NTS Implementation Page 47

5 Implementation
The following chapter describes the techniques and actual code used in creating

NTS. As NTS is in three parts: ntsRouter, ntsLibrary, and ntsMaster, each part will be
dealt with separately.
Note: some of the classes being big, in UML diagrams, only the most important aspects

of the class are shown.

5.1 ntsRouter

_| «uses» _|

Router

Controller

Figure 22: ntsRouter packages
As shown in Figure 22, the ntsRouter program is composed of two main parts. A
set of classes to represent the Router and its Routing Table and a C style main which acts
as a controller. The Router Package was initially implemented by Olivier Thonnard (see
AOM description), and has only been modified to allow the setting of the “silent”

working mode for the Router program (see section 4 Using NTS).

5.1.1 The Router Object

The main class is the router. The main data of this class is the Routing Table,
which is an array of Complete Routes (initially: maximum 20 routes). This Complete
Route is defined as a structure holding the following information:

e Destination: integer holding a TID,

e Path Cost: integer holding the number of hops to reach the destination,

e Next Hop [10]: an integer array of size 10 to hold the different
alternative routers for the same destination,

e Sequence: integer to keep track of the sequence for the load balancing

(points to the following route that has to be used),

e Status: a Boolean to know if the router has been changed or not (for the

update process, to detect which routes have to be sent or not),

Network Topology Simulator Antoine Hupin

NTS Implementation Page 48

e Link or client: a Boolean that describes a link/route as a link (to another
Router) or a client.
The other data’s of the class router are: the RouterID (i.e., the TID), the
Size RoutingTable and the DefaultRoute. The class provides a set of methods to use

the routing table:

Methods Functions Comments
Constructor Router(int RouterID) /I Initializes the data & the
RouterID

Methods for Initial Addlink(int neighbourID, beol // Static config
Config (used by the LinkOrClient)

Mast
aster) DeleteLink(int neighbourID)
SetDefaultRoute(int
neighbourID)
Methods for AddlinkDyn(int neighbourID, // Dynamic config
Dynamic Config bool LinkOrClient) // Uses Route Poisoning
(used by the Master) . .
DeleteLinkDyn(int
neighbourID)
Methods for Packet SendUpdate() // Main functions for updates —

Dynamic Updates use the Split Horizon principle
(with other Routers — return a Packet object with
or with the Master) Messages that need to be sent
// a route is a small object
with:
- adestination,
- apath cost
- anext hop
- a link or client
identifier
Methods for Routing int GetNextHop(int destination) // Uses the Load Balancing
principle & Returns the next

Packet ReceiveUpdate(route a)

hop
Methods for CompleteRoute* GetTable() // Returns the RT
Getting/Printing the PrintTable() // cout the RT

Routing Table

Table 2: Description of the “Router” class

Network Topology Simulator Antoine Hupin

NTS

Implementation

- ™12 Router

@ AddLink[int neighbour D, bool LinkOrClient]
@ AddlinkDenfint neighbourl D, bool LinkOrClhent)

(= CounthbOfLinks()
{#f CounthbOfR outes(int neighbourl 0

@ DeleteLink[int neighbourl 0

@ DeleteLinkDyn(int neighbourl D]
& GetMetHoplint dest]

@ GetRouterl D)

@ GetSizelfRoutingT able(]

& GetTable(]

(= Meighbours()

@ operator =[const Router &)

& PrintT able()

@ Receivellpdate(route a)

& Routerint 10

@ Router[const Router &)

@ Router]

@ “Router)

@ Sendlpdate(]

@ SetDefaultR oute(int neighbourl D]

@5 DefaultRoute

&5 Router D

&5 Routing_T able
{35 Size_FoutingT able

=8 route

@ PackRoute(]

& route(]

@ routefint Dest, int Cosgt, int Mesxt, bool LinkOrClient]
@ routelint af])

@ “route)

