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Abstract

This paper presents an extension to the Conservative PC algorithm which is able
to detect violations of adjacency faithfulness under causal sufficiency and trian-
gle faithfulness. Violations can be characterized by pseudo-independent relations
and equivalent edges, both generating a pattern of conditional independencies that
cannot be modeled faithfully. Both cases lead to uncertainty about specific parts of
the skeleton of the causal graph. These ambiguities are modeled by an f -pattern.
We prove that our Adjacency Conservative PC algorithm is able to correctly learn
the f -pattern. We argue that the solution also applies for the finite sample case if
we accept that only strong edges can be identified. Experiments based on simula-
tions and the ALARM benchmark model show that the rate of false edge removals
is significantly reduced, at the expense of uncertainty on the skeleton and a higher
sensitivity for accidental correlations.

Keywords:

1. Introduction

Independence-based algorithms for learning the causal structure from data rely
on the Conditional Independencies (CIs) entailed by the system’s causal structure.
The causal Markov condition gives the CIs that follow from a causal structure that
is represented by a Directed Acyclic Graph (DAG): every variable is independent
of its non-effects conditional on its direct causes. Current algorithms rely on a
form of, possibly relaxed version of, faithfulness. Causal faithfulness states that
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no other CIs appear in the system’s probability distribution than those entailed by
the causal Markov condition. Faithfulness is therefore a very ‘convenient’ pro-
perty: all CIs tell us something about the causal structure. Under faithfulness,
the Markov equivalence class can be learned, which is the set of all DAGs re-
presenting the CIs of the system. Violation of faithfulness means that there are
non-Markovian CIs, i.e. CIs not following from the Markov condition.

Unfaithfulness holds only for specific parameterizations of the conditional
probability distributions of Bayesian networks. Meek [1] showed that for dis-
crete Bayesian networks, it leads to non-trivial constraints which are polynomials
in the parameters. Spirtes et al. [2, p.41] showed the same result for linear models.
The validity of causal faithfulness is supported by the ‘Lebesgue measure zero ar-
gument’ [3], which states that the chance of randomly picking a parameterization
of a Bayesian network which results in non-Markovian CIs has measure zero. But
in near-to-unfaithful situations probability distributions are close to unfaithful dis-
tributions, such that a test for independence which has to rely on a finite sample
will not be able to identify the dependencies correctly. The Lebesgue measure
zero argument does not hold here, since the ε-regions around unfaithful situations
do not have Lebesgue measure zero. Moreover, recently the validity of causal
faithfulness has been challenged based on the argument that patterns (here: the
parameter constraints leading to unfaithfulness) are not rare in nature [4].

Zhang and Spirtes [5] showed that only in cases of triangle unfaithfulness vi-
olations of faithfulness are undetectable. This happens when the true probability
distribution is not faithful to the true causal DAG, but is nonetheless faithful to
some other DAG. In those cases, the CIs do not give enough evidence to learn
the correct DAG. Triangle faithfulness will be discussed in more detail in the Sec-
tion 2.4. We will therefore have to rely on triangle faithfulness. Then, violations
of faithfulness are detectable in the sense that the true probability distribution is
not faithful to any DAG. It means that there exist several DAGs that each explains
a subset of the CIs. This leads to additional ambiguities about the DAG. Cur-
rently, these ambiguities are detected for a part of faithfulness violations, namely
orientation unfaithfulness [6]. In this paper we extend the treatment to adjacency
unfaithfulness.

Ramsey et al. [6] showed that we only need adjacency faithfulness and orien-
tation faithfulness to learn the correct equivalence class. Adjacency Faithfulness
states that any two adjacent variables do not become independent when condi-
tioned on some other (possible empty) set of variables. It is necessary to recover
the correct skeleton of the true DAG. Orientation faithfulness is necessary for fin-
ding the correct orientations. [6] extended the well-known PC algorithm to detect
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violations of orientation faithfulness. Violations lead to specific ambiguous parts
of the DAG, in which no decision on the orientation can be taken. The Conserva-
tive PC algorithm is given in the next section. In this paper we apply the same idea
for handling violations of adjacency faithfulness. They can be identified, under tri-
angle faithfulness, by two patterns: pseudo-independent relations and equivalent
edges. These patterns will lead to parts of the model in which no decision can be
taken on the correct skeleton.

The following section recalls the important aspects of independence-based
causal structure learning and faithfulness. Section 3 and 4 discuss the two cases
in which adjacency faithfulness is violated. That they comprise almost all cases
of adjacency unfaithfulness is proven in section 5. Section 6 analyzes the ambi-
guities following from adjacency unfaithfulness and defines the equivalence class.
Section 7 discusses how violations can be treated in the finite sample case. Based
on this analysis, the ACPC algorithm is presented and proven to be correct in sec-
tion 8. Related work is discussed in section 9. Finally, the experimental results
are presented in section 10.

2. Independence-Based Causal Structure Learning

We first review the necessary state-of-the-art.

2.1. DAGs and Independencies
A graphical causal model consists of a Directed Acyclic Graph (DAG) in

which the edges represent the direct causal relations among the variables. A di-
rect cause of a variable, denoted as a parent in the graph, is a cause that produces
the state of the effect variable not through another of the observed variables. The
direct causes or parents affect the mechanism responsible for generating the value
of the effect variable. The mechanism for setting Xi can be described by the Con-
ditional Probability Distribution (CPD) P (Xi | Parents(Xi)) with Parents(Xi)
denoting the parents of Xi. The CPDs taken together describe the whole system
under study, namely by the Joint Probability Distribution (JPD) P (X1, . . . , Xn)
with X1, . . . , Xn the known variables. The CPDs form a factorization of the JPD:

P (X1, . . . , Xn) =
n∏
i

P (Xi | Parents(Xi)) . (1)

A Bayesian network describes any (not necessarily the causal one) factoriza-
tion of a JPD according to the above equation. It consists of a Directed Acyclic
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Graph (DAG), describing the parents of each variable and a set of Conditional Pro-
bability Distributions (CPDs), one for each variable. A graphical causal model is
therefore a special Bayesian network; one for which the DAG describes the direct
causal relations.

We review some graph terminology. Two variables are called adjacent in a
graph if there is an edge in the graph that connects both variables. A path is a
set of consecutive edges (independent of the direction) without visiting a variable
more than once. A collider on a path is a variable for which both edges of the path
of which it is an endpoint, point towards it. X is called an ancestor of Y if there is
a directed path from X to Y (having all its edges pointing towards Y ). Y is called
a descendant of X .

One can view the DAG as describing qualitative properties about the system,
namely its ‘structure’, whereas the CPDs describe the quantitative properties. An
important property is that the DAG entails (conditional) independencies. These
independencies will form the basis of identifying the system’s causal structure
from pure observational data. The independencies are given by the Markov con-
dition: any variable is independent from all its non-descendants conditioned on its
parents.

Besides Markov, the graphoid properties describe the general relations among
conditional independence statements [7]. If two variables X and Y are indepen-
dent (dependent) in P we write X⊥⊥PY (X 2PY ). Since in the text there can
be no confusion about which distribution we omit the subscript P . Conditional
independence (dependence) is written as X⊥⊥Y |Z (X 2Y |Z).

Properties 1. Graphoids: Let P be a distribution over a set of variables V.
The independencies that follow from P must satisfy the following independent
conditions that are defined for all disjoint subsets X,Y,Z and W.

Symmetry: X⊥⊥Y|Z⇔ Y⊥⊥X|Z

Decomposition: X⊥⊥Y,W|Z⇒ X⊥⊥Y|Z & X⊥⊥W|Z

Weak Union: X⊥⊥Y,W|Z⇒ X⊥⊥Y|Z,W

Contraction: X⊥⊥Y|Z & X⊥⊥W|Z,Y⇒ X⊥⊥Y,W|Z

If P is strictly positive (has no zero values), the following condition holds as well:

Intersection: X⊥⊥Y|Z,W & X⊥⊥W|Y,Z⇒ X⊥⊥Y,W|Z
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Note that single stochastic variables are denoted by capital letters, sets of variables
by boldface capital letters.

The Markov conditions together with the graphoid properties entail a set of in-
dependencies which depends on the given DAG. This set is given by d-separation.
Two disjoint sets of variables X and Y are d-separated by Z if every path between
variables in X and variables inY is blocked by Z. A path is said to be blocked by
Z if it contains a collider→ · ← whose descendants are not in Z or a non-collider
→ · → or← · → or← · ← that is in Z [8]. We call a non-blocked path an active
path. Two variables that are not d-separated are called d-connected. We say that a
variable closes a path if it turns an active path into a blocked one (a non-collider
on the path). We say that a variable opens a path if it turns a blocked path into an
active one (a collider on the path or a descendant of a collider). We call a DAG
Markovian for a distribution if all CIs following from the Markov condition (given
by d-separation) are present in the distribution (i.e. it is an I-MAP).

