NTS Appendix Page 68

8 Appendix

8.1 antGraph
antGraph is a side product of the technology used to create NTS. The internal

structure used to represent the NTS network within the ntsMaster program being based on
a graph; a study of graphs was undertaken. It was quickly seen that the NTS network had
too many proprietary behaviors compared with a standard graph for it to be worth sub-
classing from a graph structure. An underlying graph structure was therefore dropped for
a specialized structure, though based on the graph design, as described in the ntsMaster
section.

The set of original classes for the purpose of using an underlying graph structure
having been designed and implemented, these were updated to create small graph
framework. The next few paragraphs will quickly describe these classes, which are

included in the NTS distribution for completeness.

antObject
-Id :int
+Type()

antGraphltem

-Graph : antGraph

JaN

antGraphNode -To/From -Links |antGraphLink
-BiDir : bool

+addLink() : antGraphLink
+delLink() : antGraphLink

-Nodes 0.* -Links 0.*
1 -Graph
antGraph
-Graph +add() 1
+delete()
+clear()

Figure 33: antGraph Package

Network Topology Simulator Antoine Hupin

NTS Appendix Page 69

The antObject inherits the Qt QObject, so that the whole structure can use signals
and slots (for more information on signals and slots refer section 2.3 Qt). As in the
ntsNetwork framework, all instantiation of the structure should be done via the antGraph
facade. Any modification affecting the structure of the graph should also be done via this
class.

Standard applications of graphs are supported: adding a node, adding links in
between nodes (these have direction, or can be bi-directional), removing a node (with link
removal cascading), and removing a single link. The option can be set whether all links
are bi-directional (this converts all previously created links to bi-directional ones).

To use this structure to add more functionality to the nodes or links, one should
create a map with the nodes or links returning a class with the appropriate extra
functionality. Another approach would be to subclass. If only limited extra functionality
is needed one can re-implement the “init” function, which is run at instantiation (this
technique is used in Qt Designer). A full sub-classing of all classes can also be
implemented for more complex additional functionalities, with the new classes calling
their parent's functions when needed. When this is the case keep in mind that, it is the re-
implementation of the antGraph class, which should handle all instantiation if you want

to keep the graph stable.

8.2 UML Diagrams

Follows some UML Diagrams of some of the main packages of NTS

ntsMessagePlayer

-network

-graphics

-NowPlaying : String ntsMessagePlayerThread
-Running : bool -Player -Thread "Running - bool

-Pause : b°_°| K> -Pause : bool

+next() : void 1 1 |Speed:int

+play() : void - VoI

+pause(in p : bool) : void +run) : void

+stop() : void
+changeSpeed(in speed : int) : void
+changePlayList(in ntsNetworkltem) : void

Figure 34: ntsPlayer

Network Topology Simulator Antoine Hupin

NTS

Appendix

Page 70

ntsPath

+isNextInPath(in message : ntsMessage) : bool

* Routers

1 Network

-Running : bool
-RoutersPrint : int
-RoutersForward : int
-AlIBiDir : bool
-StartTime

+isPVMName(in name : String) : bool

ntsListenThread

-Running : bool
-Pause : bool

+run() : void
+pause(in p : bool) : bool
+running(in r : bool) : bool

1 Listen Thread

1 Network

trouter(in name : String) : ntsRouter

+router(in id : int) : ntsRouter

+routerByName(in name : String) : ntsRouter
+routerByHost(in hostTid : int) : ntsRouter
+client(in tid : int) : ntsClient

+link(in from : ntsNode, in to : ntsNode) : ntsLink
+path(in id : int) : ntsPath

+message(in id : int) : ntsMessage
+realDelLink(in link : ntsLink) : bool
+addClient(in tid : int, in router : ntsRouter) : ntsClient
+addToPath(in message : ntsMessage) : void
+addRouter(in name : String) : ntsRouter
+delRouter(in router : ntsRouter) : bool
+addLink(in from : ntsNode, in to : ntsNode) : ntsLink
+delLink(in link : ntsLink) : bool