@ cogt

@ LC

@ nest_hop

(&5 rouke_array

@ o

Page 49

= ™% CompleteRoute

i@ Destination
i@ LC

i@ MextHop
i@ PathCoszt
i@ Sequence
i@ Statuz

=% Packet

@ Gethdzglint Maglndesx)
@ GetMbOfezsages()
@ operator =[const Packet &p]
i Packet(]
@ Packet(int number)
@ Packet[const Packet &p)
@ ~Packet(]
@ PrintFacket]]
% Setteszage(int Maglndey, const Meszage &a)
i@ EmptyFacket
@@ Mumber0ftessages
4@ TableOfteg

- ®® Message

@ GetDestination|]

@ GetMbOR outes(]

@ GetRoute(int Boutelndesx)

@ Meszage(]

@ Meszagelint number]

@ Meszage(const Meszage fm)
@ “Meszage(]

@ operator =[conzt Meszage fm)
@ SetDestination[int neighbourl D]
@ SetBoutelint Boutelndes, route a)
i@ Destination

i@ Emptybeszage

i@ MumberdfRoutes

i@ Table0fRoutes

Figure 23: Classes view of the Router Package

The interaction with the Router class happens through interface objects, namely:

The class route: very small object with 4 integers (dest, path cost,

next_hop & linkorclient),

The class Message: object to represent an “envelope” of routes that need

to be sent to a certain neighbor,

The class Packet: object to wrap all Messages generated by calling the

Updates (ReceiveUpdate or SendUpdate) into one single packet.

Network Topology Simulator

Antoine Hupin

NTS Implementation Page 50

Of course, one can easily see how dynamic are the sizes of the Messages and hence the
size of the Packet as we can never predict how many routes a Router will need to

exchange. All the classes are represented in Figure 23.

5.1.2 The Controller

As already stated, the ntsRouter program is an infinite loop, once it has been
setup, which listens to incoming messages and processes them. Upon instantiation by the
Master, the Router synchronizes its computer clock with that of the Master’s (using
PVM) so that timing records will be accurate. The Router then waits for the ok from the
Master that all Routers have been initialized properly, and the simulation starts.

Initially, the Master will send to each Router its initial neighbors via configuration
messages, and the Routers will automatically propagate the changes in between
themselves to update the Routing Tables. Also each Router will receive the options
currently in use.

Routers receive the following messages:

Type Sender Tag Process
Update Another 1 Open the message and update the Routing Table
Router with the data, if the Table is updated, propagate
the change
Add Neighbor Master 5 Adds a new entry to the Routing Table and

propagates the change

New Client Client 13 A client wishes to join the simulated network, a
new entry in the Routing Table is added, a
message is sent to the Master, the ok is sent to
the Client that it has been added, the change is
propagated

Delete Neighbor Maser 3 Removes the entry from the Routing Table,
initially the Route is Poisoned first, then
removed at next update

Delete Client Client 2 Client leaves simulated network, Route is
Poisoned and propagated, Master is notified

Die Master 6 Message for Router to end, Master takes care of
signaling all neighbors before it removes a
Router.

Network Topology Simulator Antoine Hupin

NTS Implementation Page 51

Print Table Master 10 Router prints its Routing Table to the standard
output

Forwarded Master 11 Option to log all messages that are forwarded by

Message Logging sending the log to the Master

Message Printing ~ Master 12 Option to print messages to standard output or

not while running

Forward Message Client Any Processes the message to forward it on through
other the network

Table 3: ntsRouter messages

To forward a message, the message tag of the incoming message must first be
processed because of the information compression needed by NTS. The tag is extracted,
and divided into its components. The Final Destination of the message is looked up using
its Id in the PVM lookup table. The TID now accessible, the Next Hop can be looked up
in the Routing Table, and the message forwarded by exchanging PVM buffers.

For logging of Messages, the time of processing is checked, and packed into a
message for the Master along with all the needed information for the log: source, final

destination, current location, next hop, message tag, sequence, etc.