Recall that a distribution P is faithful to a DAG G if no conditional indepen-
dence holds in P unless entailed by the Markov condition on G. Besides faith-
fulness, minimality (MIN) is also a basic condition: elimination of an edge leads
to a Bayesian network which violates the Markov condition. Formally written it
means that

∀X, Y ∈ V which are adjacent inG : X 2Y | OthPa(X−Y ), (2)

where V is the set of all variables and OthPa(X−Y ) of edge X−Y is defined as
Parents(Y ) \X if X is parent of Y , otherwise it is Parents(X) \ Y . OthPa is
short for ‘other parents’. This is a local minimality criterion. We require that every
conditioning variable is necessary in the CPD. Omission of a variable breaks the
correctness of the factorization.

2.2. The PC algorithm
Based on faithfulness, a straightforward algorithm can be designed that re-

trieves the causal structure based on the CIs. The causal graph is constructed
in two phases. The first phase, called adjacency search, learns the undirected
graph. The second phase tries to orient the edges. The result of the algorithm is
a set of observationally indistinguishable models, the so-called Markov equiva-
lence class, and is proved to be correct for distributions that are faithful to some
DAG. Note that the information provided by the CIs can be combined with expert
knowledge [9].

The construction of the undirected graph, the first phase, is based on the pro-
perty that two nodes are adjacent if they remain dependent by conditioning on
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every set of nodes that does not include either node. The algorithm starts with a
completely connected, undirected graph. There is an edge between every pair of
nodes. It then removes edges for each independency that is found. The number
of nodes in the conditioning set is gradually increased up to a certain maximal
number, called the depth of the search. If for every pair A, B, one should test on
all subsets of V \ {A,B}, this results in an exponential number of tests to per-
form. One can however limit the number of subsets to be tested. In order to detect
adjacency, it is sufficient to test for conditional independencies of A and B given
subsets of variables adjacent to A and subsets of variables adjacent to B that are
on undirected paths between A and B. It relies on the following property [2].

Lemma 1. If a distribution P over variables V is faithful to a Bayesian network
with DAG G, and X, Y ∈ V, then:
IfX and Y are d-separated by any subset of V\{X, Y }, then they are d-separated
either by Parents(X) or Parents(Y ).

The orientation phase is based on the identification of v-structures1 → · ←,
for which two nodes are independent, but become dependent conditional on a
third node. In that case, both nodes are causes of the third node and are oriented
towards the third node. Recall that for all three other possible orientations of the
three nodes,→ · → or← · → or← · ←, the opposite is true, the two nodes are
initially dependent, but become independent by conditioning on the third node.
We call these three structures Markov chains.

The Markov equivalence class is represented by a Partially Directed Acyclic
Graph (PDAG) in which some edges are not oriented. They can be oriented in
any direction as long as no v-structures are created nor cycles. It follows that all
DAGs of the class contain the same v-structures.

2.3. The Conservative PC algorithm
It is proven by Ramsey et al. [6] that Faithfulness is too strict for the cor-

rectness of the PC algorithm [2]. For the first phase we only need Adjacency
Faithfulness, for the second phase we only need Orientation Faithfulness.

Definition 1. Adjacency Faithfulness Condition: Given a set of variables V
whose causal structure can be represented by a DAG G, if two variables X , Y are
adjacent in G, then they are dependent conditioned on any subset of V\{X, Y }.

1We call a v-structure an unshielded triple (three nodes connected by exactly two edges) which
is oriented as a collider.
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Given three nodes X, Y, Z in a graph G, the triple < X, Y, Z > is called an
unshielded triple if X and Z are adjacent to Y but X is not adjacent to Z.

Definition 2. Orientation Faithfulness Condition: Given a set of variables V
whose causal structure can be represented by a DAG G, let < X, Y, Z > be any
unshielded triple in G:

• If X → Y ← Z (case of a v-structure), then X and Z are dependent given
any subset of V\{X,Z} that contains Y .

• otherwise (case of a Markov chain), X and Z are dependent conditional
given any subset of V\{X,Z} that does not contain Y .

In this way, faithfulness is decomposed into three disjoint components: Adja-
cency Faithfulness, Orientation Faithfulness and a third one consisting of the re-
maining statements. One could say that the first is about variables at distance one
in the true graph, where the distance between two nodes in a graph is the length
of their shortest path. Adjacency Faithfulness requires that every d-connection
between two adjacent variables (having distance one) is paralleled with a depen-
dence. It ensures that the right adjacencies are found. The second component,
Orientation Faithfulness, says that for variables at distance two a d-connection
is paralleled with a dependence except for d-connections following from condi-
tioning on descendants of colliders. This property ensures that every unshielded
triple can be qualified as being a v-structure or a Markov chain. The third compo-
nent is about dependencies between variables “at further distance”. Such depen-
dencies are not needed for correctness of the PC algorithm.

Ramsey et al. [6] extended the PC algorithm to capture violations of orien-
tation faithfulness. The basic case of violation is when for unshielded collider
< X, Y, Z > X⊥⊥Z and X⊥⊥Z|Y . In such cases, the orientation rules do not
apply. The orientation remains unknown. We remain with 4 possible structures.
The equivalence class is extended by this additional ambiguity. The unshielded
triple < X, Y, Z > is indicated as being an unfaithful triple.

The Conservative PC algorithm (CPC) is given in Alg. 1 [6]. Adj(G,X)
denotes the set of nodes adjacent to X in graph G. Orientation Faithfulness
is tested by checking for each unshielded triple that one of both sets of depen-
dencies of orientation faithfulness hold: either the dependencies following from
a v-structure, either the dependencies following from a Markov chain. Step 3
(S3) consists of extensions to the original PC algorithm in which Orientation-
Faithfulness is tested . Edges of an unshielded triple are not oriented if a failure
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Figure 1: Triangle (a) and the three faithful models following from triangle unfaithfulness: X⊥⊥Y
(b, TRUFF1), Y⊥⊥Z (c, TRUFF2) and X⊥⊥Z|Y (d, TRUFF3).

is detected but are indicated as unfaithful, as shown in Fig. 3(a). An e-pattern is
a partially-oriented DAG in which some triples are denoted as unfaithful. An un-
faithful triple is a triple which we cannot qualify as being a v-structure or a Markov
chain. An e-pattern thus describes a set of DAGs which will be larger than the
Markov equivalence class. The algorithm returns a correct e-pattern under Causal
Sufficiency (there are no common latent causes) and Adjacency-Faithfulness. We
will also assume Causal Sufficiency in the following.

2.4. Undetectable Violation of Faithfulness
An undetectable violation of faithfulness happens when the true probability

distribution is not faithful to the true causal DAG, but is nonetheless faithful to
some other DAG. In such cases, an equivalence class is learned which does not
contain the true causal DAG. Since the (wrong) DAGs in this class are faithful,
there is no evidence in the form of CIs to refute these. Undetectable violations of
faithfulness only happen by violations of the triangle faithfulness condition [5]. It
states that given a set of variables V whose true causal DAG is G, let X , Y , Z be
any three variables that form a triangle in G

1. If Y is a non-collider on the path < X, Y, Z >, then X , Z are dependent
conditional on any subset of V\{X,Z} that does not include Y .

2. If Y is a collider on the path < X, Y, Z >, then X , Z are dependent condi-
tional on any subset of V\{X,Z} that includes Y

To illustrate triangle unfaithfulness, consider the triangle shown in Fig. 1(a).
There are 3 ways to violate triangle faithfulness for this DAG:

(TRUFF1) X⊥⊥Y gives faithful model X → Z ← Y , shown in Fig. 1(b);

(TRUFF2) Y⊥⊥Z gives faithful model Y → X ← Z, shown in Fig. 1(c);

(TRUFF3) X⊥⊥Z|Y gives faithful model X → Y → Z, shown in Fig. 1(d).
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Algorithm 1 The CPC algorithm

S1 Start with the complete undirected graph U on the set of variables V.

Phase I Adjacency search.

S2 n = 0;

repeat

For each pair of variables A and B that are adjacent in (the current)
U, check through the subsets of Adj(U,A) \ {B} and the subsets of
Adj(U,B) \ {A} that have exactly n variables. For all such subsets S
check independencyA⊥⊥B | S. If independent, remove the edge between
A and B in U ;

n = n+ 1;

until for each ordered pair of adjacent variables A and B, ADJ(U,A) \
{B} has less than n elements.

Phase II Orientation.

S3 LetG be the undirected graph resulting from step S2. For each unshielded
triple 〈A,B,C〉 in G, check all subsets of A’s potential parents (nodes
that are adjacent to A but are not A’s children) and of C’s potential pa-
rents:

(a) If B is NOT in any such set conditional on which A and C are
independent, orient the triple as a collider: A→ B ← C;

(b) If B is in all such sets conditional on which A and C are indepen-
dent, leave A−B − C as it is , i.e., a non-collider;

(c) Otherwise, mark the triple as “unfaithful” by underlining the triple,
A−B− C.

S4 Execute the orientation rules given in [1], but not on unfaithful triples.

Based on Zhang and Spirtes [5]’s theorem that under triangle faithfulness all
cases of unfaithfulness can be detected, we assume triangle faithfulness and in-
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vestigate the other cases of adjacency unfaithfulness. We start by discussing the
two major cases in which adjacency faithfulness is violated: Pseudo-Independent
Relations (PIRs) and information equivalences. Then, in Sec. 5 we prove that both
cases cover almost all cases of adjacency faithfulness violation, there is only one
other, special case that can happen.

