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Abstract 
 

We investigated the benefit of exploiting the 
symmetries of graphs for partitioning. We represent the 
model to be simulated by a weighted graph. Graph 
symmetries are studied in the theory of permutation 
groups and can be calculated in polynomial time with the 
nauty algorithm [15]. We designed an algorithm to 
extract useful symmetries from the automorphism group, 
which can be used to create partitions derived from the 
graph’s structure. Our approach is focused on composite 
graphs, for which identical subgraphs reoccur in the 
graph. If these identical subgraphs can be mapped onto 
each other by symmetries, the subgraphs are replaced by 
equivalent multivertices, resulting in a ‘natural’ 
aggregation of vertices. This approach is applied to 
parallel simulation of a detailed IP-switch with a 
conservative synchronous algorithm. The experimental 
results show that even for good partitions, global and 
temporal load imbalances are inevitable. 
 
1. Introduction 
 

We study the problem of finding good model 
partitions for Parallel Discrete Event Simulation (PDES). 
This problem is equivalent to graph partitioning, where 
the model is represented by a weighted graph. The weight 
of an edge represents its amount of communication and 
the weight of a node its amount of computation. Graph 
partitioning is an important problem that has extensive 
applications in many other areas, including scientific 
computing, VLSI design, data mining and grid 
applications. The goal is to partition the vertices of a 
graph in roughly p equal parts to balance the graph, such 
that it minimizes the number of edges connecting vertices 
in different parts. These are the edge-cuts, representing 
the communication between the different parts. 

We investigated how symmetries can be used to 
partition the graph. This work started with the work Bart 
Smets [16]. Naturally, symmetry is not guaranteed and 
symmetric partitions are no guarantee for efficient 

partitions. However, models in PDES, like network or 
electronic components, are often highly structured. They 
often consist of reoccurring components with more 
communication inside the components then between 
them. These structural properties of the model result in 
what we called composite graphs and can be exploited to 
get an ‘natural’ partition.  

 
1.1. Parallel Discrete Event Simulation 
 

In discrete event simulation, the device under study is 
modeled by interconnected logical processes, in which 
state changes happen at discrete times by events. 

 

 
Figure 1. IP-switch model 

 
Figure 1 shows the model of a detailed IP-switch [8], 

in which the IP-packets are first converted into prisma 
cells, then into multi-slot cells before going through the 
switching elements. After this, the original IP-packets are 
reconstructed and sent to the output. Feedback signals try 
to prevent packet loss due to congestion in the switching 
elements. Packets are therefore buffered into the input 
stages. The switch contains 32 inputs, resulting in more 
than 4000 processes. 

In Parallel Discrete Event Simulation (PDES) [5,6] 
the model is partitioned among the available processors 
and simulated with a parallel algorithm that synchronizes 



the different partitions. We will explain our approach 
with the simplified model of the switch (Figure 2), 
whereas the experimental results are gathered from the 
simulation of the detailed model. 

 

 
Figure 2. Simplified switch model 

 
1.2. Related Work 
 

The partitioning task is known to be NP-complete in 
general [7]. However, when the graph exhibits certain 
regularities, good partitions can be found in polynomial 
time. An example is METIS [13], a multilevel coarsening 
algorithm, in which highly interconnected nodes are 
successively grouped (step 1) to become a much smaller 
graph with lower partitioning complexity. After 
partitioning of the aggregated graph (step 2), the 
partitions are gradually refined when the multivertices are 
expanded to reconstruct the original graph (step 3). In 
[14], the assumptions on the graph for the success of the 
algorithm are analyzed. 

Graph partitioning is defined in section 2 and graph 
symmetries in section 3. Section 4 discusses the 
symmetry tree that is used in section 5 for partitioning. 
Finally, section 6 shows the experimental results.  
 
2. Graph Partitioning 
 

A graph contains the relational information of an 
object. It is defined as a structure G=<V, E> in which V is 
a finite set of vertices (or nodes) and E⊂V×V is a finite 
set of edges (unordered pairs or ordered pairs for a 
directed graph). Two vertices u and v are called adjacent 

if Evu ∈),( . A weighted graph associates a number |v| 
to each vertex and a number |e| to each edge. 