5.2 ntsLibrary
The ntsLibrary is the overloaded PVM communication library proposed to Clients

to communicate using the simulated NTS network. It is mad of two parts: the overloaded
PVM functions and a settings package (Figure 24), which connects to the NTS network
and stores all the details for overloading PVM.

1] 1

«uses»
Overloaded Functions LibSettings

Figure 24: ntsLibrary packages

Network Topology Simulator Antoine Hupin

NTS Implementation Page 52

5.2.1 Settings

-Receiving 1

1
ntsLibSettings

-inst : ntsLibSettings

-connect()
-disconnect()
-ntsLibSetteings()
-~ntsLibSettings()

1 +instance()

ntsSequence

' Implements Singleton Patterﬁ

T -Sending
Figure 25: ntsLibSettings class
The Settings is composed of a class ntsLibSettings, which implements the
singleton pattern (Figure 25). The instance of this class is called in every overloaded
function as upon creation, this class connects to the NTS network:
The class contacts the ntsMaster, asking the TID of the local Router for the code.
If a local router exists the class contacts it, to ask to be added as a subscriber to the
simulated network.
The ntsLibSettings keeps all the relevant information for the client to be able to
run on the NTS network, such as the Local Router TID, and the sequence for each

destination and source the client code sends or receives messages from or to.

5.2.2 Forwarding Functions
Not all PVM functions are overloaded. Many in fact are just forwarded on to

their PVM equivalent. An added layer of error detection is added by NTS though. Also

the instance of the ntsLibSettings is called to make sure that NTS is connected.

5.2.3 Sending Messages

PVM has many ways of sending off messages, the most simple being pvm_send().
NTS implements a “sender” function which takes care of redirecting the message to the
local router and modifying the message tag to contain all the required information for the
working of PVM (see section 3.6 ntsLibrary). Any needed information is taken from the
ntsLibSettings class. Each overloaded PVM function calls the NTS sender with the

required parameters, or calls it multiple times as with Group Sending, or multicasting.

Network Topology Simulator Antoine Hupin

NTS Implementation Page 53

5.2.4 Receiving Messages
Unlike for sending messages, NTS does not implement a receiver as each type of

specialized PVM receive is different. Each overloaded PVM receive function therefore
takes care of composing the composite message tag that needs to be listened for using the
information from the ntsLibSettings. As explained in the Design part, NTS must “listen”

for a specific message in order to reorder the sequence of the messages automatically.

5.2.5 Disconnecting
Disconnecting happens automatically at the destruction of the ntsLibSettings

object. Disconnection happens therefore automatically at the end of a NTS application,
but it is better to explicitly call the nts exit() function when the NTS connection is no

longer required.

5.3 ntsMaster
The ntsMaster being a GUI program, it is mostly based on the View Control

Data (VCD) method. In this method a central Data repository can only be modified via a
Control package. Various views can be used to display the Data in the repository and ask
the Controller to change the Data. This method reduces coupling in between Packages
and provides central accesses and control over each. Each Package also becomes
independent from the other, only the Control is aware of every View viewing the Data at
any one time. Each view operates independently, usually using the Observer pattern with
the Data to update the contents of the view when the Data has been changed. Figure 26
exposes the packages of the ntsMaster.

As the Qt Designer method was used for the main window layout the VCD
method was not completely implemented. The Qt Designer implements the control of an
application directly into the main window of the application, therefore combining
Graphical Display and Controller together. This method though makes it easier and
faster for small layout changes. The Qt Designer method in combination with the
adopted VCD method also makes it easy to add/remove/modify extra views of the Data
structure as adding a new graphical module means just adding it to the main window
rather then to the Control module and the Main Graphical representation. More of this

method is presented later.