3. Pseudo-Independent Relations (PIRs)

Consider causal structure X → Y ← Z with additionally X⊥⊥Y . For Mini-
mality, at least X 2Y |Z should hold. X contains information about Y which only
becomes apparent when conditioned on Z. Because of the marginal independence
X⊥⊥Y , we call X → Y a Pseudo-Independent Relation. This entails a specific
parameterization of P (Y |X,Z) and P (Z):

P (Y |x) = P (Y ) ∀x (3)

⇔
∑
z

P (Y |x, z).P (z) = P (Y ) ∀x (4)

The PC algorithm errs on X−Y , it removes the edge by the marginal indepen-
dence X⊥⊥Y . The algorithm would only return an edge between Y and Z only.
This DAG is clearly not Markovian. This error can be detected by testing for de-
pendency X 2Y |Z which would reveal that X and Y might be adjacent. On the
other hand, the CI pattern X⊥⊥Y and X 2Y |Z is equally well represented by the
graph X → Z ← Y . To conclude, we end up with two equivalent v-structures.

A special case is given a pseudo-independent model [10] in which all three
variables are pairwise independent but become dependent when conditioned on
the third variable. Consider three binary variables X, Y, Z with causal structure
X → Z ← Y . Consider that X and Z are fair coin tosses (P (X = 0) = 0.5 and
P (Z = 0) = 0.5.) and influence Y according to a logical XOR relation, i.e.,

Y = X ⊕ Z .

This yields X⊥⊥Y and Y⊥⊥Z. We end up with three equivalent v-structures.
More generally, we define a PIR as follows. A strict d-separation, denoted as

[X⊥Y |Z], is a d-separation which gives a d-connection for any proper subset of
Z.

Definition 3 (Pseudo-Independent Relation). Given G and P compatible with
G for which MIN holds and either X → Y or X ← Y in the correct causal
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structure. Edge X − Y is called a Pseudo-Independent Relation (PIR) if X and
Y are independent conditional on a minimal subset W ⊆ V \ ({X, Y }) that d-
separates X and Y in G \X − Y :

X⊥⊥Y |W and [X⊥G\X−Y Y |W]. (5)

Note that with⊥G\X−Y we indicate the graph in which the d-separation holds. By
minimality, we haveX 2Y |OthPa(X−Y ). So there is at least one set that renders
X and Y dependent. We call a set S a depset of the PIR if [X 2Y |W,S].

The following theorem will be used in the proof of Theorem 3.

Theorem 1. Two variables X and Y of a PIR X → Y can only become depen-
dent when conditioned on variables that have an active path to Y via a variable
of a depset or variables that have a separate active path to both X and Y .

Proof:
Dependence can only occur for variables that are d-connected to either X or Y
(expressed by weak union). When a conditioning variable A is a descendant of Y ,
we have A⊥⊥X|Y since A has no separate active path to X . Together with X⊥⊥Y
it follows that X⊥⊥A (contraction). By weak union, X⊥⊥Y |A follows. The same
holds for variables that are d-connected to X . �

4. Information Equivalences

Basically, PIRs generate non-Markovian marginal independencies and infor-
mation equivalences generate non-Markovian conditional independencies.

The typical case of information equivalence happens in the presence of de-
terministic causal relations. Consider variables X, Y, Z to be connected by the
causal chain X → Y → Z with a deterministic relation between Y and X given
by function Y = f(X). Due to this function, Y is conditionally independent of Z
given X:

Y⊥⊥Z|X .

By the functional dependence, X contains all information about Y . So Y is in-
dependent from any other variable given X . Deterministic relations generate ad-
ditional independences beyond the Markov condition. These CIs are given by an
extension of d-separation, called D-separation [11].

The PC and CPC algorithms fail in such cases. In the example, we have X 2Y
and X⊥⊥Z | Y which falsely suggest that X separates Y from Z and that edge
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Y → Z can be removed. Moreover, X⊥⊥Z | Y (following from d-separation)
suggests that there is no edge between X and Z either. Removal of both edges re-
sults in a non-Markovian DAG in which neitherX nor Y is related to Z. Although
that both contain information about Z.

Both conditional independence statements together with X 2Z and Y 2Z can-
not be faithfully represented by any DAG. The true DAG is not faithful due to
the independence following from the function. On the other hand is the following
DAG also Markovian but not faithful: Y → X → Z. Both independencies imply
a violation of the Intersection Condition (see the Graphoid Properties in Sec. 2.1).
We call X and Y information equivalent with respect to Z, since both variables
contain the same information about Z. By the information equivalence, we end
up with two equivalent structures: X → Y → Z and Y ← X → Z. Either X or
Y can be connected to Z. We call X → Z and Y → Z equivalent edges, since
both equally well represent the dependencies.

This is the case if we know the causal ordering: X is the cause of Y and
both X and Y are causes of Z. The ambiguity lies in which one is the direct
cause of Z: X or Y . In absence of information about the orientations, the arrows
can be reversed except that no v-structures are permitted; X → Y ← Z and
Y → X ← Z are prohibited. We end up with 6 possible causal structures.

More generally, we define an information equivalence as follows:

Definition 4 (Information Equivalence). Two sets of variables X and Y are called
information equivalent with respect to Z, the reference variable, if there exists a
subset W ⊆ V \ (X ∪ Y ∪ {Z}) for which

• X 2Z|W and Y 2Z|W

• Y⊥⊥Z | X,W

• X⊥⊥Z | Y,W

A conditional information equivalence is one for which the equivalence only holds
for a non-empty conditioning set W.

It is shown in [12] that information equivalences happen by a larger class than
just deterministic relations. They appear by parameterizations that lead to so-
called equivalent partitions. We review the theory about equivalent partitioning
and recall the basic theorem in Appendix 2.

12



5. Violation of Adjacency Faithfulness

The theorem of this section proves that PIRs and information equivalences are
the main case of detectable violations of adjacency unfaithfulness, besides a third
type that can be identified by what we call 2-1 CI patterns.

Definition 5 (2-1 CI pattern). We call a 2-1 CI pattern a tuple of variablesX, Y, Z
and disjoint sets U, W ⊂ V \ {X, Y, Z} , where U is not empty, for which the fol-
lowing statements hold in the distribution:

• [X⊥⊥Y |Z,W]; and

• [Z⊥⊥Y |X,U,W]; and

• X 2Y |Z,U,W.

A strict independency, denoted as [X⊥⊥Y |Z], is a CI for which no proper subset
of the conditioning set leads to an independence. The pattern of CIs resembles
the pattern of an information equivalence, X gets independent from Y by Z and
Z gets independent from Y by X . The difference lies in the asymmetry regarding
U. For the second independence you need to condition on some other variables U
but conditioning on U does not render X independent from Y .

We will analyze 2-1 CI patterns more in detail after having characterized de-
tectable violations of adjacency faithfulness.

5.1. Characterization
Theorem 2. Under triangle faithfulness and minimality, violations of adjacency
faithfulness by strict independencies are limited to pseudo-independent relations,
information equivalences and 2-1 CI patterns.

The proof is given in Appendix 1.
Informally, the proof is as follows. Adjacency unfaithfulness happens for each

independence of two adjacent variables X and Y . By minimality, there is a con-
ditional dependency for each edge X−Y ; namely when conditioned on all other
parents. But when not conditioned on all other parents there might be an indepen-
dence. This results in a PIR. On the other hand, a conditional independence might
show up when conditioned on some other variables. Since X and Y are adjacent,
not all paths between X and Y can be cut and hence there is a path from each
variable of the conditioning set to X (Y ) that crosses Y (X). It follows that each
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variable of the conditioning set can be separated by X (Y ) by conditioning on Y
(X). This leads to an information equivalence or a 2-1 CI pattern.

Note that the theorem is restricted to strict independencies [X⊥⊥Y |Z] since
a non-strict independency means that a violation exists with fewer conditioning
variables. This can mean either of the following:

• A subset U ⊂ Z of the conditioning set is not responsible for the violation,
hence it is not necessary to consider the subset to analyze the unfaithful
case. We therefore only have to consider Z \ U. On the other hand, it is
possible that a proper subset W of Z which includes U (U ⊂ W ⊂ Z)
results in a violation. This would be given by another strict independency
and therefore be analyzed separately.

• There is a variable which, given strict independency [X⊥⊥Y |Z1], restores
the dependency X 2Y |Z1, Z2 and another variable deleting the restoration
by X⊥⊥Y |Z1, Z2, Z3. For instance when Z2 opens a path between X and Y
but Z3 closes the path again. Both variables are unnecessary to characterize
the unfaithful case.

