NTS Introduction Page 1

1 Introduction

NTS — Network Topology Simulator is used to simulate a network topology in a
parallel processing perspective. This introduction will present parallel processing,
compared with other types of networking. The theory concerning parallelization
overheads, and network topologies used in parallel processing will be introduced to

provide an explanation of why NTS is a useful tool.

1.1 Parallel Processing ([1])

Parallel processing, the method of having many small tasks solve a single
problem has emerged into modern computing as a key enabler to computing large
problems. Each small task can be executed simultaneously on a separate processor. The
last few years have witnessed an increase in use and acceptance of parallel processing,
both for high-performance scientific computing and for more general-purpose
applications. This is the result of a demand for higher performance, lower cost, and
sustained productivity in the computing world. Two developments in technologies have
facilitated this acceptance: massively parallel processors (MPPs) and the widespread

use of distributed computing.

1.1.1 Massively Parallel Processors
Massively Parallel Processors are now the most powerful computers in the world.

These monster machines combine hundreds to thousands of CPUs in a single large
cabinet connected to hundreds gigabytes of memory. MPPs are used to solve complex
problems with their enormous computational power, such as global climate modeling and
drug development. As simulations run on computers become more realistic, even more
computational power is required to produce results within acceptable limits. This is why
researchers are turning to MPPs and parallel processing in order to get the most

computational power possible.

1.1.2 Distributed Computing

The other major development, distributed computing, is a process whereby a set

of computers, connected by a network, are collectively used to solve a single large

Network Topology Simulator Antoine Hupin

NTS Introduction Page 2

problem. More and more organizations have high-speed local area networks connecting
many general-purpose computers or workstations. The computers connected to these
local area networks may have a combined computational power that may exceed the
power of a single high-performance computer. These companies can use this combined

power instead of investing in such a high-performance computer.

The main attraction to distributed computing is cost, while mimicking the power
of MPPs. A single MPP computer is extremely expensive. By contrast, users see very
little cost executing their problems on an already existing network of local computers.
Distributed computing users cannot usually achieve the raw computational power of a
MPP, but are able to solve bigger problems than would otherwise be impossible on a
single workstation within realistic time periods. These networks used to mimic

supercomputers are known as a cluster.

1.1.3 Communicating Processes
Each of these two technologies, MPPs and distributed computing, take advantage

of executing multiple operations at the same time, rather then being limited by the speed
of a single “sequential” computer. Due to this parallel execution, and common to all
parallel processing, is the notion of communicating processes. Data must be exchanged
between the cooperating tasks. For this purpose, several paradigms can be used,
including shared memory, parallelizing compilers, and message passing. The latter has
become the paradigm of choice, in view of its wide use over the range of multiprocessors,

applications, languages, and software systems that implement it.

Message passing, in between various threads running on different processors, if
not different computers, brings its own set of problems: sequencing, storage, and
deadlock management, just to name a few. Techniques exist to counteract each problem.
Once these problems are resolved using the appropriate network technology, a parallel

program can be run on the network of processors.

Network Topology Simulator Antoine Hupin

NTS Introduction Page 3

1.2 Parallel Study ([3))

1.2.1 Scalability

In a sequential program, the efficiency of the program can be defined in terms of
the time taken to execute it compared with the size of the task being performed. This
simplistic view can be used for parallel processing theory. With parallel processing, the
task is divided in between a number of processors. The scalability of a program is
defined as the measure of its ability to achieve proportional performance increase

compared to the number of processors employed.

1.2.2 Speedup
The speedup (S) of a parallel program is defined as:

T seq
T

par

where Tiq is the sequential runtime or the time taken to execute the program sequentially,

S:

and T, 1s the parallel runtime or the time taken to execute the program once it has been

parallelized. Ideally:

where N is the number of processors the task is separated on. To see the scalability of a
program, the speedup of a program is plotted against the increasing number of processors
used in running the parallel algorithm. As can be seen from the Figure 1, the speedup

does not increase linearly with the number of processors.