Network Topology Simulator Antoine Hupin

NTS

Implementation

Page 54

ntsPlayer

«uses»

—

«uses»

S

ntsNetwork

0

«uses»

—_—

ntsGraphics

«uses» _|

«uses»

«uses»

Display

«uses»

Controller

Figure 26: The main packages of the ntsMaster and their connections

QOject

ntsNetworkitem

-network : ntsNetwork

JAN

ntsNode - - ntsLink ntsMessage | -- ntsPath
-tid :int -from : ntsNode
+addLink() . -to : ntsNode »
+delLink() -
_Links » -Messages * _Paths *

ntsRouter

ntsClient

-name : String

-Routers *

-Clients

Y.

ntsNetwork

+add()
+delete()
+build()
+run()
+stop()

Figure 27: ntsMaster, ntsNetwork Package / data structure classes

Network Topology Simulator

Antoine Hupin

NTS Implementation Page 55

5.3.1 ntsNetwork Package

The ntsNetwork package is the main data structure of the ntsMaster program and
the Data of the VCD method implemented (Figure 27). The whole package inherits
QObject so that the rest of the program can “observe” the data structure via the Qt
signal/slot system. The data structure of course represents the real structure of the
simulated NTS network. A fagade is presented as the ntsNetwork class.

NtsNetwork class:

The ntsNetwork class is the front end of the data structure or the facade of the
package. No classes from the actual structure should be instantiated by user code; the
creation and network modification functions of the ntsNetwork should be used. These
make sure that the structure is modified according to the rules of NTS network
simulation, plus if a new class is created, keep its reference for easy finding. The class
also holds all the set options of the NTS network.

The ntsNetwork class is also responsible for the state of the NTS network,
whether it is running or not. It has the build(), run(), and stop() functions to control the
state of the network. The build() function instantiates each router, passes the options to
these, and connects the neighbors, turning the network into a “running” state.

The run() function is actually a separate thread, which listens to messages from
Routers and potential Clients. The stop() sends the terminal signal to all Routers thus
ending the simulation.

The ntsNetwork class also is full of non-shown navigating functions for Observers
to navigate the data structure and retrieve the needed information. Observers link to this
class to be notified of changes to the Data structure. The ntsNetwork class emits specific
signals whenever the data structure is modified so that Observers can update only when a
specific part of the structure they are interested in is modified.

Network Items:

The ntsNetworkltem class identifies any class belonging to the data structure. It
is the super class, which is used by the Controller Package to select items directly in the
structure. The subclass of a network item can be identified by its overloaded #ype()

function. Network items always hold a reference to their network.

Network Topology Simulator Antoine Hupin

NTS Implementation Page 56

Graph Network Structure:

The ntsNode, ntsClient, ntsRouter, and ntsLink classes represent the structure of
the NTS network being simulated by a user. This part of the structure is based on a graph
design as a network behaves a bit like a graph. The two types of Nodes: Routers and
Clients (terminal Nodes, i.e., can only have one link) are “linked” together by ntsLinks.
In the real network, these links are exchanges of TIDs.

The usefulness of the graph structure is the way independent functionality can be
controlled; such as the fact a Link attached to a Client must always be bi-directional.
Also with the graph structure cascading deletes are easy to implement; as in when a
Router is deleted, all of its connecting Links are deleted and each neighbor notified
automatically of the departure of one of their connections.

The network structure takes care to forward any changes to their instantiated
programs (i.e., ntsRouter programs running on computers of the simulated network) if the
network is in running mode, automatically sending the appropriate messages for the
change to be reflected in the simulated network.

Messages and Paths:

The ntsMessage class is a container class to hold the information sent by Routers
for forwarded messages logging.

Paths are classes, which hold lists of ordered Messages, so as to recreate the full
forwarding path of a message through the NTS simulated network. Paths can then be

played out by the ntsPlayer.