5.2. 2-1 CI Patterns
2-1 CI patterns cannot be represented faithfully. To analyze this let us assume

that U has one element U and assume that W is empty. The first independence
([X⊥⊥Y |Z]) suggests that the path connecting X and Y goes via Z, while the
second independence ([Z⊥⊥Y |X,U ]) suggests that the path from Z to Y goes via
X and there is a path via U . The question is thus whether X or Z is adjacent to
Y . An example of adjacency of X and Y is shown in Fig. 2(b). An example of
adjacency of Z and Y is (a). Note that in these examples we assume that there
is no other variable that separates the three variables, that is, we are certain that
some of the three variables are adjacent.

The question is to what extent the different models that lead to 2-1 CI patterns
are identifiable and, if not identifiable, which ambiguities follow. The following
analysis, although incomplete, shows that most cases are identifiable and only for
very specific distributions are there equivalent models which are indistinguishable
based on CI information. Based on this analysis we will exclude 2-1 CI patterns
as a source of ambiguity.

Models (a), (b) and (c) of Fig. 2 are typical examples of structures that for a
specific parameterization generate [X⊥⊥Y |Z] and [Z⊥⊥Y |X,U ]. For model (a)
also CI X⊥⊥Y |Z,U holds (by d-separation). This CI is however not necessarily
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Figure 2: Five structures of which only (b) and (c) could generate a 2-1 CI pattern under triangle
faithfulness.

present in model (b). If it is present we have a normal symmetric information
equivalence which will result in an equivalence of both models as we will show
in Sec. 6.4. Edges X → Y and Z → Y are interchangeable. On the other hand,
if X 2Y |Z,U then model (a) is not Markovian. Model (a) cannot lead to a 2-1
CI pattern. U should open a path between X and Y to render them dependent.
This is true for model (c). Thus, a 2-1 CI pattern could come from models (b)
or (c). Both cases are, however, not equivalent. Firstly, in model (b) X can be
d-separated from U and in model (c) Z can be d-separated from U . Secondly, a
dependency must hold between Z and U for (b) and X and U for (c) to render
the given dependency possible (by weak union). However, identification is not
certain if we add an edge in both models so that the d-separation does not hold
any more. This results in models (d) and (e) respectively. However, by assuming
triangle faithfulness, these cases can be excluded. Under triangle faithfulness,
X 2Y |Z must hold for (d) (otherwise TRUFF3) and Z 2Y |X,U must hold for
(e) (otherwise TRUFF1). To conclude, for these basic cases, 2-1 CI patterns are
identifiable.

6. Ambiguities following from adjacency unfaithfulness

Now that we showed that adjacency unfaithfulness comes from PIRs and in-
formation equivalences, the question is which ambiguities follow from them. In
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this section we define the equivalence class of graphs. When adjacency faithful-
ness holds, the only ambiguities lie in the orientation of some edges. The Markov
equivalence class and the e-pattern (in absence of orientation faithfulness) are ex-
pressed by a partially-oriented acyclic graph. In absence of adjacency faithfulness,
additional ambiguitiesy follow.

6.1. Adjacency ambiguities
We will prove that ambiguities following from adjacency unfaithfulness are

local, in the sense that some edges can be replaced by some other edges. We say
that edges or sets of edges that are equivalent. The equivalence class will contain
graphs in which some edges are replaced by others. We, however, have to exclude
cases in which one of the equivalent edge sets creates a v-structure that is not
present if another edge set is chosen. Since v-structures have a complete different
CI-pattern, the graph will not be equivalent with respect to the CIs it represents.
Hence, differences in v-structures make the ambiguity identifiable unless we deal
with unfaithful triples. As discussed in Sec. 2.3, the CIs of an unfaithful triple do
not reveal whether it is a Markov chain or a v-structure.

Definition 6 (Equivalent Edge Sets). Edge sets {E1 . . . Ek} are called equiva-
lent edge sets if and only if for all DAGs G:

∃i ∈ [1..k] :G ∪ Ei is Markovian for P
⇒ ∀j ∈ [1..k] for which G ∪ Ej gives the same orientation for all faithful triples :

G ∪ Ej is Markovian for P (6)

and there exists for each i ∈ [1..k] at least one such graph G ∈ G which is not
Markovian but for which G ∪ Ei is Markovian.

Note that the condition trivially holds when G is Markovian or when G∪E1∪
. . .∪Ek is not Markovian. By adding edges to a Markovian DAG, it stays Marko-
vian; by deleting edges from a non-Markovian DAG, it stays non-Markovian. The
non-trivial cases are when G is not Markovian and G∪Ei is Markovian for some
i.

6.2. Assumptions
To simplify the rest of the discussion, we exclude complex cases of adjacency

unfaithful cases which rarely happen. First, for each PIR we assume the existence
of a depset with one element.
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Figure 3: The three cases of uncertainty: (a) an unfaithful triple by violation of orientation faith-
fulness for unshielded triple 〈A,B,C〉, (b) PPIRs when X⊥⊥Y in model X → Y ← Z and (c)
equivalent edges when X⊥⊥Y |Z in model X → Y → Z.

Assumption 1. If X and Y is a PIR, there exists a Z ∈ OthPa(X−Y ) such that
X 2Y |Z.

Secondly, we exclude context-dependence of information equivalences. We
define a context-independent information equivalence as an information equiva-
lence given by X⊥⊥Y |Z,U and Z⊥⊥Y |X,U for which for all non-empty subsets
W ⊆ V \ (U ∪ {X, Y, Z}):

X⊥⊥Y |Z,U,W ⇔ Z⊥⊥Y |X,U,W . (7)

Assumption 2. All information equivalences are context-independent.

Finally we assume identifiability of 2-1 CI patterns. As discussed in Sec. 5.2,
2-1 CI patterns lead to ambiguities only in very special cases.

Assumption 3. A 2-1 CI pattern is identifiable, in the sense that the correct edges
between the nodes X , Y and Z of the pattern can be identified by the CIs of the
structure.

6.3. Equivalent v-structures
As discussed in Sec. 3, the CI pattern of a PIR is the same as that of a v-

structure. Hence, a PIR leads to two equivalent structures that can explain all
CIs. We describe this pattern by connecting variables which are marginally in-
dependent but have a depset by a special edge: a Potential PIR (PPIR). A PPIR
is written as X− (Z)−Y and graphically denoted by a dashed edge annotated
with the depset, as shown in Fig. 3(b). A PPIR can thus be a PIR or be part of a
v-structure (in which case the variables are not adjacent). A PIR can be identified
from a structure with 2 PPIRs if the orientation of some of the other edges can
be identified. Fig. 4 shows a PIR with identifiable v-structure U → Z ← V .
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Figure 4: A PIR-pattern which can be identified by an identifiable v-structure.

When considering both equivalent structures, one has incoming edges into Z, the
other not. If some of the triples with Z and U/V and X/Y is faithful, one of
both equivalent structures can be excluded. The same can be done for identifiable
v-structure U → Y ← V . Equivalence of v-structures coming from PIRs thus
holds up to identifiable v-structures containing Y or Z.

We define equivalent v-structures as edge set {X → Y, Z → Y } which is
equivalent to edge set {X → Z, Y → Z}.

Theorem 3. IfX−Y is a PIR with depset containing one variable Z, it generates
equivalent v-structures for graphs that have no incoming edges into Y or Z.

The proof is given in Appendix 1.

6.4. Information equivalent edges
Next we consider the ambiguities following from information equivalences.

The result of an information equivalence is a set of equivalent structures in which
one edge can be replaced by another. We call them Equivalent edges. Equivalent
edges are linked with an arc with a bullet at each end, as shown in Fig. 3(c).

Theorem 4. If X and U are information equivalent with respect of Y when con-
ditioned on S and this information equivalence is context-independent, then edges
X − Y and U − Y are equivalent edge sets.

The proof is given in Appendix 1.

6.5. F-pattern
We represent the class of equivalent graphs with an f-pattern. An f-pattern

contains a mixture of undirected and directed edges, as well as underlinings for
unshielded triples that are unfaithful, edges that are connected to indicate that
they are information equivalent and edges which are annotated with their depset
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(PPIRs). A DAG is represented by an f-pattern if every edge is present in the
pattern as a normal edge or an equivalent edge or a PPIR. If it is an equivalent
edge, no other of the equivalent edges might be present in the DAG. If it is a
PPIR, it should be part of a v-structure and the other PPIR corresponding to the
equivalent v-structure might not be present. Furthermore, every directed edge
A → B in the f-pattern is oriented as A → B in the DAG, and every unshielded
collider in the DAG is either an unshielded collider or a marked unfaithful triple
in the f-pattern.

Under the 3 assumptions and by theorems 2, 3 and 4, it follows that an f-pattern
represents the equivalence class under triangle faithfulness.

7. Finite Sample Case

One could limit the analysis about adjacency unfaithfulness by only consid-
ering the CIs of a distribution. When relying on data for learning the system’s
causal structure, this is called the infinite sample case since large samples are
needed to correctly identify the CIs of the underlying distribution. On the other
hand, when only limited data is available, the independence test will make errors.
Let us assume that the test is based on estimating the (conditional) Dependency
Strength (DS) between two variables and the test uses a threshold for deciding on
(in)dependency. The smaller the sample, the more the estimated DS can deviate
from the true value. For smaller sample sizes, a higher threshold is then used so
that true independencies are not misclassified as dependencies. But this implies
that the weaker a dependency is, the more likely it gets misclassified as an inde-
pendency. This is especially true as the true DS becomes lower than the threshold.
The test will only detect dependencies that are sufficiently strong. Misqualified
dependencies are the false positives of the independence test. On the other hand,
independencies can be misqualified as dependencies; the false negatives of the
independence test. We discuss them in turn.