1.2.3 Efficiency

The efficiency of a parallel system is defined as:
S N ' T seq
N T

2ar

E

Network Topology Simulator Antoine Hupin

NTS Introduction Page 4

Each processor involved in the calculation works for E% of the total time, the rest of the
time is lost due to parallel overhead. The efficiency represents how well each processor
is used. Initially adding extra processors or more power to solve the problem will

increase the efficiency as the speedup will increase. However a theoretical threshold

]
LA
1

Linear

ey
=
!

[
LA
!

F

Figure 1: Speedup versus the number of processing elements for adding a list of numbers [2]

EA
gommunication Threshold
AN
\\ Parallelization Threshold
AN
AN
AN
AN
AN
AN
AN
AN
AN
AN
AN

>
N

Figure 2: Efficiency vs. number of processors

exists where once this limit is surpassed, the overheads created by the extra processors

will have increased to such an extent resulting in a decrease in efficiency (Figure 2).

Network Topology Simulator Antoine Hupin

NTS Introduction Page 5

1.2.4 Coefficient of Parallelization
An application cannot be completely parallelized, or partitioned exactly so that it

runs best on multiple processors. A coefficient of parallelization (p) is therefore
introduced to dictate how well a certain application can be parallelized, resulting in the

following equation:

Tseq:p'Tseq + (1 - P) Tseq

for a sequential application, or the total time to execute the application on a single
processor. This equation is displayed in such a form to better compare with the parallel

equation:

(1 — P) Tseq
N

where N is equal to the number of processors the application is divided over. In fact in

Tpar:p'Tseq +

all parallel algorithms there is a time of setting up, which happens on a sequential basis,
and only part of the algorithm can properly be divided among the processors. The
parallel equation is erroneous though, as it implies that communication in between the

various processes is immediate:

1 — T,
T.=p Tonp T (P) L + parallel overhead

N

This overhead is due to the communication laps. The communication required

between threads, is different for each parallel algorithm, but the communication overhead
is also dependent on the communication hardware, software, the load imbalance and the
arrangement of the layout of the network being used. The speed of the hardware is
directly proportional to the investment made in it, the communication software is usually
tailor made for the hardware, and it is assumed that the load is properly balanced most of
the time. These will be judged either optimal, or as factors decided outside the scope of
current investigation and therefore will be overlooked for the current study. This leaves

the network layout or topology, therefore:

Network Topology Simulator Antoine Hupin

NTS Introduction Page 6

(1 P) Tseq
N

T, =p Tony + {(topology)

1.3 Topology

A store and forward network is one where each node has to receive the full
message before it can be forwarded towards its final destination. Pass through networks
exist where a message is forwarded on immediately the moment its next destination is
determined without the whole message having been received. These, while being faster,

are less common and more difficult to implement.

1.3.1 Full Interconnect
There are many ways of setting up the interconnections between computers on a

network. Mainly, the number of other computers each computer or node can be
physically connected to defines the layout or topology of the network. The most efficient
topology is the full interconnection, where every node is connected to every other.

Usually a crossbar implements this (Figure 3).

1.3.2 Static Networks

Connections in between computers or network nodes are a significant cost in a
network. When a network starts having many nodes it becomes expensive or physically
impossible to setup a full interconnection network. Other factors may limit the full
interconnection of all nodes, such as distances in between nodes. The solution is to
remove some of the interconnections and create a static network, where connected nodes
will forward messages destined to nodes, which are not physically connected

immediately to each other (Figure 4).

Various topologies or formats of interconnections for networks may be used.
Which of these is used mostly depends on the total number of nodes present. A
hypercube (Figure 5), with enough dimensions, removes the least number of
interconnections and brings interesting properties for programmers to take advantage of.

