
1

Lookahead Accumulation in Conservative Parallel
Discrete Event Simulation.

Jan Lemeire, Wouter Brissinck, Erik Dirkx

Parallel Systems lab,
Vrije Universiteit Brussel (VUB)

Brussels, Belgium
{jlemeire, wouter, erik}@info.vub.ac.be

Abstract. Lookahead is a key issue in distributed discrete event simulation. It
becomes explicit in conservative simulation algorithms, where the two major
approaches are the asynchronous null-message (CMB) algorithms and the
synchronous window algorithms (CTW). In this paper we demonstrate how a
hybrid algorithm can maximize the lookahead capabilities of a model by
lookahead accumulation. Furthermore, per processor aggregation of the logical
processes allows for tuning of the granularity. A qualitative performance
analysis shows that in case of no hop-models our algorithm outperforms the
traditional conservative algorithms. This is due to reduced synchronisation
overhead caused by longer independent computation cycles, generated by the
lookahead accumulation across the shortest lookahead path.

1 Introduction

This paper deals with parallel discrete event simulation (PDES) [Ferscha95,
Fujimoto90] of logical process based models. There are 2 main approaches in
conservative parallel simulation algorithms: the asynchronous approach, called CMB
(after Chandy, Misra and Bryant), using null messages for synchronisation [Misra86,
Lin95 & Ferscha95], and the synchronous window approach, CTW, (Conservative
Time Windows) [Lubachevsky89, ayani92], which uses a window ceiling for
synchronisation.
The algorithm that we developed is based on the deadlock avoidance CMB algorithm,
and incorporates the concepts of the CTW approach. Our algorithm tries to maximize
the performance by optimally tuning two attributes of the model: granularity and
lookahead.
Granularity or grain size is defined as 'amount of computations between
communication points' [Choi95]. Our algorithm tries to get better performance by
maximizing granularity and thus attaining less communication overhead. This is done
by per processor aggregation of all its dedicated logical processes forming a
multiprocess, which can be simulated sequentially on each processor [Brissinck95,
Praehofer94].

2

Next to granularity, our algorithm exploits maximally the performance gain coming
with the lookahead capacities of the model. Better lookahead leads to less
synchronisation overhead and better load [Preiss90, Peterson93, Fujimoto88]. Our
algorithm tries to accumulate lookahead while calculating the global lookahead of the
multiprocess.

The next section explains the algorithm, section 3 discusses the various aspects of the
algorithm and compares it with the traditional conservative algorithms (CMB &
CTW). Section 4 analyses the performance on a qualitative basis and compares it with
CMB & CTW performance. Section 5 finally shows the impact on 2 example models.

2 The Algorithm

At first, the model is partitioned among the available processors and all logical
processes on the same processor are aggregated to form a multiprocess. Parallel
simulation happens in cycles of independent simulation alternated with
communication of the events that travel through the channels connecting the
multiprocesses. The independent simulation phase on each processor is based on the
chronological processing of all events that are ordered in an event queue.
 Since we use the conservative approach, simulation is only continued when all events
are known until that time. The synchronization algorithm will calculate this safe time.
Our algorithm therefore needs to synchronize the multiprocesses and the simulation
inside each multiprocess.
Synchronization of the multiprocesses is based on the CTW algorithms. After a phase
of independent simulation, a multiprocess will send outgoing events to the other
multiprocesses. It then waits for receiving incoming events at the incoming channels
from neighbor multiprocesses. All events come together with a time window. The
window assures that all events during that time period are known, so that simulation
can advance.
Synchronization inside each multiprocess is based on a deadlock avoidance CMB
approach that uses null messages to indicate safe simulation. Null messages or null
events are defined as 'a promise not to send any other message with smaller
timestamp in the future’ [Ferscha95]. After these null messages, conditional events
are possible, because it is not sure that all events are known for that time. In our
algorithm, a logical process will simulate until a first null message appears at one
input, whereas in CMB algorithms a process has to wait for null messages at all
inputs before it can simulate. This is possible because inside a multiprocess normal
and null events are processed in chronological order. When a null message enters a
process, this process is killed, stopping the simulation of that process. Future events
are conditional and may not be processed during the present cycle. They are
scheduled in the conditional queue to be simulated in the next cycle. Next, when the
process is killed, null messages are scheduled for all output channels at the local
virtual time plus the processes’ lookahead. They will kill the succeeding processes
(Figure 2). The first null message arriving at an outgoing channel of the multiprocess

3

determines the window ceiling of the window that is sent (Figure 1). At start of each
simulation cycle, null messages are scheduled for all global inputs of the multiprocess
at the time of the incoming window ceiling.
In the initialization phase of the simulation, the first windows are generated. A cycle
of independent simulation is performed with an empty input windows (ceiling time
zero). The edge processes will be killed at time 0, generating lookahead-incremented
null messages for the succeeding processes. In this way, the first global lookahead
together with the first output events are generated at the processor outputs for the
initial synchronisation of the multiprocesses.

