NTS Design Page 22

3 Design

This section will introduce the design issues that were encountered during the

initial designing of NTS. The goals of the simulation will be exposed, as well as the
general design constraints kept in mind throughout the implementation of NTS. The

different techniques used and the restrictions for each section of NTS follow.

3.1 Aim of the project

The aim to the project is to implement a variable simulated static interconnection
network on a switch network, and implement the basic communication operations for this
simulated interconnection network so that the effects of various network topologies on

parallel processing algorithms can be investigated.

3.2 Goals of NTS

e Implement a software solution for simulating different network
topologies on a switch network,

e The implementation will rely on PVM for its communication,

e Provide client code with an overloaded PVM library to use the simulated
network,

e To the client code, the simulated network will be transparent, only the
effects will be felt,

e The network will be dynamic, i.e., its layout can be built in an off-line
mode, and still be edited while on-line,

e Principles of parallel computing will apply for the simulated network,

e Only minimal changes to a PVM program should be made for it to be
able to use the NTS simulated network,

e Design for extensibility,

e A user friendly GUI will be made for the client to build the NTS
simulated network and set options,

e A general help will be at hand to consult for the workings and options of
NTS,

e The network will be robust.

Network Topology Simulator Antoine Hupin

NTS Design Page 23

3.3 Principals Behind NTS

Throughout the design and construction process of NTS, some basic principals
and design constraints were always kept in mind. This section enumerates these, plus

their consequences, mostly in the form of constraints to the use of NTS.

3.3.1 Development Language
PVM, as stated before is the communication library that will be used throughout

the project. PVM is available in Fortran and C. With the addition of having the Qt GUI
development toolkit available, the choice of using C++ for the development of NTS was

made.

3.3.2 Deadlocks

Because of the use of PVM as the base for communications, whether internally or
the proposed overloaded PVM library for clients, there will be no deadlocks in NTS
communication. PVM comes deadlock free, and therefore through legacy so will NTS.
This of course does not exclude that client code running on NTS may have deadlocks of
their own creations, such as two clients each “listening” for a message coming from the

other.

3.3.3 Equivalency with PVM
With the use of PVM internally, an overloaded PVM library is proposed to clients

to access the simulated topology of NTS. This library should behave as the PVM library,
with only minimal code changing for the client to convert his program from using one to
the other. No configuration of NTS should be required within the client code, this should
be done via the separately provided program controlling the NTS simulated network and
options. The connection to the NTS simulated network should be transparent and

automatic. The NTS network, as a whole should behave as a “network cloud”.

3.3.4 Routing

In a store and forward network, such as the one being simulated by NTS, one of
the main issues is message routing. NTS uses its own pseudo-routing algorithm based on

RIP®. Refer to the section 3.5 ntsRouter for details of this algorithm.

6 RIP: Routing Information Protocol

Network Topology Simulator Antoine Hupin

NTS Design Page 24

3.3.5 Dynamic Update Network
The network topology simulated by NTS is to be dynamically modifiable. The

network design can be laid out in an offline mode and still modified while “running”
(state in which the simulated network can accommodate client activity and
communication). All modifications to the network layout should be possible in either
mode, be it adding/removing nodes or links. The routing tables present in nodes of the
network are to dynamically update themselves so that no routing loops or holes are
present on the network. More information is present in the ntsRouter section.

This dynamic modification of the network can be used to simulate the
responsiveness of the network to a node crash. All building/modification of the network
is to be carried out by the specific program designed for these purposes, the ntsMaster,

see section 4.6 ntsMaster.

3.3.6 Parallel Processing Network
The simulated networks of NTS being primarily used to simulate a parallel

computer, such as a MPP, the principles of such internal networks are to be adopted while
conceiving NTS. The main idea implemented is the fact that in a constant network as is
found in a MPP or other parallel machine, all messages are known to have a final
destination. Messages will therefore always reach this destination. No precautions are
then taken to check how far a message still has to go or how long it currently has taken to
get there. This is different from other types of network types, such as IP, which
automatically delete messages that have been on the network too long, knowing that TCP
will request a retransmission. In NTS, a message, which has a legal NTS destination, will
keep on being forwarded, even if a path to the destination cannot be found, due to a

simulated “crash” or other.