7.1. False positive independence tests
The following three cases should be considered.
Weak edges. An edge X−Y with a small DS(X;Y ) can still have a high

DS(X;Y |Z) when conditioned on one of the other parents, as is shown by PIRs.
A PIR still contains a lot of information despite the marginal independence. Our
extensions overcome missing PIRs or quasi-PIRs (edges that look like PIRs due to
the finite sample size). On the other hand, if bothDS(X;Y ) andDS(X;Y |Z) for
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all Z ⊂ OthPa(X−Y ) are small, we cannot overcome overlooking such edges.
Limited data gives limited precision. We call them weak edges.

Near-to-unfaithfulness. In general, dependencies with a low DS lead to near-
to-unfaithful situations. The sample size is not large enough to distinguish all
dependencies. Consider X → Y → Z. Even when Y 2Z|X holds in the distribu-
tion, by the information X has about Y , the dependency strength between Y and
Z becomes smaller. The more X has information about Y , the smaller the depen-
dency. Even when Y has a lot of information about Z. As a result the indepen-
dence test is not able to detect the dependency between Y and Z when conditioned
on X . The (erroneous) independency Y⊥⊥Z|X together with X⊥⊥Z|Y results in
the CI pattern of an information equivalence. Cases of near-to-unfaithfulness lead
to the same patterns of observed conditional independencies and hence the same
ambiguities. Our extensions to the learning algorithm will therefore also be able
to handle near-to-adjacency-unfaithfulness.

Weakening by conditioning. A third way in which limited samples disrupt
the learning is that an increased cardinality of the conditioning set reduces the
robustness of most independence tests [2, p.116]. This is one of the reasons that a
limit is put on the depth of the adjacency search of the PC algorithm2. We call this
effect weakening by conditioning. It results in a CI which does not correspond to
a d-separation in the true graph.

We conclude the following:

1. Missing weak edges cannot be overcome.
2. Near-to-unfaithfulness may result in the CI pattern of a PIR. This will be

resolved by checking for depsets as we do for PIRs.
3. Both, near-to-unfaithfulness resulting in the CI pattern of an information

equivalence and CIs coming from weakening by conditioning result in what
we call non-genuine separation set, that is, the conditioning set is not a
separation set in the true graph.

To overcome the last problem we will develop a test for detecting false sepa-
rations. During learning, CIs are used to detect that two variables are d-separated
in the true graph. A cutset is a set of variables that blocks all active paths between
X and Y . By the Markov condition, a cutset results in a CI if X and Y are not
adjacent. The CI makes the identification of non-adjacency possible. A cutset is
minimal if no proper subset is a cutset. We define a genuine separation set of X

2A depth limit may also be placed on PC simply to allow it to finish in reasonable time.
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and Y as a set of which all variables block a different path between X and Y .
Omitting a variable from the set opens one or more paths. A genuine separation
set should not be a cut set, it is a subset of a minimal cut set.

The following theorem gives the conditions to recognize non-genuine separa-
tion sets.

Theorem 5. A set Z ⊆ V\{X, Y } is a non-genuine separation set for X and Y
in G if for one of the elements U of Z one of the following d-separations hold in
G: (Z’ = Z \ U and T ⊆ V \ (Z ∪ {X, Y }))

1. U⊥Y |Z’ or U⊥X|Z’;
2. U⊥Y |Z’,T and U⊥X|Z’,T;
3. [U⊥Y |X,Z”] or [U⊥X|Y,Z”] for some Z” ⊂ Z’;
4. [U⊥Y |X,Z’,T] or [U⊥X|Y,Z’,T].

If none of the d-separations hold, either Z is a genuine separation set, or there is
a U ∈ Z that forms a triangle or a v-structure with X and Y .

The proof is given in Appendix 1.
The conditions are in terms of d-separations. Non-genuine separation sets

can thus be identified by the CIs that correspond to the d-separations. This will
form the basis of our learning algorithm. If a strict conditional independence
[X⊥Y |Z] is found, the CIs following from the 4 conditions are tested to make sure
a genuine separation set is found. Note that condition (1) is not possible under the
graphoid axioms. Given U⊥Y |Z’ and X⊥Y |Z’, U , from the contraction property
follows X⊥Y |Z’ which contradicts the given strict d-separation. Condition (1)
is, however useful in the finite sample case. From condition (2) it follows that
T separates X and Y . An example is model X → T → Y with T → Z. We
should therefore consider T as separation set and not Z. The CIs corresponding
to conditions (3) and (4) result in the presence of equivalent edges, as discussed
previously.

7.2. False negative independence tests
In the former sections, the infinite sample case, we studied non-Markovian

independencies (where faithfulness would expect a dependency). We showed how
such independencies lead to ambiguities. On the other hand, we assumed that all
Markovian CIs were measured correctly. In the finite sample case we cannot
assume the latter. Accidental dependencies will occur. They can give rise to the
following situations:
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1. An accidental marginal dependency X 2Y where there is no active path
between X and Y (X⊥Y ).

2. An accidental conditional dependencyX 2Y |Z whereX and Y get d-separated
by Z (X⊥Y |Z).

3. For finding separation sets we will test the conditions of Thereom 5. Those
conditions are based on Markovian independencies. However, if these inde-
pendencies are misqualified, the test might fail and a non-genuine separation
set may result in the removal of an edge.

4. An accidental PIR by [X 2Y |Z]; Z rendersX and Y dependent where there
is no active path between X and Y (X⊥Y ).

For the first two, accidental marginal and conditional dependencies, there is no
way to find out that these dependencies are accidental. Moreover, we are very
prudent in removing an edge. We require several conditions to hold for a sepa-
ration set. Since an accidental dependency does not have a separation set, it is
very likely that this edge will remain. In the PC and CPC algorithm, it is more
likely that both variables get independent by some other variables. This is con-
firmed by the experimental results shown in Sec. 10.2. Therefore our algorithm
is conservative: each dependency will be present in the graph. In case 3 there
is a combination of (near-to-)adjacency unfaithfulness and an accidental depen-
dency. We do not think there is a straightforward way of detecting this. Finally,
to overcome case 4 when testing for PIRs, we add the extra test that X 2Z|Y and
Y 2Z|X should hold for identifying Z as a depset of X−Y . These dependencies
trivially hold for distributions, but not when considering the finite sample case.

8. The Adjacency Conservative PC Algorithm

The results of the previous section resulted in an extension of the CPC al-
gorithm (Sec. 2.3): the Adjacency Conservative PC algorithm (ACPC). The al-
gorithm adds to CPC the rules of S2’ to S2 (Alg. 2) and replaces Part II with
Part II’ (Alg. 4). In S2’IIa we choose threshold s = 2 to limit the complexity
of the learned graphs. The conditions of Theorem 5 are used for the procedure
given by Alg. 3. Besides recording the sepsets for pairs of variables, it will also
record depsets. The algorithm returns an f -pattern. When we speak about adja-
cencies, these special edges are also considered. Non-equivalent and non-PPIR
edges are called normal edges. An implementation of the algorithm can be found
on http://parallel.vub.ac.be/acpc.
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Algorithm 2 ACPC algorithm S2’

[I] Before testing whether X⊥⊥Y |S holds, check the following:

a When X − Y is a PPIR, add depsetXY to S.

b Skip the test if X − Y has an equivalent edge X − Z or Y − Z and Z is
a member of S.

[II] If the independence test returnsX⊥⊥Y |S, do the following before removing
the edge:

a If S has less than s elements, look for a T in Adj(X)∪Adj(Y ) for which
X 2Y | T,S and X 2T | Y, S and T 2Y | X, S. If such a T exists, do not
remove the edge, denote it as a PPIR with depset T .

b If S is not empty, test whether it is a genuine sepset by calling Algo-
rithm 3. If not, do not remove the edge.

c If during the test, a potential information equivalence was found by inde-
pendence, say by Z⊥⊥X|Y,U, denote X − Y as equivalent to X − Z in
the graph.

d If the separation of X and Y leads to the separation of a depset from
its PPIR (X or Y is a depset from a PPIR to which the other variable
belongs): search for another depset among the nodes adjacent to one of
both variables of the PPIR. If no such depset can be found, delete the
PPIR.

Theorem 6. (Correctness of ACPC) Consider a graph G, a JPD P generated by
G and I(P ), the set of CIs of P : if minimality, causal sufficiency and triangle-
faithfulness hold for P , and under the following assumptions:

• If X and Y are adjacent, and X⊥⊥Y , there exists a Z ∈ OthPa(X−Y )
such that X 2Y |Z.