Asynchronous algorithm

Our algorithm can be seen as a window algorithm: each processor receives a safe
window to simulate. More precisely, each channel has a safe simulation window
during each cycle. Also inside the processor, each channel receives a window, where
the ceiling is defined by a null message. However, it is an asynchronous algorithm.
There is no global (barrier) synchronization as with CTW algorithms. Each
multiprocess decides independently when and how much it can simulate, like in CMB
algorithms.

3 Discussion of the cycle time

The shortest lookahead-path

Simulation takes place in cycles of communication and independent simulation. A
simulation cycle on a processor lasts until the first output is killed by a null event.
This null event is generated by a previously killed process, which on his turn is killed
by another null event, etc. This chain of null events starts at a certain input and

4

propagates through the model, forming what we call a lookahead path, and ending at
an multiprocess output (Figure 1).
Each global output will be killed by a lookahead-path. The shortest lookahead-path
kills the first output and determines thus the cycle size.

If the shortest lookahead-path passes through multiple processes we can speak
about lookahead accumulation, the global lookahead of the multiprocess is formed by
the sum of the lookahead of all processes in the path. If on the contrary the shortest
lookahead-path comes in and leaves the multiprocess out immediately, we talk about
a hop (Figure 3). For those models, there is no lookahead accumulation and the global
lookahead simply equals the lookahead of the edge process.

The shortest lookahead-path is the largest possible safe simulation cycle. By
construction, any larger cycle can cause conditional events.

The cycle in CMB algorithms

In a similar way, a cycle can also be defined for CMB algorithms. The cycle is
defined as the frequency of event communication and null event generation. In the
example of figure 4 [after Lin95], the process can simulate in cycles of the sum of the
lookaheads. We see that it is also determined by the shortest lookahead path from a
process output back to an input. Each process got its own shortest lookahead path, as
opposed to our algorithm where it is calculated per multiprocess.

lp A

lp B

lp C
Lkh of lp A = 6
Lkh of lp B = 10
Lkh of lp C = 13
Cycle lp A = 29.

lvt = 0

lvt = 0

lvt => 6

null event at 6

lp A

lp B

lp C

lvt = 0

lvt => 16

lvt = 6

null event at 16 lp A

lp B

lp C

lvt => 29

lvt = 16

lvt = 6

null event at 29

lkh-path

Figure 4: Cycle in CMB

 lp A

shortest lkh-path
t1

t1 + lkhA1

I1 O1

lpA O1I1

t1

t1 + lkhA1

t=0

initial
window

simulation lkhA1

processor

Figure 3: Model with a hop

5

The cycle in CTW algorithms

For conservative time window algorithms, the window size is calculated with the
minimal lookahead of the edge processes (connected with other multiprocesses). The
main CTW algorithms define a distance [Ayani92], an event horizon [Steinman94] or
a mimimum propagation delay (static lookahead) with opaque periods (dynamic
lookahead) [bounded lag algorithm, lubachevsky89]. All these concepts reflect the
lookahead of a process. For these algorithms, no lookahead accumulation takes place
and thus is the cycle time the same as in our algorithm for hop-models.

4 Qualitative Performance Analysis

This section discusses the performance of the algorithm and compares it qualitatively
with the two traditional approaches. As a first order approximation, we assume the
sequential simulation time SeqSimT to be proportional to the number of simulated
events #evSim:

evSimCSeqSimT .#1=

Parallel simulation on p processors is then the simulation of p times less events plus
the overhead induced by the parallel nature of the simulation:

with ParSimT the parallel simulation time and overheadTi the time of overhead i,
ranging from 1 to #O, the number of overheads. Performance is measured by the
speedup, which is the ratio of sequential simulation time versus the parallel simulation
time. The impact of the overhead on the speedup is then the ratio of the overhead time
with the ideal parallel simulation time:

The ratio overheadTi/ParSimT is defined as the overhead ratio of overhead i.
Our parallel simulation algorithm generates 3 main types of overhead:
communication, synchronization and idle time. These result in 5 overhead ratios Ovhi
and 5 performance factors reflecting the impact of simulation statistics on the
different overheads [Lemeire 2001], as shown in Table 1:

∑+=
O

i
ioverheadTp

evSimCParSimT
#

1
#.

∑∑ +
=

+
== O

i

i
O

i
i

p
evSimC

overheadT
p

overheadTp
evSimC

evSimC
ParSimT
SeqSimTSpeedup #

1

#

1

1

.#1#.