 

 
Figure 3. A composite graph 

 
We define a composite graph is a graph that is 

composed of subgraphs that occur multiple times in the 

graph. Identical subgraphs can then be replaced by a 
single multivertex. Structured models often contain such 
subgraphs, as shown in Figure 3, in which nodes can be 
replaced by the multivertices A1, B1, etc. In fact, the 
vertices of Figure 3 are on their turn composed out of 
subgraphs of the detailed IP switch model of Figure 1. 
Furthermore, each process of Figure 1 can again be 
described in more detail, as shown in Figure 4, which is 
the detailed description of the buffer&convertor1 process 
of Figure 1. This is called the level of abstraction of the 
model. We study the graphs for which these subgraphs 
are symmetric. Note that we are now working with 
undirected graphs, since the direction of the 
communication is irrelevant for the partitioning. 

 

 
Figure 4. The buffer&convertor1 process in 

detail 
 
Graph partitioning is defined as follow: given a graph 

G=<V,E>, partition V into p disjoint subsets V1  … Vp  
such that the following objectives are optimized: 
1. The sum of the weights |v| of all v of Vi for each i 

(1…p) is the same. 
2. The sum of the weights of the cut edges (edges for 

which the nodes belong to a different partition) is 
minimized. 

 
3. Graph Symmetries 
 

Symmetries are investigated in mathematics by Group 
Theory [12]. A symmetry of an object is defined as a 
transformation that leaves the essential features of the 
object unchanged [10]. The set of all symmetries of an 
object form a group. This means that symmetries can be 
composed, an identity transformation exists and each 
transformation has an inverse transformation.   

A graph symmetry is a permutation f of the vertex set 
V that preserves adjacency: 

 
EvfvfEvvVvv ∈⇔∈∈∀ ))(),((),(:, 212121   (1) 

 
The group of all such permutations together with 

composition is called the automorphism group Aut(G) of 
the graph [3]. A permutation is a bijective transformation. 
It can be described with the cyclic notation. For example, 
the permutation (a1, a2, a3) carries a1 to a2, a2 to a3 and a3 



to a1. The permutation (a1, a2)(b1, b2) carries a1 to a2, a2 to 
a1 and simultaneously b1 to b2 and b2 to b1. Some of the 
symmetries of the graph of Figure 2 are: 

(0, 1) 
(3, 4) 
(0, 3) (1, 4) (2, 5) 
(7 8) 
(10 11) 
(7 10)(8 11)(6 9) 
(0 7)(1 8)(2 6)(3 10)(4 11)(5 9) 

Note that all other symmetries can be composed out of 
these, therefore they are called a set of generators for 
Aut(G).  

An efficient and widely used algorithm for finding the 
symmetries in a graph is nauty [15, see also 
http://cs.anu.edu.au/~bdm/nauty]. The average 
performance is polynomial, with a degree no bigger than 
4 and in practice less than 3 [15]. A handy tool for 
finding and manipulating graph symmetries, using the 
nauty algorithm, is GAP [http://www.gap-system.org]. 

We will analyze the symmetries in composite graphs. 
Note that reoccurring multivertices are called isomorphic 
subgraphs in group theory. We define a multivertex 
symmetry as a permutation that maps multivertices onto 
each other and preserves adjacency of these. It is clear 
that the multivertices of Figure 3 are symmetric. These 
multivertex symmetries are interesting for optimizing the 
partitioning task. Therefore we have to extract them from 
Aut(G) and describe them into a practicable 
representation. 
 
4. The Composite Symmetry Tree 
 
We represent the composite graph by a hierarchical tree 
of reoccurring multivertices, where each multivertex is 
refined in the next level. Figure 5 shows the composite 
symmetry tree of the switch in Figure 2. At each level, 
equivalent multivertices are represented by the same 
symbol, they are mutually interchangeable by a 
symmetry.  
 

 
Figure 5. The composite symmetry tree  

of the simplified switch model 

 
In the work of Smets [16], the definition of the tree is 

extended for ring symmetries. This is represented by 
connecting the nodes which are neighbors in the ring 
transformation. 
 
4.1. Additional Definitions 
 

For the construction of the tree, we need some 
concepts from the theory of permutation groups [9]. The 
orbit of a vertex v∈V is defined as: orb(v) = {g(v): g 
∈Aut(G)}, the set of all vertices on which v can be 
mapped by the automorphisms of the graph. If a vertex 
v’∈ orb(v), then v is also an element of the orb(v’). In 
this way, the orbits partition the vertices of the graph into 
disjoint subsets (Figure 6). 