• For all strict independencies of the form [X⊥⊥Y |U ∪ Z ∪ depsetXY ] (with
Z’ ⊂ Z):

Y⊥⊥U |X ∪ Z’ ∪ depsetXY ⇒ Y⊥⊥U |X ∪ depsetXY .
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Algorithm 3 Genuine separation set test

To test whether set S genuinely separates X from Y : test for all Z ∈ S
all conditional independencies following from the d-separations of The-
orem 5.

If X−Y is denoted as a PPIR, add the depset to all tests.

For conditions 2 and 4, check only variables T which are adjacent to X ,
Y or Z and which are genuine seperation variables (call this procedure
recursively but without checking conditions (2) and (4)).

If one test returns independence, return false.

If condition 3 or 4 returns independence, denote X, Y and Z as potential
information equivalences.

If after all tests, no independencies are found, return true.

the algorithm will, based on I(P ), return an f-pattern describing a set of DAGs
that includes G. The algorithm is not trivial; it does not always return the set of
all DAGs.

The algorithm is not complete as it does not resolve all possible PIRs and in-
formation equivalences, but only a significant subset. First, we do not identify
2-1 CI patterns which are in general identifiable (see discussion in Sec. 5.1) Sec-
ond, we do not test for context-dependent information equivalences. They are also
identifiable in general, but the results of the independence test are however not re-
liable as we are testing with many conditioning variables. Keeping the equivalent
edges of context-dependent information equivalences does not create errors, just
a larger equivalence class.

9. Related Work

The learning algorithms considered here are based on the evidence given by
the observed conditional independencies. Score-based algorithms rely on a global
score of how well the model fits the data [13, 14, 15]. Those algorithms do not
depend on faithfulness. As shown in the experiments section, they give better
results in case of violations. The advantage of independence-based algorithms
is that they explicitly provide evidence for the resulting graph. The choice for
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Algorithm 4 ACPC algorithm Part II’

Part II’ Orientation.

• Perform all of the following steps until no more edges can be oriented:

Remove the PPIRs from G;

Perform S3 of Algorithm 1, except that unshielded triples containing an
equivalent edge are not considered;

Perform S4 from the original algorithm on non-equivalent edges;

Add the PPIR edges back into G;

S5 Go through all PPIRs. Look for triangles consisting of normal edges and
PPIRs in which for each PPIR the opposite variable in the triangle is a
depset.

a If the triangle contains two normal edges which form a v-structure,
remove the PPIR.

b If the triangle only contains one normal edge which is directed,
direct the PPIR that contains the node to which the arrow of the
normal edge is pointing, label the PPIR as a PIR and remove the
other PPIR from the graph.

c For all oriented edges D → A in G for which only A belongs to
the triangle, check whether A and D form a faithful triple and a v-
structure with one of the two other nodes of the triangle (as in S3 of
CPC). When testing the unshielded triple 〈B,A,D〉, add depsetAB

to the conditioning set of the independence tests. If the CIS of a
v-structure are found, orient the two triangle edges containing A
towards A and delete the third triangle edge if it is a PPIR.
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connecting or not connecting two variables is backed by a set of dependencies
and independencies. Secondly, by our extensions, an equivalence set is returned
in the form of a pattern which indicates the ambiguities which cannot be resolved
by the given evidence.

In the realm of independence-based learning algorithms, our work is a natural
continuation of the work of [2] and [6]. Since the invention of the PC algorithm,
several improvements were made for making the algorithm more reliable. The
necessary path condition (NPC) algorithm [16] was introduced as a robust exten-
sion for the PC algorithm. It states that for each strict conditional independence
[X⊥⊥Y |Z] there must exist a path between X (Y ) and each U ∈ Z not crossing Y
(X). This is similar to the notion of genuine separation set for which we defined
a set of sufficient conditions (Sec. 7.1). The idea of NPC directly relates to the
notion of information equivalence which is based on the idea of separating X and
U by Y . This is possible if there is no path between X and U not going via Y .
The NPC introduces the concept of ambiguous edges, which is defined as an edge
whose presence depends on the absence of another. In NPC, these ambiguous re-
gions are resolved by including a minimal number of ambiguous edges in order to
satisfy a maximal number of independence relations. We showed that ambiguous
regions correspond to the equivalent edges. Instead of forcing them into a DAG
structure, we model the ambiguity explicitly by an f-pattern. Note that our set of
conditions goes beyond checking for information equivalence, conditions (1) and
(2) allow for identifying independencies following from ‘weakening by conditio-
ning’. However, the conditions of Theorem 5 ensure that there is an active path
between X and Y when there is a dependency between both. In that sense does
the theorem provide the ‘necessary conditions for a path’.

Other work in limiting the separation sets to be considered rely on similar
ideas, see for instance [17, 18]. In this paper, we provide a more complete analy-
sis in terms of adjacency unfaithfulness and identification of all possible ambigu-
ities. Next, both J. Abellan and Moral [17] and Cano et al. [18] take into account
the measure of their strength to solve ambiguities. This is surely possible when
considering that most equivalence come from near-to-unfaithfulness situation. In
cases of real information equivalences, however, the information that equivalent
variables contain about the target is the same.

Information equivalences lead to the existence of multiple, equivalent Markov
boundaries. This has recently been studied by Statnikov and Aliferis [19].
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10. Experimental results

To illustrate the adequacy of our extensions, simulations were performed on li-
near Gaussian and binary models. Experiments were performed on 100 randomly
selected DAGs with d nodes and d ∗ 3/2 edges. For each such graph, a random
structural equation model was constructed by selecting random edge coefficients
uniformly from [0.1, 1]∪ [−1,−0.1] and the variance of the disturbance terms was
chosen randomly from [0.01, 1]. A random data set is simulated for each of the
models to base the learning on. A significance level α = 0.05 is used for each
independence test which is based on Fisher’s Z transformation of partial correla-
tion. Similar experiments were performed with Bayesian networks defined over a
set of binary variables and randomly chosen conditional probabilities. The Chi-
Square test was used as independence test. We also did tests with the ALARM
benchmark model [20].

10.1. Adjacency unfaithfulness
First, we test the occurrence of unfaithfulness and classify the cases in which

they appear. It should be noted that these are cases of near-to-unfaithfulness. Since
the parameters of the distribution are chosen at random, the probability of exact
unfaithfulness can be considered zero. For each edgeX−Y , strict independence of
X and Y was tested by conditioning on all possible subsets of the other variables.
We limited the size of the conditioning set to 2.

The following table shows the percentage of edges for which adjacency faith-
fulness holds. First for a fixed number of 20 nodes (and 30 edges) and an increas-
ing sample size. Then for sample size of 500 and number of nodes from 10 to 50.
All percentages come from an averaging over 10 experiments.

Sample size 100 200 500 1000 2000 10000
Random model 16 26 43 64 69 85
ALARM 23 41 70 79 90 93
Number of nodes 10 20 30 40 50
Random model 42 39 41 44 40

As expected, a larger sample size leads to less unfaithfulness. However, even
for the highest sample size, about 10% of the edges are unfaithful. The ALARM
model is less susceptible to unfaithfulness than random models. Finally, more
nodes - a measure for the complexity of the model - do not lead to less adjacency
faithfulness.
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Figure 5: Classification of adjacency unfaithfulness for random models with 20 nodes and 30
edges and increasing sample size. Note that both axes have a logarithmic scale.

Next, each violation (strict independence by a subset of other nodes) was clas-
sified as either resulting from a weak edge, a violation of conditions (1) or (2)
from Theorem 5 on genuine separation, a PIR, an information equivalence or tri-
angle unfaithfulness. Note that for one edge several violations could be found.
The classification was performed based on testing for patterns of conditional in-
dependencies based on the data, not by checking the pattern in the model itself. As
independence tests on finite samples can fail, some cases were not classified (and
would result in a removal of the edge by the algorithm). The number of such cases
was very low. Mostly just 1 or 2 cases appeared in each set of 10 experiments,
with a maximum of 14 cases for the experiments with a sample size of 100. The
results for random models and the ALARM model are shown in Fig. 5, 6 and 7.
Note that the figures show the counts of unfaithful cases, whereas the table shows
the percentages of the opposite, namely faithfulness. The numbers denote the sum
of cases identified over 10 experiments. As expected, most types appear less with
larger samples. But they appear more for larger models, except for triangles. But
this is due to a lower chance to have a triangle in the larger networks.

10.2. Learning accuracy
To compare the learning capabilities, the PC, CPC and ACPC algorithms were

applied with depth 2 on the data and for ACPC only single variables where con-
sidered for the T-sets in Algorithm 3. We also compared the results with the
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Figure 6: Classification of adjacency unfaithfulness for random models with a sample size of 500
and nodes from 10 to 50. Note that the Y-axis has a logarithmic scale.

Figure 7: Classification of adjacency unfaithfulness for the ALARM model and increasing sample
size. Note that both axes have a logarithmic scale.
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learning accuracy of the score-based GES algorithm [21]. We took the TETRAD
implementation of the algorithms (See TETRAD project: www.phil.cmu.
edu/projects/tetrad/). At http://parallel.vub.ac.be/acpc
you can find an implementation of ACPC which is compatible with TETRAD.
The website also provides illustrative examples and some of the datasets of the
experiments.