.#

6

Table 1: Overhead classification of the conservative simulation algorithm
Overheads Overhead Ratios Performance factors

Communication Ovh1 per event overhead #evComm / #evSim
 Ovh2 constant overhead #evSim / cycle
Synchronisation Ovh3 synchronization #evNull / #evSim
 Ovh4 conditional queue #evCond/#evSim
Idle time Ovh5 load imbalance Differences in #evSim per processor

The communication overhead is the time not overlapping with computation for
communicating the events. This can be split in the variable overhead (Ovh1),
proportional to the data size, and the constant communication overhead (Ovh2),
induced by setting up the communication link. The communication overhead ratio
Ovh1 is proportional to the number of communicated events between the processors
(#evComm) versus the number of simulated events. This results in the first
performance factor, namely #evComm/#evSim. The constant overhead ratio Ovh2
leads to #evSim/Cycle, the number of simulated events per cycle. This ratio is also
called granularity or grain size [also event simultaneity in Peterson93].

The synchronization overhead is the processing in each cycle of the
synchronisation information. For CMB-algorithms and our algorithm this is the null
event processing, whereas for CTW-algorithms it is the window size calculation. The
processing time for this depends in the first place on the number of null events
#evNull. This results for Ovh3 in a performance factor #evNull/#evSim. Our algorithm
induces an extra synchronization overhead (Ovh4) due to the conditional events
#evCond that are queued to be processed in the next cycle. This leads to a constant
overhead and one proportional to #evCond/#evSim.

Unequal simulation phases on the different processors lead to idling, when
processors have to wait for incoming events. This is mainly caused by load
imbalances, here unequal number of events to be simulated. This overhead ratio
(Ovh5) is proportional to the relative deviation of the number of events simulated on
each processor.

The Lookahead Accumulation Benefit

The synchronization algorithm influences all but the per event communication
overhead OT1, which is only determined by the model partitioning. The other
overheads depend on the cycle time [Peterson93, Choi95], which is determined by the
lookahead properties of the model. In case of no-hop models, our algorithm gets
larger cycles and will attain a better performance. There will be less constant
communication overhead (OT2), less synchronisation overhead (OT3), discussed in
the next section, and better elimination of temporal load imbalances (OT5).

7

The Synchronization Overhead
The per cycle synchronization calculation depends strongly on the algorithm. For
CMB algorithms, it is the processing of one null event per channel, whereas for CTW,
it is proportional to the number of edge-processes. The synchronization information is
thus the lowest for the CTW, and the highest for CMB approaches. In our algorithm
it is one null event per interconnection plus the depth of the null event propagation. In
case of a hop model, our algorithm looses the lookahead accumulation advantage, the
synchronisation overhead will be similar as with CTW (only the lookahead of the
edge-processes is taken into account) and so the performance will be equal.
It is proportional to the cycle frequency. For CTW algorithms it is also proportional to
the number of interconnections. Whereas for CMB, the number of null events per
cycle equals the number of channels. Our algorithm performs in between both: the
number of null events per cycle is proportional to the number of interconnections plus
the depth of the lookahead propagation
Note that a lot of algorithms optimize the synchronization overhead, like diverse null
event reduction techniques in CMB algorithms [Ferscha95, etc] and for example, the
bounded lag in Lubachevsky's CTW algorithm [Lubachevsky89].

The overhead OT4 is specific for our algorithm. The cost for the extra lookahead of
our algorithm is the conditional queue. In case of a hop, simulation will stop by the
first killed process, no other processes were killed so far and thus, there are no
conditional events and no conditional queue overhead. But in case of lookahead
accumulation, conditional events of the killed processes must be stored in the
conditional queue to be simulated in the next cycle. These extra operations cause the
extra overhead: the check whether the process is killed and the queuing. These events
come in chronological order out of the event queue and therefore sorting of the
conditional queue is not necessary. This results in one extra operation for each event
and one for each conditional event. In Figure 2 it can be seen that the number of
conditional events could reach half of the number of processed events, as for lp D.
But in most cases, it will be much less, because the last lookahead of the lookahead-
path causes no conditional events. Moreover, deep processes (far from the edge) will
not be killed soon. In total, the extra overhead is thus between 1 and maximally 1.5
extra operations (check and append) per simulated event, which will be much smaller
compared to the time to simulate one event C1. We can conclude that the extra
overhead induced by our algorithm is small, what is confirmed by the experimental
results.

5 Examples

Two models will demonstrate our claims. One gives good results by exploiting the
lookahead accumulation, while the other fails due to low lookahead. Both are
simulated on a cluster of 4 Pentium II processors of 333MHz connected by a 100Mb/s
non-blocking switch.