5.3.2 Controller Package

Because the ntsMaster is a Graphical User Interface, the Controller mostly
forwards commands input by the Graphical User Interface to the appropriate subsystem
of the application, mostly to the Data Structure. The Controller is the only Package,
which is allowed to forward requests that modify the structure of the Data. Figure 28
depicts the process of forwarding a request to the Data Structure and the resulting update
propagation
Plug-ins:

As stated before because of the Qt Designer method used to simplify the layout of

the main window graphic, the Controller is contained within the class that represents this

Network Topology Simulator Antoine Hupin

NTS Implementation Page 57

ocalhos
Cancel

LT EY Y Sl L T @
Controller
e \

Figure 28: The forwarding process of adding a new Router
main window graphically. This simplifies the adding or removal of a subsystem from the
application, as only the one class has to be modified.

Adding a subsystem to NTS compromises: instantiating the new subsystem in the
Controller initiation (passing a reference to the Data structure so the subsystem
subscribes as an Observer), connecting the Controller and subsystem via signal/slot
references for the appropriate functionalities to be forwarded (usually the select
mechanism, see section 5.3.2 Controller Package, Selection), and modifying the Main
window graphic to display the new subsystem accurately. All of these modifications are
carried out only to two functions of the Controller class because of the melding of the

Graphical component and the Controller. None of the other subsystems or the Data

structure need be aware of the new functionality added to the program.

/I message list /
messagelListView = new ntsMessageListView(net, workspace);

connect(messageListView, SIGNAL(selected(ntsNetworkItem*)), this, SLOT(
newSelection(ntsNetworkltem*)));

connect(messageListView, SIGNAL(visibilityChanged (bool)),
viewMessageListAction, SLOT(setOn(bool)));

messageListView->hide();v\

Instantiate

< Display correctly Connect with Selection System

Figure 29: Instantiation and connection of the Message List

Network Topology Simulator Antoine Hupin

NTS Implementation Page 58

Figures 29 shows the actual lines of code needed to instantiate the Message List
subsystem, and connect it, in the initiation of the controller.
Selecting:

One of the main advantages of using the VCD method is the ease with which one
can cascade a change through all the various views automatically. The main example of
the use of this technique is the selection process of NTS. Many views within the NTS
Master can select various components of the network structure. When an element is
selected, view emits a “selected” signal with the selected element as argument. The
Controller “selection” method being linked with the view (see section 5.3.2 Controller
Package, Pug-ins) emits its own “selected” signal. Each plug-in which is connected to
the Controller “selected” then updates its view, looking up the new selected element’s

attributes directly from the data structure (Figure 30).
e ey

[
P ET LT E- TR T
- .
M R
KL -l
= Lot E] "
B o aboas
b e
.w
[T
Controller ¢
|
@ |
ey
3 @
>
I

Figure 30: Illustration of flow of data for a selection

5.3.3 Graphics

The ntsGraphics is the most complex subsystem of the ntsMaster program. It is
the only subsystem that is not an integrated VCD method like most of the other views.
The Package has its own data structure, fagade to control it, and view as separate classes

(Figure 31).

Network Topology Simulator Antoine Hupin

NTS Implementation Page 59

ntsGraphic

————————————————————————— -parent

-graphics : ntsGraphics

+x() 1 int

+y() :int

+selected() : bool

+moveBy(in dx : int, in dy : int)

& | |
ntsGraphicNode ntsGraphicLink ntsGraphicMessage

ntsNetwork

T 7N | |

-Links *|-Messages | * T

ntsGraphicRouter| [ntsGraphicClient :
|

«uses»

-Rquters * -Clients 1 1

ntsGraphics

|
|
|
1 -network |
|
@ +add()
+de|ete() «uses»
+select(in ntsNetworkltem)
+find()

ntsPlayer

i
I

I

I

I I

! I

«uses» | «uses» |
! I I

I I

I I

. I

I I

|

ntsCanvasView QCanvas
«uses»

Figure 31: ntsMaster Graphical Package
QCanvas / QCanvasView:

The graphics of NTS use the QCanvas package to simply make the actual
graphics. A QCanvasView class can display the contents of a QCanvas class in a
graphical widget. By sub-classing the QCanvasView, one can manipulate the contents of
the OCanvas directly, such as dragging elements around. ntsCanvasView is the subclass

used for this purpose. It is connected to the graphical representations of the network

Network Topology Simulator Antoine Hupin

NTS Implementation Page 60

components via the sub-classed graphical components used as building blocks by the
graphical system.