The output graph of each algorithm was compared to the Markov equivalence
class (MEC) of the true DAG. The following table shows the outcomes averaged
over all experiments and relative to the number of nodes (percentages). Correct
edges are the edges of the MEC of the true graph that appear as normal edges in the
f-pattern. PPIRs and equivalent edges in the f-pattern are counted as ambiguous
edges. False negative edges are edges in the MEC that do not appear in the f-
pattern, not as a normal edge and not as an ambiguous edge. Weak edges are false
negatives whose nodes are marginally independent and independent conditional
on the other parents. False positive edges appear as normal edges in the f-pattern,
but not in the MEC. If the nodes of a false positive are not d-connected in the
MEC, they are classified as accidental correlations.

We first show the results of experiments performed on 100 randomly selected
DAGs with d nodes and 3/2∗d edges, where d is randomly chosen between 5 and
25. The data size is 1000.

PC CPC GES ACPC
Edges
Correct 76.7 76.2 87.0 77.9
Ambiguous - - - 74.4
False negatives 23.2 23.8 12.9 8.1
Weak 3.7 4.5 2.2 3.6
False positives 4.1 4.3 13.2 11.8
Accidental correlations 2.9 3.1 6.2 9.3
Orientations
Correct 25.3 29.8 54.6 36.6
Ambiguous 3.6 16.5 12.7 47.6
Wrong 19.9 2.1 9.2 3.7
False positives 15.1 2.9 10.6 3.9

The learning performance of the orientation is evaluated by looking at edges
appearing in both the MEC and the f-pattern. Edges having the same orientations
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in both are counted as correct orientations, when not oriented in both or only in
f-pattern as ambiguous. Wrong orientations appear as oriented in both, but in the
opposite direction. False positives are arrowheads appearing in the f-pattern but
not in the MEC.

The results show that the difference between the PC and CPC lies clearly in
the reduction of the false positive arrowheads, whereas the performance on adja-
cencies is similar (the adjacency phases are the same). GES clearly outperforms
PC and CPC regarding adjacencies. The reason is that GES is less susceptible for
unfaithfulness. The ACPC algorithm clearly reduces the number of false negative
edges, when compared to the three algorithms. If we consider that weak edges
cannot be identified, the performance gain is even more drastic. By subtracting
the number weak edges from the false negatives, the number of (false negatives
minus weak edges) drops from 19.5%/19.3% for PC/CPC to 10.7% for GES and
to 4.5% for ACPC.

The accuracy increase of ACPC regarding false negatives is at the expense
of ambiguous edges and more false positives. The latter can be explained by
accidental correlations. Accidental correlations lead to false negative indepen-
dence tests - the oracle qualifies a Markovian CI as dependent due to accidentally-
correlated data. ACPC is conservative about dependencies; it will not remove
edges if there is no alternative path to explain a dependency. Take nodes that are
not d-connected in the true graph, but are accidently correlated. If this accidental
correlation is above the threshold, the oracle will qualify it as a dependency. In the
following steps, when conditioning happens on other variables, the weakening-by-
conditioning effect will bring the measured dependency strength below the thres-
hold and remove the ‘accidental’ edge. This happens with PC and CPC as can be
seen in the table.

Finally, the experiments showed that the standard deviation for the false po-
sitive and negative edges is almost as high as the average, which points to a high
performance fluctuation from one experiment to another.

Fig. 8, 9 and 10 show the influence of sample size and number of nodes. We
only consider the correctness of the presence of edges, not their orientations. The
numbers are percentages relative to the true number of edges. As expected, the
true positives increase with increasing sample size and the false negatives de-
crease. On the other hand, the number of ambiguous edges and false positives
(due to accidental dependencies) remain relatively constant. An increasing num-
ber of nodes (and edges) greatly affects the number of ambiguous edges and false
positives of the ACPC algorithm. The other numbers stay relatively stable.
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Figure 8: Learning accuracy for random models with 20 nodes and 30 edges and increasing sample
size. Note that both axes have a logarithmic scale.

Figure 9: Learning accuracy for the ALARM model and increasing sample size. Note that both
axes have a logarithmic scale.
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Figure 10: Learning accuracy for random models with a sample size of 500 and nodes from 10 to
50. Note that the Y-axis has a logarithmic scale.

11. Conclusions

We cannot rely on adjacency faithfulness when constructing reliable independence-
based learning algorithms. We showed that under triangle faithfulness, violations
lead to two types of ambiguities: potential pseudo-independent relations (PPIRs)
and equivalent edges. The first coming from pseudo-independent relations, the
second from information equivalences. Based on specific CI patterns, a set of
DAGs, modeled by an f -pattern, can be identified that are indistinguishable from
the perspective of the CIs. Just like the Conservative PC algorithm detects and
treats failures of orientation-faithfulness, our Adjacency Conservative PC algo-
rithm detects violations of adjacency-faithfulness. Our algorithm is conservative
in the sense that it ensures that every (conditional) dependence that is detected
between two variables has a d-connection in all DAGs of the equivalence class.
ACPC is therefore highly susceptible for accidental dependencies. In the finite
sample case, weak conditional dependencies can be wrongly classified as CIs by
the oracle. This leads to near-to-unfaithful cases, weakening by conditioning and
weak edges. The two first are treated, missing weak edges should be accepted.
Since weak edges and triangle unfaithfulness cannot be detected, we believe that
this analysis shows the natural bounds of what can reliably be learned under causal
sufficiency from conditional independence information alone.
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13. Appendix 1: Proofs

Here we give the proofs of the important theorems. We also repeat the theo-
rems themselves.

Theorem 2. Under triangle faithfulness and minimality, violations of adjacency
faithfulness by strict independencies are limited to pseudo-independent relations,
information equivalences and 2-1 CI patterns.

Proof:
ConsiderX and Y adjacent inG, the true causal graph. IfX and Y are marginally
independent, X−Y is a PIR; there exists a depset (by minimality). If [X⊥⊥Y |Z],
then we have the following possibilities for all Z ∈ Z:

• Z must be dependent on both X and Y (to entail the independence). If Z
has an active path to one, let’s say X , then the path to Y goes via X . Then
X d-separates Z and Y . We have [X⊥⊥Y |Z] and Y⊥⊥Z|X .

– If conditioning set Z contains only Z, we have an unconditional infor-
mation equivalence.

– If Y⊥⊥Z|X,Z\Z, then we have a conditional information equivalence.

– Otherwise, if Y 2Z|X,Z \ Z we have a 2-1 CI pattern.

• If Z is adjacent to both, because of triangle faithfulness, the case in which
Z is a collider on the path < X,Z, Y > (case TRUFF3) is excluded. Z is
not a collider on the path < X,Z, Y >. Then we have a v-structure in X or
Y . Say it is in Y . It means that Z is a parent of Y . By MIN it follows that
there is a depset. X−Y is a PIR.

• As a last case, Z has at least one separate active path to both X and Y , and
since it is not a triangle at least one of both paths contains another variable.
Say U on the paths connecting Y and Z. By edge X−Y , Z has two paths to
both X and Y . It means that Z can be d-separated from Y by [Z⊥Y |X,U ],
unless we have v-structure Y → X ← Z. Then Z is another parent of
X−Y . By minimality there must be another parent that renders X and Y
dependent. The edge is a PIR. If the strict d-separation holds, we have a
conditional information equivalence if also X⊥⊥Y |U,Z. Otherwise we end
up with a 2-1 CI pattern.

36



�

Theorem 3. IfX−Y is a PIR with depset containing one variable Z, it generates
equivalent v-structures if the graphs of G have no incoming edges into Y or Z.

Proof:
We denote the first edge set as struct1 and the second as struct2 We have to
prove (I) that when G ∈ G is not Markovian and G ∪ struct1 is Markovian that
also G∪ struct2 is Markovian (see note under definition) and (II) that at least one
such G exists.

(I) Take A 2B|S not represented in G, but represented in G ∪ struct1. First
consider that the active path goes through Z → Y . Since there might be no
identifiable incoming arrow into Y or Z, the active path has subpath U ← Z →
Y ← V . Then,G∪struct2 also generates an active path which is based on subpath
U ← Z ← Y ← V . When the active path contains X → Y , then X 2Y |S must
hold. Since otherwise X⊥⊥Y |S and A⊥⊥Y |X, S (consider that the path from A to
B arrives at X first, the independence expresses that the edge is needed) would
give A⊥⊥Y |S by contraction. By the dependency it follows, by Theorem 1, that
a depset (or a set of variables d-connected to it) must be presented in S. These
variables open the path of A to B in G ∪ struct2 since unblocking v-structure
X → Z ← Y .

(II) We have dependency, namely X 2Y |Z. So for a Markovian graph H ,
there must exist an active path between X and Y when conditioned on Z. We
construct a graph H which contains X−Y but no other active path between X
and Y when conditioned on Z. We ensure that all dependencies of the distribu-
tion are represented in the graph. This is possible under the given restriction since
we can always ensure that there is a path from A to X and from Y to B. Hence
H is Markovian. Then, by construction, G = H \ X−Y is not Markovian (not
representing X 2Y |Z’) and G ∪X−Y is. �

Theorem 4. If X and U are information equivalent with respect of Y when con-
ditioned on S and this information equivalence is context-independent, then edges
X − Y and U − Y are equivalent edge sets.