The diameter, the maximum number of hops to reach a possible destination on the

Network Topology Simulator Antoine Hupin

NTS Introduction Page 7

Memory Banks
! 0 1 2 3 4 5 b—]l
oty A switching

element

(%]

—[LICICI LI LI L]

Processing Elements

o

Figure 3: A completely non-blocking crossbar network connecting p processors to b memory banks [2]

Figure 4: Removing links from a full interconnect network to make a static forward network

network, is the smallest on these types of networks. The ring topology is at the other
extreme, taking away the most interconnections, so that communications have to be
forwarded on average the most, i.e., to a node on the other side of the circle. The mesh
(2D or 3D, with wraparound or not) (Figure 6) is usually the most frequently used. It
combines the advantages of the ring, i.e., not too many interconnections, but retains
enough of them, that the diameter is the square root of half the number of nodes squared

rather then half the number of nodes as in the simple ring. Also with wraparound links,

Network Topology Simulator Antoine Hupin

NTS Introduction Page 8

the diameter is vastly cut down, but wraparounds do introduce some complex routing

1ssues.

As can be seen, the topology of the network directly affects the number of hops
that have to be taken on average to get a message from one node to another on the
network. This, of course, defines the average speed of delivery of a message and

therefore affects the overall efficiency of the parallel algorithm.

0-D hvpereube 1-D kypercube 2.D hypercube 1-D hypercube

4.0 hypercubs

Figure 5: Construction of hypercubes from hypercubes of lower dimension.[2]

Network Topology Simulator Antoine Hupin

NTS Introduction Page 9

Pl
R
-
L

—O—0
DI
DI
BB

(a) ()]

L1

Yy

\.rz'

o010

¥

Figure 6: Two and three-dimensional meshes: (a) 2-D mesh with no wraparound; (b) 2-

D mesh with wraparound link (2-D torus); and (c) a 3-D mesh with no wraparound.[2]

1.4 Why NTS

In quasi-all parallel algorithms, processes need to exchange data with other
processes. This communication procedure between processes can significantly influence
the efficiency of the parallel algorithm due to the introduction of overheads. The actual
structure of the network connecting the processes has a great impact on these interactions,

as shown before, and therefore on the overall efficiency.

The main purpose of this simulation is to implement a software solution for
simulating different kinds of network topologies over a static network or a Network
Topology Simulator (NTS). The basic idea is to install a router program on each
computer that will behave as a switching node. Hence, the construction of the
interconnection network will happen just by adding interconnection links between the
routers. Every router will keep track of the possible routes in a routing table, which will
be updated with dynamic data exchange between routers. The communication process

between routers will be implemented with PVM'.

The routing process will be based on a vector-distance routing protocol (like
RIP?), in this case a hop-by-hop routing protocol. On every router, only the routes with
the lowest number of hops will be held, in the routing table. The network will be
dynamic in the sense that the actual topology of the network can be changed during

execution, i.e., some links can be deleted or additional links can be configured after the

" PVM: Parallel Virtual Machine
? RIP: Routing Information Protocol

Network Topology Simulator Antoine Hupin

NTS Introduction Page 10

initial configuration, and the network will update itself dynamically. All changes to the

network topology will happen through a Master program.

Finally, the interface between this “dynamic network cloud” (also sometimes
called “indirect network™) and the client code (i.e., the processing process which is a
piece of a parallel program) will happen through an overloaded PVM library. NTS will
be an extra layer to redirect messages in between the PVM message communication and

the client (Figure 7).
To summarize, this work has been divided into three blocks:

e The dynamic routing program,
e The communication library (interface for the client),

based on an overloaded PVM,

e The Master program to configure and manage the routers.

These three parts and their use are detailed in the following chapters. With NTS it
is possible to simulate any imaginable store and forward topology: from the simple
circular design, to the most complicated mesh, to letting your fantasy run wild with
figurative network designs. All that is needed is for PVM to be able to run on the
underlying network. Figure 8 represents the concepts schematically on a 3 by 3, 2-

Dimensional mesh with wraparound links layout.

o
o
o
o

. Master

Figure 7: The layers of NTS

Network Topology Simulator Antoine Hupin

NTS Introduction Page 11

. MASTER |

[4(_} PVM Library]

[HAOM Library]

Legend

@ = Router (Switching Node)

@ = Client (Master or Slave) or Process

Figure 8: Representation of a (dynamic) 3-by-3, 2-D mesh with wraparound ([6])

Network Topology Simulator Antoine Hupin