8

FPGA

Field Programmable Gate Arrays (FPGAs) are prefabricated devices used to
implement digital logic. They feature a matrix structure of logic cells interconnected
by routing channels, and a periphery of I/O cells. FPGAs can be programmed by a
stream of configuration bits to form a logic circuit. The simulation model consists of
2387 processes and 10978 channels [Bousis00]. Geometrical partitioning (the dashed
lines in Figure 5) gives best load balancing and least communication. However, the
model is heavily interconnected and contains many hops (namely 453). The shortest
lookahead path is only 8 ns, resulting in only 70 events simulated per cycle of 8ns.
The performance results are shown in Table 2.

ATM switch

The high capacity ATM switch model [Geudens00] demonstrates the benefits of our
algorithm (Figure 6). The model consists of a detailed 4 by 4 switch with 16 entries.
Each input receives IP-traffic by a simulated network.

Table 2: Performance results for parallel simulation with 4 processors
 FPGA ATM switch
 Global Performance
 Speedup 0.74 3.5
 #evSim per realtime second 6592 events/s 44000 events/s
 Cycle time 8ns 50000ns
 Communication overhead 17.6% 0.6%
OT1 #evCom / #evSim 18% 5.7%
OT2 #evSim / Cycle 70 10100
 Synchronisation overhead
OT3 #evNull / #evSim 470% 0.45%
OT4 #evCond / #evSim 0 1.6%
OT5 Idle time 9.4% 11%

9

Here again, a geometrical partitioning (horizontal) is the only plausible one (dashed
lines in Figure 6). The model can accumulate the lookahead along a path that leaves
the switch, passes the network, enters the server and returns back to the switch. This
results in long cycles giving an optimal speedup as shown in Table 2.

6 Conclusion

In this paper, we demonstrated the benefit of accumulating lookahead with a hybrid
conservative parallel simulation algorithm, based on per processor aggregation of its
processes. It uses the traditional CMB approach for synchronisation between the
processors. The processors’ global lookahead is determined by lookahead
accumulation across the shortest lookahead path.
A qualitative performance analysis proved that our algorithm gets a performance
benefit over the traditional conservative algorithms CMB (asynchronous null-message
algorithms) and CTW (synchronous window algorithms) in case of partitioned models
without ‘hops’.
The performance analysis, applied to 2 different models, identified the different types
of overhead in conservative simulation, allowing model sensitivity analysis of parallel
simulation.

7 References

Ayani R., Rajaei H. Parallel simulation using conservative time windows. In 1992 Winter
Simulation Conferences Proceedings, pp 709-717, 1992.

Bousis L. Study and Implementation of a Scalable Simulator for Complex Digital Systems.
Thesis, Free University of Brussels, 2000.

Brissinck W., Steenhaut K., Dirkx E. A Combined Sequential/Distributed Algorithm for
Discrete Simulation. Proceedings of IASTED, Modelling and Simulation, Pennsylvania,
1995.

Choi E., Chung M. J. An important factor for optimistic protocol on distributed systems:
granularity. In 1995 Winter Simulation Conferences Proceedings, pp 642-649, 1995.

Ferscha A. Parallel and Distributed Simulation of Discrete Event Systems. Handbook of
Parallel and Distributed Computing, McGraw-Hill, 1995.

Fujimoto R.M. Parallel Discrete Event Simulation. Communications of the ACM, 33, pp 29-53,
October 1990.

Fujimoto R.M. Performance Measurements of Distributed Simulation Strategies. Proc. 1988
SCS Multiconference on Distributed Simulation Strategies, pp 14-20, February 1988.

Geudens S. Quantitative Study of a Highly Formant Network Switch with Distributed
Simulation. Thesis, Free University of Brussels, 2000.

Lemeire, J. and Dirkx, E.: Performance Factors in Parallel Discrete Event Simulation. In: Proc.
of the 15th European Simulation Multiconference (ESM), Prague, 2001.

Lin Y., Fishwick P.A. Asynchronous Parallel Discrete Event Simulation. 1995.

10

Lubachevsky B.D. Efficient distributed event-driven simulations of multiple-loop networks.
Communications of the ACM, 32, 111-123. 1989.

Misra J. Distributed Discrete-Event Simulation. ACM Computing Surveys, Vol. 18, No. 1,
March 1986.

Peterson G.D., Chamberlain R.D. Exploiting lookahead in synchronous parallel simulation. In
1993 Winter Simulation Conferences Proceedings, pp 706-712, 1993.

Praehofer H. and Resinger G. Distributed Simulation of DEVS-Based Multiformalism Models.
IEEE, 1994.

Preiss B.R., Loucks W.M. The impact of Lookahead on the Performance of Conservative
Distributed Simulation. 1990.

Steinman J.S. Discrete-event simulation and the event horizon. Proceedings of the 8th
Workshop on Parallel and Distributed Simulation(PADS), 1994.