3.3.7 Usage on Network

NTS simulates a store and forward static network. NTS is supposed to be used
over an all-to-all PVM network. Using NTS over a static type network or a coaxial
network would bring no investigational benefits, though NTS would still run on such

networks.

Network Topology Simulator Antoine Hupin

NTS Design Page 25

3.4 Definitions
e Master: program to setup the NTS simulated network, knows the TIDs

of elements on the network,

e Node: any program the Master knows the TID of, i.e., Routers and
Clients,

¢ Router: message forwarding program, one per computer, has a routing
table with which is dynamically updated to contain all Routers and
Clients on the network,

e C(lient: a program which connects to the simulated network using the
overloaded PVM communications library,

e Link: interchange of TIDs between two nodes.

3.5 ntsRouter

The ntsRouter program is the “forwarding” daemon, which resides on each
computer that is to act as a node on the NTS simulated network. Only one daemon is to
be loaded per computer participating in the simulation. The ntsMaster program provides
the instantiation of the ntsRouters. The ntsRouter, once setup, is an infinite loop,
listening for incoming messages and processing them. Incoming messages may come
from:

e ntsMaster: for building the initial configuration, for a dynamic change,
or a change of options,
e Client program: Clients use the overloaded PVM communications

library to connect and use the NTS simulated network, client messages

are either clients wishing to join or leave the NTS network, or messages

destined for other NTS user clients that have to be forwarded to the final

destination (i.e., the routing process),

e ntsRouter: from another Router in the network to exchange routing data

(i.e., a Routing Protocol is used to keep the routing tables up to date).

3.5.1 Message Forwarding Logging

For each forwarded message, the ntsRouter can log the forwarding and send the

detail to the ntsMaster where it is collected for analysis. See the ntsMaster for more

Network Topology Simulator Antoine Hupin

NTS Design Page 26

details. One of the parameters of the logging is the time of forwarding the message so
that the total message forwarding time through the simulated network can be calculated.
For this timing to be accurate, the computers on the network must synchronize. PVM
provides a facility to calculate the difference between two computer clocks, and therefore

be able to synchronize them.

3.5.2 Routing Protocol

As mentioned earlier, every network has to have a routing protocol. This section
describes NTS’s routing protocol, which was initially implemented by Olivier Thonnard
in the first incarnation: AOM. The routing protocol designed by Thonnard is such that
only minor updates were necessary before it was ready for inclusion in this updated
version that is NTS.

Every router and client is identified with a TID (Task Identifier) generated with
PVM.

NTS uses its own Routing Protocol based on the principles of Vector-Distance
Routing Protocol. A Vector-Distance Routing Protocol (like RIP, which is the simplest
one) characterizes every router with a metric, which can be seen as the distance to go to a
certain destination on the network (Vector = what is the next hop to reach the final
destination, Distance = still how far it is). The metric can be very simple like a number
of hops (used in RIP), but enhanced Vector-Distance Routing Protocols nowadays use
composite metrics to allow every link to be precisely characterized with several
parameters, like the bandwidth, the delay, the load, and the reliability. An example of
such a protocol is IGRP’, which is a Cisco proprietary Routing Protocol. IGRP uses a
formula to calculate the composite metric:

K2 - Bandwidth
256 — load

K5
reliability + K4

Metric = < Kl - Bandwidth + + K3 ' Delay >

where the K values are constants that can be adjusted from the router console to best tune
the routing process.
In a first approach, the focus on the simplest routing protocol was adopted; the

metric that was used is just the number of hops (which is in fact equivalent to the

" IGRP: Interior Gateway Routing Protocol

Network Topology Simulator Antoine Hupin

NTS Design Page 27

“Manhattan distance”). Hence, we considered every link had the same “weight” (so all
links are equivalent).