 

 
Figure 6. Orbits of a graph 

 
The stabilizer of a subset V’ of V, are the symmetries 

that keep all elements of V’ unchanged: 
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A block of imprimitivity is a set of vertices B⊆V for 
which:  

 
0'..'..:)(', =∩=∈∀ BgBgorBgBgGAutgg  (3) 

 
A block of imprimitivity is completely mapped onto 

itself by the symmetries or onto a disjoint set of vertices. 
The other set will necessarily also be blocks of 
imprimitivity. A maximal block of imprimitivity of a 
vertex set V’ is an imprimitivity block B⊂V’ of maximal 
size, but non-trivial (B=V’). These concepts can be 
calculated by GAP/nauty. 
 
4.2. Construction Algorithm 
 

The intuitively defined symmetric components are 
clearly blocks of imprimitivity. We will however only 
aggregate vertices if an objective choice exists and if the 



number of connections between the different 
multivertices is low. 

The principle of the algorithm is to aggregate vertices 
of different orbits. For the graph of Figure 6, the goal is to 
aggregate the vertices 1 and 4 into a multivertex, that is 
isomorphic to multivertices {2,5} and {3,6}. However, 
we will only group vertices that are adjacent to exactly 
one vertex of another orbit. In other cases, when all or 
multiple vertices of one orbit are connected to the same 
vertex, aggregation makes no sense. When all vertices are 
interconnected, as for 2, 5 and 8 with 0, and {4,5,6} with 
{7,8,9} in Figure 6, both orbits can permute 
independently and there is no objective reason to group 
vertices. If only some, but more than one, vertices are 
adjacent, as for the vertices of orbit {7,8,9} with orbit 
{10,11,12} in Figure 6, vertices of both orbits cannot 
transform independently. By permuting some of the 
vertices of one orbit, some of the other should also 
permute. Then, there are multiple equivalent choices in 
grouping the vertices of the different orbits. Moreover, 
grouping such vertices would cause a lot of 
communication between the multivertices. Hence, we will 
also not aggregate vertices in such cases. 

 

 
Figure 7. Orbits of a composite graph 

 
For complex composite graphs, a ‘hierarchy’ can be 

identified inside orbits, as in Figure 7. To apply the 
aggregation method, we should start with grouping the 
maximal imprimitivity blocks of the orbits, shown in 
Figure 8. By applying the above algorithm, block 1a can 
be aggregated with block 2a, and block 1b with 2b. They 
form the top-level components A1 and A2 of the symmetry 
tree of Figure 5. 
 

 
Figure 8. Maximal blocks of imprimitivity  

of the orbits 

 
The symmetry tree is recursively built in a top-down 

way. For deeper investigation of the symmetries of a 
multivertex, all other multivertices are stabilized. The 
new automorphism group Aut’(G)V’ is then used to find 
the subcomponents with the same aggregation method. 
Since components are isomorphic, all subcomponents 
found in one component also appear in the other 
components. Applied onto the graph of the switch (Figure 
3), the symmetric supervertices A1 and A2 can be refined 
into B1, B2, B3 and B4. This gives us the desired symmetry 
tree of Figure 5.  
 
4.3. Performance 
 

The experimental performance results on a 1.8GHz 
Pentium 4 processor are shown in Table 1. We compared 
the processing time of the algorithm for a random graph, 
the simplified switch of Figure 2 and the detailed switch 
of Figure 1, for a varying number of vertices.  
 

Table 1. Processing time (in seconds) of 
symmetry tree construction in function of the 

number of vertices 
#vertices 1000 2000 3000 4000 
Random graph 0.014 0.091 0.165 0.242 
Simplified switch 9.35 132 480 1331 
Detailed switch 8.87 116 413 983 

 
It is known that nauty quickly detects that graphs have 

few symmetries, namely in polynomial time of degree 2 
[15]. This is confirmed by the experiments that give a 
quadratic processing time for a random graph without 
symmetries. For the simplified and detailed switch we get 
a third degree polynomial dependency. 
 
