NTS Page i

Abstract

Parallel processing is being used more and more to solve complex problems in the
computing world. Common to all parallel processing is the exchange of data in between
various processes of computing. One of the main paradigms used for this is message
passing. Message passing can be a serious source of overheads for the efficiency of
parallel algorithms. The topology, or layout, or the way computers are physically
interconnected with each other, dramatically affects the overhead created by message
passing.

It is believed that parallel algorithms designed with communication schemes of
parallelization for specific network topologies, out perform the more general equivalents
when performing on their network of predilection. To develop these algorithms, more
research is required on the effects of topology on message passing overheads.

NTS — Network Topology Simulator is a tool designed to help study the effects of
topology on parallel algorithms. NTS simulates a network topology and is able to run a
standard PVM (Parallel Virtual Machine) program on this simulated network. A PVM
parallel algorithm requires only minor changes to be able to run on NTS and experience
the effects of the various simulated topologies.

Tools, such as EPPA (Experimental Parallel Performance Analysis) or the internal
performance recording facilities of NTS, can then be used to investigate the effects of the

simulated topology on the parallel algorithm.

Network Topology Simulator Antoine Hupin

NTS Page ii

Acknowledgements

I would like to thank my promoter Erik Dirkx, for getting me interested into
parallel algorithms with such a good class. My assistant Jan Lemeire, without whom this
thesis would be not, as he is the one who proposed changing my thesis subject to
continuing the AOM project, for which I am thankful. Min Zhang and especially Olivier
Thonnard, my companions through the first design of this project, without them AOM
could never have been realized and therefore this second incarnation NTS would never
have been possible. Olivier, thank you for making such a good and robust job at the
router code and bringing us your light on the routing issues. I would like to mention my
friends Marek Suliga and Andy Hill, both for helping me through Linux, testing, helping
in times of need, teaching me, while having a great time. I would like to thank my

girlfriend Clara Stynen for time and understanding. To one and all, thanks.

Network Topology Simulator Antoine Hupin

NTS Page iii
Table of Contents Page
Abstract 1
Acknowledgements i
Table of Contents il
Table of Figures viii
Table of Tables X
1 Introduction 1
1.1 Parallel Processing 1
1.1.1 Massively Parallel Processors 1
1.1.2 Distributed Computing 1
1.1.3 Communicating Processes 2
1.2 Parallel Study 2
1.2.1 Scalability 2
1.2.2 Speedup 3
1.2.3 Efficiency 3
1.2.4 Coefficient of Parallization 4
1.3 Topology 6
1.3.1 Full Interconnect 6
1.3.2 Static Networks 6
1.4 Why NTS 9
2 Theory 12
21 PVM 12
2.2 Design Patterns 13
2.2.1 Creational Patterns 13
2.2.2 Structural Patterns 13
2.2.3 Behavioral Patterns 14
2.2.4 Elements of a Design Pattern 14

Network Topology Simulator

Antoine Hupin

NTS Page iv
2.2.5 Observer Pattern 14
2.2.6 Singleton Pattern 16
2.2.7 Iterator Pattern 17
2.2.8 Fagade Pattern 18
23 Qt 19
24 Graphs 20
25 AOM 21
3 Design 22
3.1 Aim of the project 22
3.2 Goals of NTS 22
33 Principals Behind NTS 23
3.3.1 Development Language 23
3.3.2 Deadlocks 23
3.3.3 Equivalency with PVM 23
3.3.4 Routing 23
3.3.5 Dynamic Update Network 24
3.3.6 Parallel Processing Network 24
34 Definitions 25
3.5 ntsRouter 25
3.5.1 Message Forwarding Logging 25
3.5.2 Routing Protocol 26
3.5.3 Router Example 28
3.5.4 Message Processing 29
3.5.5 ntsRouter Options 29
3.6 ntsLibrary 29
3.6.1 Connecting 30
3.6.2 Settings 30
3.6.3 Message Forwarding 31
3.6.4 Receiving Forwarded Messages 31
3.6.6 Sequence 31

Network Topology Simulator

Antoine Hupin

NTS

Page v

3.6.7 Integer Combination

3.6.8 Lookup Table

3.6.9 Overloaded vs. Forwarded

3.7 ntsMaster
3.7.1 Creation
3.7.2 The Running Network
3.7.3 Dynamic Rebuilding
3.7.4 Master Design
4 Using NTS
4.1 Installing
4.2.1 Getting NTS
4.2.2 Installing
4.2.3 Notes
4.2.4 Requirements
4.3 Converting a PVM Application
4.4 Restrictions of Use
4.5 Running NTS Simulation
4.6 ntsMaster