The Routing process is not a simple problem to resolve. For example, we must
avoid routing loops, which can occur when two Routers are sending and receiving
updates more or less at the same time while a link becomes unreachable. A routing loop
can lead to the ‘“count-to-infinity” phenomenon (which as stated in the principles
followed should not happen as the network is not capable of dealing with such a case as
no deletion of messages is possible) and results anyway in inconsistencies in the routing
tables of the Routers.

To resolve those routing problems, routing principles from RIP were taken:

e Split Horizon: a Router can never send routing information (i.e., a
route) back to the source from which it learned it,
¢ Route Poisoning: when a link falls down, this destination is directly set

to “unreachable” in the routing tables of the attaching Routers. We say

that the Routers “poison” the route, i.e., they set the path cost to an

infinite value (which is 16 for RIP) and send this information so that the

update propagates in the network. Of course, one can see that the

maximal value for the distance (the “infinite” cost) will determine the

maximal diameter of the network. The value of 100 was used as an

infinite value, which corresponds also to the maximal number of hops,

¢ Dynamic load balancing: like in the RIP protocol, NTS implements a

process that allows a packet-to-packet load balancing. When there are

several routes to the same destination with the same path cost, then the

Router will use alternatively these routes to send the packets. The

decision of supporting load balancing for a maximum of ten alternative

routes, which corresponds already to a quite large network.

The RIP Protocol has some more features to guarantee the reliability of the
routing process, like Poison Reverse, update timers, flush timers, and triggered updates.
Normally, RIP specifies that a Router has to respond to a Poison message with a “Poison

Reverse” message (that overrides the Split Horizon principle), which is considered to be

Network Topology Simulator Antoine Hupin

NTS Design Page 28

the acknowledgment of the Poison message. This was considered none necessary, as it is
redundant information. About the timers, no timers were used to avoid the overloading
of the network. RIP exchanges routing information every thirty seconds by default. In
the NTS implementation, only when a change occurs, will a Router generate update

messages.

3.5.3 Router Example

As an example, the following figure (Figure 14) shows a Router object with four
neighbors (based on Figure 8: 3-by-3 2-D mesh). Hence, the Routing Table resulting of
the initial configuration and of the dynamic exchange of data is then represented (after all
updates have been executed) in Table 1.

On this example, a Client code (Client#2) has “emerged” on Router 5, which
propagated this information through its neighbors. Hence, there are also two possible
routes to reach Client#2: via 2 and via 4 (with a number of hops equal to 3). When
Router#1 receives the update (coming from 2 or 4), the first time a route is added in an
empty slot, the second time the route is updated (put an alternative route in the array
Next Hop). In both cases, the status of the route is set to “changed” (i.e., “1”). Every
route, whose status is equal to 1, will be handled when calling the function to send
updates will be called. The different Messages (class containing an update) to be sent are
then computed and the function returns a Packet (class containing all the updates needed

to be propagated at this time) of Messages.

Link To 7

Link To 3 Link To 2

Link To 4

Figure 14: Detail of network shown in Figure 8

Network Topology Simulator Antoine Hupin

NTS Design Page 29

Destination Path Cost Next Hop Sequence Status LinkOrClient

1 0 [LDO...0] 0 Unchanged Link

2 1 [200...0] 0 Unchanged Link

3 1 [300...0] 0 Unchanged Link

4 1 [400...0] 0 Unchanged Link

7 1 [700...0] 0 Unchanged Link

5 2 [240...0] 0 Unchanged Link

8 2 [270...0] 1 Unchanged Link

6 2 [340...0] 1 Unchanged Link

9 2 [370...0] 0 Unchanged Link
Client#1 1 [Client#1...0] 0 Unchanged Client
Cliens#2 3 [240...0] 2 Changed Client
Empn(=0) Empty Empty Empty Empty Empty
Empry Empty Empty Empty Empty Empty
Empry Empty Empty Empty Empty Empty
Empty Empty Empty Empty Empty Empty
Empty Empty Empty Empty Empty Empty
Empty Empty Empty Empty Empty Empty
Empry Emprty Empry Empty Empty Empty
Empry Empty Empty Empty Empty Empty
Empty Empty Empty Empty Empty Empty

Table 1: Example of a routing table (Router#1)

3.5.4 Message Processing
Due to limitations with PVM communications explained in the section 3.6

ntsLibrary, an ntsRouter must process the message tag of incoming messages to extract
the required information. In most cases the final destination TID is calculated and then
the “next hop” for this final destination is looked up in the Routing Table. The “next

hop” having been determined the message can be forwarded on.