The ntsCanvasView is considered as a normal view of the Data by the Controller,
and is connected to the Selection mechanism, allowing the user to click elements in the
Graphical Display to select them. The ntsCanvasView is also connected to the Link
addition system of the Controller so that a line can be dragged from Router to Router to
connect them.
ntsGraphics:

ntsGraphics 1s the facade of the graphics subsystem. It is the object that is
connected to the ntsNetwork object, and instantiates graphical representations any newly
created network element. The ntsGraphics is also connected to the Controller selection
system to display the current selection graphically. The selection is forwarded to the
appropriate subclass.

Data Structure:

The graphical data structure mimics the ntsNetwork data structure, as it is to
represent this one graphically. One can see the same basis as the ntsNetwork based on
the graph structure. The difference here is that the connections serve for the graphics to
move around freely around the canvas. There is no need for any cascading delete, as
each representation will be automatically removed on the deletion of the network element
by the link between the ntsNetwork and the ntsGraphics.

Graphic Representations:

The Graphic representations of each element have got references not only to the
graphic system they belong to but also to the network element they represent. This is
used to get the information needed to faithfully represent the element.

The Graphic representations are composed of various graphical elements put
together. These elements must move as a group when dragged along the canvas. These
graphical elements were therefore sub-classed to have a reference to the graphical
representation they belong to. The graphical representation moveBy() function could then
be called by the ntsCanvasView to move the full illustration rather then just a component

of it.

Network Topology Simulator Antoine Hupin

NTS Implementation Page 61

5.3.4 Views

Views such as the Lists View, Properties View, Messages View, Paths View, and
Log Views all plug into the Controller. Each is connected to the ntsNetwork Package
(except for the Log Views which don’t need to be), and the selection method of the
Controller if needed. As explained in the Controller section it is relatively easy to add a
view. Each view is independent of the others, and only minimal changes to the main

window are required to display them properly.

5.3.5 Player

The player is not really a package or a view. Its graphical display is embedded in
the main window, while its control is a set of separate classes (main class and a separate
thread). It is coupled with the Data, requesting the Paths to play, but connects directly to
the ntsGraphics class from the graphics package to tell it when to create a Message
representation and where, as well as when to delete one. In terms of coupling, the Data

and Graphics are not aware of the Player’s presence.

5.3.6 Threads

Main separate threads are used within the ntsMaster program. The Qt thread
implementation class was used, usually with two fail-safes: a running condition, and
pausing condition. Threads are used in the ntsNetwork package (continuous listening to
incoming messages while in running mode), the Player (playing the Paths out
independently), and the Log Views (reading the open file continuously for any extra data
added).

The Log View threads cause problem, as they have no pauses in them, making
them very processor hungry. For some unknown reason, if a pause was added the reading
of the open file would cease and no further displays would happen. No reasonable

solution was found for the time being.

5.3.7 File Format

The ntsMaster permits the user to save to file network topologies he is testing for
reuse later. The file format use is a simple text file with a “.net” extension. The file

format is shown in (Figure 32).

Network Topology Simulator Antoine Hupin

NTS Implementation Page 62

NTSnetwork:
nodes:

AN TN

“PVM name” “X location on canvas” “Y location on canvas” “given name”
links:
“PVM name” “PVM name”

Figure 32: save file format

The PVM name of each node is saved along with its coordinates on the graphical
display and the user given name if any. For the links, the PVM names of each side of the
link recorded. If a link is bi-Directional, then a second line for the link will be included
with the names inversed. When adding an inverse link on top of an existing link, turns

the existing link into a bi-directional one (see section 4.6.2 Network Building).

Network Topology Simulator Antoine Hupin