+del(in item : ntsNetworkltem) : bool

+build() : bool

+stop() : bool

+listen() : bool

+printRoutingTable() : ntsRouter

+dataError(in error : String) : void

+clear() : bool

+allBiDir(in biDir : bool) : bool

+pathEnded(in path : ntsPath) : bool

+pause() : bool

Figure 35: ntsNetwork Package

[|+start() : ntsMessage
+end() : ntsMessage
+start(in message : ntsMessage) : void
+path()
. 1Pa Ij
Messages * Haths
ntsMessage
ntsNetworkltem -
- -current : int
—nts'l_'ype “int 47 -nextHop : int
-Id it B -source : int
-NtsCounlter s int qj -destination : int
+type() : int -messageTag : int
+network() : ntsNetworkq -sequence : int
+id() :int -actionTime
+ntsCounter() : int -length : int
4 2 From/To
ntsNode * Links
_Tid : int —l ntsLink " Messages
+addLink() : ntsLink -BiDir : bool
+delLink() : ntsLink -ClientLink : bool
4 +invert() : bool
+biDir(in b : bool) : bool
ntsRouter ntsClient * Clients "
-HostTid : int -addLink : ntsLink
-Name : String -delLink : ntsLink
-PVMName : String 1 Network | 1 Network| 1 Network
+neighbors()
+clients() y
ntsNetwork

1 Network

Network Topology Simulator

Antoine Hupin

NTS

Appendix

Page 71

ntsGraphicMessage
-1d :int
-Router_: ntsGraphicRouter messages
-InnerCircle
-OuterCircle
-SourceText
-DestinationText
- +deleteMyself() : void
ntsGraphic +movesBy(in x : int, in y : int) : void
-Graphics : ntsGraphics <} |
-Parent : ntsNetworkltem
-Type : int
+x() :int
+y() :int
+selected(in b : bool) : bool <}
+moveBy(in dx : int, in dy : int) : void |
+type() : int ntsGraphicLink
-from : ntsGraphicNode
-to : ntsGraphicNode Links
- -Outer Line
ntsGraphicNode _Inner Line |
-createX : i_nt -Directional Circle
-createY : int +update() : void
+setToPoint(in x : int, in y : int) : void
A +setFromPoint(in x : int, in y : int) : void
|
ntsGraphicClient
Clients
-InnerRectangle Graphics
-OuterRectangle Graphics Graphics
ntsGraphicRouter| -NameText
-Inner Circle ntsGraphics
-Outer Circle C
-Name Text -N:?v\v/;'sk
+update() : void Graphics

Routers

+findMessage() : ntsGraphicMessage
+findGraphic() : ntsGraphic
+newRouter(in ntsRouter) : void
+newClient(in ntsClient) : void
+newLink(in ntsLink) : void
+newMessage(in ntsMessage) : void
+delRouter(in ntsRouter) : void
+delClient(in ntsClient) : void
+delLink(in ntsLink) : void
+delMessage(in ntsMessage) : void
+messagesClear() : void

+select(in item : ntsNetworkltem) : void
+unselect(in item : ntsNetworkltem) : void

+findNode(in item : ntsNetworkltem) : ntsGraphicNode
+findRouter(in item : ntsNetworkltem) : ntsGraphicRouter
+findLink(in item : ntsNetworkltem) : ntsGraphicLink
+findClient(in item : ntsNetworkltem) : ntsGraphicClient

Figure 36: ntsGraphics Package

Network Topology Simulator

Antoine Hupin

NTS Appendix Page 72

route
«type»
-route_array[4] : int CompleteRoute
o : int +Destination : int
-cost:int +PathCost : int
-next_hop :int +NextHop[10] : int
-LC : bool +Sequence : int
+PackRoute() : int +Status : bool
+LC : bool
* -TableOfRoutes
1 -Message
-Route *
Message -RoutingTable 1
-Destination : int
-EmptyMessage : bool Router
-NumberOfRoutes : int _RouterlD : int
+SetRoute(in Routelndex : int, in a : route) -SizeRoutingTable : int
+GetDestination() : int -DefaultRoute : int
+BetNbOfRoutes() : int -CountNbOfLinks() : int
+GetRoute(in Routelndex : int) : route -Neighbors() : int
+CountNbOfRoutes(in neighbourld : int) : int
-TableOfMsg * +GetRouterlD() : int
-Packet 1 +GetSizeOfRoutingTable() : int
+AddLink(in neighbourlD : int, in LinkOrClient : bool) : void
Packet +AddLinkDyn(in neighbourlD : int, in LinkOrClient : bool) : void
+DeleteLink(in neighbourlD : int) : void
-NumberOfMessges : int «uses» |+DeleteLinkDyn(in neighbourlD : int) : void
-EmptyPacket : bool +SetDefaultRoute(in neighbourlD : int) : void
+SetMessage(in Msglndex : int, in a : Message)N ~~ 7 | +SendUpdate() : Packet
+GetNbOfMessages() : int +ReceiveUpdate(in a : route) : void
+GetMsg(in Msglndex : int) : Message +GetNextHop(in dest : int) : int
+PrintPacket() +GetTable() : CompleteRoute
+PrintTable()

Figure 37: ntsRouter, Router Package

Network Topology Simulator Antoine Hupin