3.5.5 ntsRouter Options

ntsRouter options can be set via configuration messages sent from the ntsMaster
program. Options include: printing of Router messages to the default PVM set standard
out, printing the current routing table, logging of forwarded messages, working in “silent”

mode (where the ntsRouter just works quietly), and modifying the network dynamically.

3.6 ntsLibrary

The ntsLibrary is the communication gateway between client code and the
network simulation. It is based on overloading the PVM communication library. It is
designed for easy interchange between an existing PVM program and using NTS: convert
all the function calls from “pvm” to “nts”, and the program will be connecting and

communicating through the NTS simulated network.

Network Topology Simulator Antoine Hupin

NTS Design Page 30

3.6.1 Connecting
Initially, the program using the NTS Library, hereafter known as the Client, must

connect to the NTS network via the local Router installed on his running computer to be
able to use the communication functions of the network cloud being set-up. To maintain
transparency of the NTS layer, and to keep the same interface as PVM, the NTS network
connects automatically when any of the overloaded functions is called, the most popular
one being: nts_mytid() which like its PVM counterpart returns the TID identification
assigned to the Client program.

Using the PVM lookup table, the Client can lookup the Master’s TID and
therefore contact the ntsMaster program asking for the TID of its local Router. Once the
Master replies, and that there is a local ntsRouter for the computer running the client
code, the Client may then contact the local ntsRouter to subscribe to the NTS network.
The local Router getting a request from a Client to join will add an entry for it in its
routing table and send a notification to the Master before sending a connected message
back to the Client. The Router will then initiate the propagation of the new destination
throughout the NTS network. The Client is now connected to the NTS simulated
network, and can use the full range of PVM equivalent functionality while seeing no
visible effects compared with PVM other than experiencing the effects of the simulated

network topology it has just joined.

3.6.2 Settings

Only one connection to an NTS network per Client is permitted therefore upon
connection a single settings class is created using the singleton pattern to hold all the
necessary settings for the functioning of the NTS overloaded library. Using the singleton
pattern ensures that no other connection can be created. The pattern also ensures that
connection does happen the first time any of the overloaded functions is called. No
parameters are required nor desired from the Client for these settings, the NTS layer
initialises itself on its own and a separate program, the Master, is in charge of any

configuration.

Network Topology Simulator Antoine Hupin

NTS Design Page 31

3.6.3 Message Forwarding
The main function of the NTS layer is to take messages being sent by the Client

and forward them through the simulated network rather then directly sending it to the
final destination. For this forwarding to be able to take place a next hop parameter has
got to be included into each message. PVM only uses two parameters to send a message:
destination TID and message tag. The original packed message not being able to be
edited for risks of compromising its integrity for the client code, and the destination field
being predetermined for the destination TID, the additional information required must be
concatenated within the last possible field: the message tag. The next hop having to be
the destination, it is in fact the final destination and the original message tag, which have
to be compressed into the message tag field. This compromises a loss of information, but
the message can now be forwarded from Router to Router, each Router looking in its

routing table for the next hop, until finally it arrives at its final destination.

3.6.4 Receiving Forwarded Messages
The receiving of messages in PVM is also done via two parameters, a source TID

and a message tag. The original message tag having been concatenated into the new sent
message tag, it is not a problem to extract this from any incoming messages. The
message though originates when it is received by the destination Client not from the
sender Client but from the last Router that forwarded the message through the network.
The original source TID must therefore also be included in the message for proper

reception.

