OF   xx   EX   WB  

Fourth to sixth instruction are blocked when second instruction is blocked, 
even though they were not dependent on first two instructions. This is a 
fundamental problem of in-order issue machines. 

R6←R1+R2 

R3←R1+R6  

IF   ID   OF   xx   EX   WB 

IF   ID   OF   xx   xx   EX   WB  

R5←R2+R6  IF   ID   OF   xx   xx   EX   WB  



Problem with in-order execution (2) 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

49 

t 

Problem becomes even worse in case of long latency blocks,  
such as multiplication instructions or cache misses. 

R4←ld[MEM] 

R3←ld[R1]  

IF   ID   OF   MEM1 MEM2 MEM3 WB 

IF   ID   OF   MEM1 MEM2 MEM3 xx   xx   WB

  

R5←R3+R2  IF   ID   OF   xx   xx   xx   xx   xx   EX   WB 

R6←R1+R2 

R3←R1+R6  

IF   ID   OF   xx   xx   xx   xx   xx   EX   WB 

IF   ID   OF   xx   xx   xx   xx   xx   xx   EX 

R5←R2+R6  IF   ID   OF   xx   xx   xx   xx   xx   xx   EX 

cache 
miss 



Problem with in-order execution (3) 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

50 

R4←ld[MEM] 

R3←R1+R2  

IF   ID   OF   MEM1 MEM2 MEM3 WB 

     IF   ID   OF   EX   WB  

t 

R4←R3+R2            IF   ID   OF   xx   EX   WB  

R4←ld[MEM] 

R3←R1+R2  

IF   ID   OF   MEM1 MEM2 MEM3 xx  xx  WB 

     IF   ID   OF   EX   WB  

t 

R4←R3+R2            IF   ID   OF   xx   xx  xx  EX  WB 

cache 
miss 

Suppose there is only one register write port ... 
The cost increases very quickly with increasing instruction latencies 



Problem with in-order execution (4) 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

51 

Scalar pipeline: advance in lockstep fashion (in 
order) 

Problems: 
 A blocking instruction blocks all following 

instructions 
 even if those are independent 
 is particularly problematic for long-latency instructions 

 
 WAW dependencies limit parallelism even though 

they are not real dependencies 
 

 Why are WAR dependencies no limitation? 



Solution 3: Out-of-order Execution (1) 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

52 

 Idea: 

 True dependencies (RAW) determine execution 

 False (output and anti, WAR and WAW) dependences do 
not block instructions 

 Except when storing values becomes a resource constraint, see 
later 

 In other words, the data flow limit is reached, i.e. 
instructions are executed as soon as there operands are 
available. 

 Out-of-order execution implies a dynamic pipeline 

 



Solution 3: Out-of-order Execution (2) 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

53 

R4←ld[MEM] 

R3←R1+R2  

R5←R3+R4  

R6←R1+R5 

R3←R1+R4  

R5←R4+R5  

R4←ld[MEM] R3←R1+R2  

R5←R3+R4  

R6←R1+R5 

R3←R1+R4  

R5←R4+R5  

Only RAW dependencies 

Data flow graph determines  
order of execution 

 Data flow limit 
 
 
 
 
 
 
 
 
 

 Approximates upper limit on ILP 
 



Solution 3: Out-of-order Execution (3) 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

54 



Solution 3: Out-of-order Execution (4) 
55 

fetch 

dispatch 

FP (1) 

FP (2) 

FP (3) 

FP (4) 

INT  MEM (1) 

MEM (2) 

MEM (3) 

BR 

issue buffer 

complete 

retire store buffer 

issue 

execute 

finish 

in
-o

rd
er 

in
-o

rd
er 

o
u

t-o
f-o

rd
er 

decode 

store 
queue 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 



Solution 3: Out-of-order Execution (5) 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

56 

 Issue buffer = reservation station 
 Instructions are inserted in issue buffer and reorder 

buffer in program order 
 Instructions are executed on FUs and might leave them in 

another order 

 Reorder buffer = completion buffer 
 Out-of-order finish because of out-of-order issue en non-

uniform execution latencies 
 In-order retirement = writing back the results in the 

registers 
 Enables precise exceptions 

 Store queue en store buffer (see later) 

 



Solution 3: Out-of-order Execution (6) 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

57 

 "Sequentiality is an illusion" 
 Programmer sees instructions executing in program order, i.e., 

sequentially 

 In hardware many things happen in parallel 

 Temporally by pipelining 

 Spatially by exploiting ILP 

 In out-of-order processors this even involves instructions that are not 
executed in program order 

 In-order retirement guarantees sequential appearance  

 Parallelism at the instruction level: instruction-level parallelism (ILP) 

 



58 

Limitations to Scalar Pipelines 

 Instruction type unification is a problem 

 e.g.: floating-point addition vs. integer addition 

 solved with pipeline diversification 

 Fundamental limit: IPC ≤ 1 

 solved with superscalar pipeline 

 In-order execution: IPC < 1 

 stalls caused by dependencies 

 solved with out-of-order execution 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 



Summary 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

59 

 Improve performance with 

 Pipelining: temporal parallelism 

 Superscalar design: spatial parallelism 

 Optimal pipeline depth 

 Limitations on deeper pipelines 

 Technology aspects, data dependencies, control dependencies in 
code 

 Superscalar processor 

 Execute more than one operation per cycle 

 In-order versus out-of-order 

 



Important Streams 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

60 

 Instruction stream 
 Front-end of the pipeline 
 Fetch as many as possible instructions into the pipeline 

per cycle 
 Lecture 3 

 Data stream through registers 
 Detect and deal with dependencies between instructions 
 OoO execution of instructions 
 Lecture 3 

 Data stream through memory 
 Get as much as possible data in and out of memory 
 Lecture 2 

 



Acknowledgement 

10/12/2012 Advanced Computer Architecture – Jan Lemeire – VUB - 2012-2013 - Lecture 1 

61 

 Thanks for (parts of) slides 

 

 Bjorn De Sutter 

 Lieven Eeckhout 

 Mikko H. Lipasti 

 James C. Hoe 

 John P. Shen 

 

Advanced Computer Architecture – Jan Lemeire– VUB - 2012-2013 - Lecture 0 