4.6.1 The Main Window
4.6.2 Network Building
4.6.3 Main Graphic View
4.6.4 NTS Log Display

4.6.5 Lists View

4.6.7 Properties View

4.6.8 Log View
4.6.9 Message Log
4.6.10 Path View
4.6.11 Time Matrix
4.6.12 Player
4.6.13 Save/Load

32
33
34
34
34
35
35
35

38
38
38
38
38
39
39
39
40
40
40
41

42
42
43

43

43

43

44
44
44
45

Network Topology Simulator

Antoine Hupin

NTS Page vi
4.6.14 Auto Building 45
4.6.15 Setting Routers to Silent 45
4.6.16 All Bi-Directional 46
4.7 Known Bugs 46
4.7.1 PVM_Config 46
5 Implementation 47
5.1 ntsRouter 47
5.1.1 The Router Object 47
5.1.2 The Controller 50
5.2 ntsLibrary 51
5.2.1 Settings 52
5.2.2 Forwarding Functions 52
5.2.3 Sending Messages 52
5.2.4 Receiving Messages 53
5.2.5 Disconnecting 53
5.3 ntsMaster 53
5.3.1 ntsNetwork Package 55
5.3.2 Controller Package 56
5.3.3 Graphics 58
53.4 Views 61
5.3.5 Player 61
5.3.6 Threads 61
5.3.7 File Format 61
6 Conclusion 63
6.1 Further Development 64
6.1.1 Listening To Any Incoming Message 64
6.1.2 Efficiency 65
6.1.3 Robustness 66
6.1.4 Extensions 66

Network Topology Simulator

Antoine Hupin

NTS Page vii

7 References 67
8 Appendix 68
8.1 antGraph 68
8.2 UML Diagrams 69

Network Topology Simulator Antoine Hupin

NTS Page viii
Table of Fiqures Page
Figure 1: Speedup versus the number of processing elements for adding a 4
list of numbers
Figure 2: Efficiency vs. number of processors 4
Figure 3: A completely non-blocking crossbar network connecting p 6
processors to b memory banks
Figure 4: Removing links from a full interconnect network to make a static 7
forward network
Figure 5: Construction of hypercubes from hypercubes of lower dimension. 8
Figure 6: Two and three-dimensional meshes: (a) 2-D mesh with no 8
wraparound; (b) 2-D mesh with wraparound link (2-D torus); and
(c) a 3-D mesh with no wraparound.
Figure 7: The layers of NTS 10
Figure 8: Representation of a (dynamic) 3-by-3, 2-D mesh with wraparound 11
Figure 9: Example of many windows showing different views of the same data 15
Figure 10: The Observer Pattern Structure 15
Figure 11: The singleton pattern structure 17
Figure 12: Iterator Pattern structure 18
Figure 13: Fagade Pattern Structure 19
Figure 14: Detail of network shown in Figure 8 28
Figure 15: The AOM layer keeps the send and receive sequence for each TID 32
to which a message was sent/a message was received from and
checks the two to make sure they are the same for reordering
Figure 16: Integer Combination size limitation 33
Figure 17: The main packages of the ntsMaster and their connections 36
Figure 18: ntsMaster Main Window 41
Figure 19: ntsMaster Network Toolbar 41
Figure 20: ntsMaster Add Router Popup 41
Figure 21: ntsMaster Main window showing extra views 44

Network Topology Simulator

Antoine Hupin

NTS Page ix
Figure 22: ntsRouter packages 47
Figure 23: Classes view of the Router Package 49
Figure 24: ntsLibrary packages 51
Figure 25: ntsLibSettings class 52
Figure 26: The main packages of the ntsMaster and their connections 54
Figure 27: ntsMaster, ntsNetwork Package / data structure classes 54
Figure 28: The forwarding process of adding a new Router 57
Figure 29: Instantiation and connection of the Message List 57
Figure 30: Illustration of flow of data for a selection 58
Figure 31: ntsMaster Graphical Package 59
Figure 32: save file format 62
Figure 33: antGraph Package 68
Figure 34: ntsPlayer 69
Figure 35: ntsNetwork Package 70
Figure 36: ntsGraphics Package 71
Figure 37: ntsRouter, Router Package 72

Network Topology Simulator

Antoine Hupin

NTS Page x

Table of Tables Page
Table 1: Example of a routing table (Router#1) 29
Table 2: Description of the “Router” class 48
Table 3: ntsRouter messages 50 -51

Network Topology Simulator Antoine Hupin