3.6.6 Sequence

Once you have routing in a network you have sequence. Because of the use of
packet-to-packet load balancing inside the network, how can one ensure that message A
being sent before message B to the same destination arrives before message B all the
time, while different paths through the network may be taken. NTS uses message
sequence and end-to-end message reorganisation to ensure that messages are received in
the correct order. For each message sent to a TID or received from a TID, the NTS layer

keeps a sequence and is thus is able to determine which next message from a certain TID

Network Topology Simulator Antoine Hupin

NTS Design Page 32

is supposed to be received. This infers that the sequence must be included with the

message as well. Figure 15 illustrates this question.

Recelve
Sequence

Send
Sequence

Leaend
. = Client

Figure 15: The AOM layer keeps the send and receive sequence for
each TID to which a message was sent/a message was received from

and checks the two to make sure they are the same for reordering

3.6.7 Integer Combination
Four parameters, each integers: a destination TID, a source TID, a message tag,

and a message sequence, need to be inserted into a message being sent for the NTS
network to function properly. As explained earlier, the message destination TID
parameter of PVM being occupied by the next hop, the only location left to include these
needed parameters is the message tag parameter, which happens to be of long integer
type. A useful property of TIDs is that the three least significant digits should all be
unique for a given session of PVM. Using this property we can cut the length of the two
TIDs we have to send to only being three digits long. A sequence of ten was deemed
sufficient for the target network sizes the NTS program would be simulating, therefore
one digit long. This leaves as a restriction for the message tag of a message to be at
most two digits long (i.e., 0 — 99). If this is the case, the four parameters can be

concatenated into one. This is the solution adopted, Figure 16 shows the method used,

Network Topology Simulator Antoine Hupin

NTS Design Page 33

Destination TID

Source TID AOM Message Tag

80000 TTEEERE

Message Tag
U0

Figure 16: Integer Combination size limitation

Sequence

giving for each message a unique identification passed in the message tag of the message
which can be calculated at sending and reception and therefore can be used with the PVM
receive functions to automatically receive reordered messages.

This use of a unique identification for each message, though permitting NTS to
function properly as a store and forward network, is the one source of the most
restrictions to the use of NTS. Other then the facts that client message tags can only be
from 0 — 99 and that a total of 999 client codes are permitted on any one run of NTS, the
main restriction coming from this technique is that the use of the “-1” listening tag is not
permitted to Clients. This comes from the fact that because of sequencing a specific tag

is required for NTS to reorder the messages correctly.

3.6.8 Lookup Table
PVM provides a universal lookup table for each PVM session. This is used by

NTS to save the TIDs of each Client and its corresponding Id or the three least significant
digits of the TID. The id is used as a key to get the actual full TID from the table. The
TID is also used as a key for the Id in the lookup table. Both of these entries are added to
the lookup table upon connection of a Client to the NTS network. Routers use the former
to lookup the final destination of a message once the incoming message tag has been
processed. The later is a mechanism to check whether a given TID is part of the NTS

network.

Network Topology Simulator Antoine Hupin

NTS Design Page 34

3.6.9 Overloaded vs. Forwarded
While the main PVM functions have been overloaded to dramatically change their

behaviour to simulate the various effects of network routing, many functions in the
overloaded library are just forwarded towards their PVM equivalents. For a lot of the
cases this was for functionalities that did not have to be changed for the NTS simulation,
but for some they are PVM advanced functionalities, which could not be incorporated

into the NTS simulated network.
Note:

While not tested, it is still possible to send and receive messages with the standard
PVM functions. This of course bypasses the NTS connection, and its effects. As stated

though this functionality is not tested nor encouraged.

3.7 ntsMaster
The Master program is the top-layer of the NTS network simulation. This

program must be run first, after PVM is launched, and will guide you through the creation
of the NTS simulated network. A simple GUI interface lets you create/modify a network.
The Master then iterates over the network description, creating instantiating the network
for use. Once the network is created the Master permits you to dynamically change the
topology of the network with the same interface to that of the creation one. The Master
also allows you to view the effects of the simulated network and review some is

consequences.