 
5. Exploiting the Symmetry Tree for 
Partitioning 
 

With the Composite Symmetry Tree, proposals for 
graph partitions can easily be extracted. The simplified 
switch can be partitioned along 2 axes, as shown in 
Figures 9 and 10. A switch with more inputs will have 
axes parallel with Ax 2 and partitioning along these axes 
will give good results. 

 



Figure 9. Partitioning with the symmetry tree 
 

 
Figure 10. The resulting model partitioning 

 
The partitions result from the structure of the graph, so 

it is a kind of ‘natural’ partitioning. The symmetries 
guarantee an equal distribution of the workload and by 
construction, the communication is minimized.  

Note that the approach resembles the aggregation 
method of METIS and is a kind of ‘natural’ aggregation 
of the vertices according to symmetries. 
 
6. Simulation of IP Switch 
 

The illustrating experiment is the simulation of the 
detailed IP-switch [8] of Figure 1 on a cluster of 8 
Pentium II processors of 333MHz connected by a 
100Mb/s non-blocking switch. For parallel simulation, we 
use a conservative synchronous algorithm [1], based on 
the time window algorithms [5]. It consists of cycles of 
independent simulation on each processor, alternated with 
synchronization between the different processors by 
communicating the events traveling through the cut-
edges. The cycle length or window size equals the 
lookahead. 

 
Table 2. Experimental results for the parallel 

overheads 
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The switch has 32 in- and output channels and is fed 

with random TCP/IP traffic according to a normal 
distribution. It puts an average load of 62% on the 
switching elements. It is partitioned along the horizontal 
symmetry axes (parallel with Ax 2 in Figure 10). The 
experimental results in function of the number of 
processors are shown in Table 2. The values for the 

speedups are 1.7 for p=2, 3.0 for p=4, 4.1 for p=6 and 
5.2 for p=8. 

The parallel simulation time with 6 processors of 1s 
real time was 1683s, resulting in a speedup of 4.06. The 
total overhead of 45.6% of the parallel runtime was 
mainly caused by communication overhead overlapping 
with computation (14.1%) and load imbalances (26.9%). 
The synchronization overhead of our algorithm only took 
4.6% of the parallel runtime. The relatively high 
communication overhead is caused by the packets 
traveling through the edge-cuts. This intercommunication 
is unavoidable. On the other hand, the high load 
imbalances suggest a bad partitioning, but this is not the 
case. The total idle time Tidle is measured as the sum over 
all cycles that the processors have to wait for the slowest 
processor, since the simulation happens synchronously in 
cycles:  

                            

∑
∈
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k
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where SimTk is the simulation time of cycle k, the 
maximal and average respectively. We identify 2 different 
types of load imbalances that cause idling: the global and 
temporal load imbalances. The global load imbalance Tgli 
is caused by unequal total simulation time TotalSimT 
between the processors: 
 

).( max avggli TotalSimTTotalSimTpT −=          (5) 

                                                                                                    
The temporal load imbalances Ttli on the other hand, 

are caused by fluctuations of the load imbalances between 
the different cycles and can be calculated as follow: 

 

gliidletli TTT −=
                                                                                (6) 

 
The slowest processor that causes the idle time at each 

synchronization point can differ from cycle to cycle. The 
resulting global load imbalance, which is an average of 
the load imbalance over all cycles, can thus be low (here: 
7%), whereas temporal fluctuations are generating a much 
higher idling of the processors (here:19.9%).  

Since our model is completely symmetric, with the 
same average, but stochastic, load in each of the 
symmetric components, no better partitioning is available. 
However, the deviation from the average load leads to a 
global imbalance and load fluctuations generate high 
temporal imbalances as an effect of using a synchronous 
parallel simulation algorithm. Table 2 shows how the 
temporal imbalances increase rapidly with the number of 
processors and cause the main limitation on the growth of 
the speedup. 
 
 



 
 
7. Conclusions 
 

We argued that if a graph has symmetries, these should 
be exploited for partitioning. We constructed an 
algorithm that uses the theory of permutation groups to 
find multivertex symmetries in composite graphs. These 
useful symmetries are represented in a symmetry tree, 
from which proposals for partitions can easily be 
constructed. The application of this approach to our 
highly structured models yields promising results.  

We want to extend the algorithm to other types of 
symmetries and to quasi-symmetries. Moreover, 
symmetrical properties are useful in reducing the 
complexity of algorithms in general and should be 
reflected in the visualization of such models and their 
graphs. 
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