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Abstract

Parallel processing is being used more and more to solve complex problems in the
computing world. Common to all parallel processing is the exchange of data in between
various processes of computing. One of the main paradigms used for this is message
passing. Message passing can be a serious source of overheads for the efficiency of
parallel algorithms. The topology, or layout, or the way computers are physically
interconnected with each other, dramatically affects the overhead created by message
passing.

It is believed that parallel algorithms designed with communication schemes of
parallelization for specific network topologies, out perform the more general equivalents
when performing on their network of predilection. To develop these algorithms, more
research is required on the effects of topology on message passing overheads.

NTS — Network Topology Simulator is a tool designed to help study the effects of
topology on parallel algorithms. NTS simulates a network topology and is able to run a
standard PVM (Parallel Virtual Machine) program on this simulated network. A PVM
parallel algorithm requires only minor changes to be able to run on NTS and experience
the effects of the various simulated topologies.

Tools, such as EPPA (Experimental Parallel Performance Analysis) or the internal
performance recording facilities of NTS, can then be used to investigate the effects of the

simulated topology on the parallel algorithm.
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