3.7.1 Creation

The ntsMaster permits the user to layout a network and then build it for Client
use. The Master provides simple interface for adding a Router on a PVM running
computer just by inputting its PVM name description (this name can automatically be
chosen from a list of existing PVM running computers provided by the Master). Only
one Router per computer is permitted. Once at least two Routers have been defined, the
user can link Routers as neighbours to provide communication links for the network.
This can easily be done using the GUI. Once the full topology of the desired network is

produced, the Master will instantiate and initialise the Routers of the network for use.

Network Topology Simulator Antoine Hupin

NTS Design Page 35

The Master will first iterate over the list of Routers and spawn each, updating its
internal structure with the TIDs of each spawned Router. The Master will then iterate
over the full list of interconnections wished by the user and send to each Router the list of
his neighbours. Each Router will use the information to build its initial Routing Table
and then dynamic updates will propagate each table entry to the whole network. When

all is ready, the Master will give the start of simulation signal.

3.7.2 The Running Network

During the running of the simulation the Master receives many messages coming
from Clients or from Routers. Clients can ask for the TID of their local Router. Routers
signal the Master when a new client subscribes with them, or unsubscribes. If the option
is set, Routers forward information about every message that they process so that the

Master can collect the data and analysis of the network performance can be performed.

3.7.3 Dynamic Rebuilding

As stated in the requirements, the Master program will not only be used to create
the initial topology, but can be used while the network is running to modify it
dynamically. The same interface is used for this purpose as for the initial building. In
fact one could start the NTS network and then construct the topology completely while it
is running, as the ntsMaster seamlessly integrates the two modes of operation. While the
network Routing is such that no messages will be lost during rebuilding, it is not possible

for a user to delete a Router while it still has Clients subscribed to it.

3.7.4 Master Design
The Qt toolkit is used to make the ntsMaster program with the Qt Designer doing

most of the layout of the GUL. With this use, full advantages of the Qt techniques of
design were implemented throughout the Master. The signal/slot mechanism was
especially used to connect packages seamlessly, making the whole program easy to

extend. Figure 17 shows the main packages of the ntsMaster:

Network Topology Simulator Antoine Hupin

NTS Design Page 36

«uses»

T T T T T T T T T T «uses»
|

«uses»| .. K-
| ntsNetwork |
	7S
	!

PI : ' :
ntsPlayer «uses»
«uses»
ntsGraphics : Display
______ |
|

: T | T
| | | |

. | |
| «uses»
: | : «uses» :

| |
: «uses» | ___> ______ |
| Controller
___________________ >

Figure 17: The main packages of the ntsMaster and their connections

While a full description of each package follows in the section 5 Implementation,
the main connection theory will be stated here.

The ntsNetwork package is the main data structure of the program. Each package
is connected to the ntsNetwork using the signal/slot method, in a “huge” Observer
optimised pattern. Each package is connected to certain signals emitted by the
ntsNetwork; therefore updates only happen when relevant changes to the data structure
have been performed. Only the controller package is connected to the main controls of
the ntsNetwork and can modify the main data structure of the network. Each other
package: the various Displays, Graphics, and Player can set individual properties of
components of the data structure but cannot change the structure such as add or delete a
component.

As the Designer approach was adopted for the layout of the GUI, the Controller
package is in fact the main window graphic of the ntsMaster application as well. This is
also the case for each component of the Display package where each class is the graphical
display plus the control to modify the options of the NTS network component being
displayed. This is not the case for the ntsNetwork which has no proprietary display of its
own (the whole ntsMaster application observer this structure to form views of it), and the
ntsPlayer (which is just a class, and not a full package, but is a bit on its own) which uses

the ntsGraphics package for its display (in a way the ntsPlayer bypasses the Controller to

Network Topology Simulator Antoine Hupin

NTS Design Page 37

use the ntsGraphics directly). The ntsGraphics is the only package to compromise a
separate data structure and a view of the data.

More information on the use of the ntsMaster program and all the possible options
is available in Using NTS, while more in detail information on the design of the Master is

accessible in the section 5 Implementation.

Network Topology Simulator Antoine Hupin