Proof:
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We have to prove (I) that whenG is not Markovian andG∪X−Y is Markovian
that alsoG∪U−Y is Markovian (see note under definition) and (II) that at least one
suchG exists. (I) TakeA 2B|S not represented inG, but represented inG∪X−Y .
For this, (a) an active path must exist from A to B via X−Y or (b) X−Y opens
a collider. First assume (a) and assume that the path starting in A first reaches X
and then Y before leading to B. We have to prove that under the given conditions
there is also an active path in G∪U−Y if it does not create new v-structures. We
have that A 2Y |S, otherwise the path via X−Y would not have been necessary for
a d-connection. We prove that necessarilyA 2U |S (see below) and since the graph
is Markovian there is an active path from A to U . Since U−Y is not creating new
v-structures, we have an active path from A to Y . The concatenation of the path
from A to Y and from Y to B is thus an active path (if Y is a collider on the path
via X → Y it is also a collider on the path via U → Y ).

Proof of A 2U |S. We show that if A would be independent from U , the
independence A⊥⊥Y |S would follow. By the information equivalence we have
κY (U) = κY (X). From κY (U) = f(U) follows that A⊥⊥κY (U)|U,S. The three
following deductions are based on the contraction property:

X⊥⊥Y |κY (X),S & A⊥⊥Y |X, κY (X),S ⇒ A⊥⊥Y |κY (X),S (8)
A⊥⊥U |S & A⊥⊥κY (U)|U,S ⇒ A⊥⊥κY (U)|S (9)
A⊥⊥κY (U)|S & A⊥⊥κY (X)|k, S ⇒ A⊥⊥Y |S (10)

(b) Now we consider the case in which X is a collider (or a descendant of a
collider) on the path between A and B (e.g. A→ X ← B and X → Y ). Similar
to the proof above, we have that A 2U |S and B 2U |S, to there must active paths
between A and U , and between B and U . But both paths cannot create an active
path from A to B through U , since G is not Markovian. This means that either Z
is a collider or is a descendant of another collider. This ensures that edge U−Y
opens a collider.

(II) There is at least one dependency, namely X 2Y |Z’. So for a Markovian
graph H , there must exist an active path between X and Y when conditioned on
Z’. We construct a graph H which contains X−Y but no other active path be-
tween X and Y when conditioned on Z’. We ensure that all dependencies of the
distribution are represented in the graph. This is possible under the given restric-
tion since we can always ensure that there is a path from A to X and from Y to B.
Hence H is Markovian. Then, by construction, G = H \X−Y is not Markovian
(not representing X 2Y |Z’) and G ∪X−Y is. �
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Theorem 5. A set Z ⊆ V\{X, Y } is a non-genuine separation set for X and Y
in G if for one of the elements U of Z one of the following d-separations hold in
G: (Z’ = Z \ U and T ⊆ V \ (Z ∪ {X, Y }))

1. U⊥Y |Z’ or U⊥X|Z’;
2. U⊥Y |Z’,T and U⊥X|Z’,T;
3. [U⊥Y |X,Z”] or [U⊥X|Y,Z”] for some Z” ⊂ Z’;
4. [U⊥Y |X,Z’,T] or [U⊥X|Y,Z’,T].

If none of the d-separations hold, either Z is a genuine separation set, or there is
a U ∈ Z that forms a triangle or a v-structure with X and Y .

Proof:
To be a genuine separation set, all elements of Z must lie on a separate path be-
tween X and Y , and all paths between X and Y must be blocked by Z. With path
we mean an active path in terms of a d-connection. The conditions happen when
Z is not a minimal cut set. Condition (1) or (2) holds when U is not connected to
X or Y with a separate path. Condition (3) or (4) happens when U is d-connected
to Y via X (by the strictness).

The last part is about what happens when none of the conditions are met. Con-
ditions (1) or (2) guarantee that all elements of Z are connected with X and Y via
separate paths. Next for a cut set, all paths between X and Y must be cut. If there
would be an uncut path via another node, this node should be added to Z to form a
cut set. The remaining case is when X and Y are adjacent. Then, unless U forms
a triangle withX and Y , there exists a subset T which separates U from Y (orX).
U can then be d-separated from Y given X , T and Z’ (condition (4)) unless they
form a v-structure (U → X ← Y ). �

Theorem 6. (Correctness of ACPC) Consider a graph G, a JPD P generated by
G and I(P ), the set of CIs of P : if minimality and triangle-faithfulness hold for
P , and under the following assumptions:

• If X and Y are adjacent, and X⊥⊥Y , there exists a Z ∈ OthPa(X−Y )
such that X 2Y |Z.

• For all strict independencies of the form [X⊥⊥Y |U ∪ Z ∪ depsetXY ] (with
Z’ ⊂ Z):

Y⊥⊥U |X ∪ Z’ ∪ depsetXY ⇒ Y⊥⊥U |X ∪ depsetXY .
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the algorithm will, based on I(P ), return an f-pattern describing a set of DAGs
that includes G. The algorithm is not trivial; it does not always return the set of
all DAGs.

Proof:
1) Assume adjacency faithfulness:
Given adjacency faithfulness, the only difference with CPC during the adjacency
search is that in step S2’[II]a for each true v-structure X → Z ← Y , such that
X⊥⊥Y , a PPIRX−(Z)−Y is added. During the first part of the orientation phase
these PPIRs are temporarily removed to discover the v-structures. As a result in
step S5a, the PPIR is removed and the correct structure is found. The correctness
as well as the non-triviality follows then from the correctness and non-triviality of
CPC, proven by [6].
2) No adjacency faithfulness:
We have to prove that no edge is deleted based on non-Markovian CIs, and that
no mistakes are made during orientation.
2.1) No missing edges
A) Assume X − Y in correct graph and X⊥⊥Y :
In step S2’[II]a, the algorithm looks for a variable T such that X 2Y |T . The exis-
tence of T follows from Minimality. Therefore the edge X − Y will be replaced
by a PPIR. Now, we show that this PPIR is not removed from the graph, which can
only happen when there is a v-structure. If a PPIR would be removed based on the
existence of a v-structureX → Z ← Y for some Z, then this indicates that the tri-
angle faithfulness assumption is not satisfied. The removal of a PPIR in this case
is an immediate consequence of the triangle faithfulness assumption which dic-
tates that the direction of one of the arcs in the triangle imposes a v-structure. We
do not orient v-structures containing equivalent edges, since a v-structure based
on an equivalent edge which is not in the true graph could lead to erroneous dele-
tion of a PIR when the equivalent edge appears in a triangle with the PIR.
B) Assume X−Y in correct graph and X⊥⊥Y |S, S 6= ∅:
theorem 2 showed that this only happens for PIRs, information equivalences and
2-1 CI patterns. All three of them are identified in the algorithm and X−Y is not
removed.
C) Non-triviality is a direct consequence of the deletion of an edge X − Y not
present in G if for ∀S ⊆ {X, Y } the independency X⊥⊥Y |S holds and S is a gen-
uine sepset.
2.2) Correct conservative orientation:
a) Orientation in the first step of the ACPC orientation phase (II’) is only based
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on non-equivalent edges and non-PPIRs. So the correctness of CPC proves the
correctness of these orientation steps in our algorithm.
b) We do not orient any edges based on equivalent edges. c) Both S5b and S5c
trigger when there is a known orientation of a normal edge inside a triangle with
(a) PPIR(s) (S5b) or when the orientation of an edge in such a triangle can be
inferred (S5c). A direct consequence of triangle faithfulness is that there is a v-
structure at the node of the triple which has an incoming arrow. So the correctness
of orientation follows from triangle faithfulness. �

14. Appendix 2: Information equivalence

Information equivalences happen by a larger class than just deterministic re-
lations. They appear by parameterizations that lead to so-called equivalent parti-
tions.

If two variables X and Z are dependent, implied by P (Z | X) 6= P (Z),
the conditional distribution of one variable differs for at least two values of the
conditioning variable:

X 2Y ⇔ ∃ x1, x2 ∈ Xdom : P (Z | x1) 6= P (Z | x2). (11)

The information a variable contains about the other lies in the differences in the
conditional distributions. Values for which this distribution is the same contain
the same information. To study this, we partition the domain of the variable with
respect to the conditional distribution.

Definition 7 (Z-partition). The domain of X , denoted by Xdom, can be parti-
tioned into disjoint subsetsXk

dom for which P (Z | x) is the same for all x ∈ Xk
dom.

We call this the Z− partition of Xdom. We denote κZ(X) as the index of the sub-
set.

Consequently, the conditional distribution depends solely on the index of the Z-
partition:

P (Z | X) = P (Z | κZ(X)) (12)
X⊥⊥Z|κZ(X) (13)

Fig. 11 shows the Z-partition of Zdom and the related conditional distributions of
Z. P (Z) is also shown, it is the weighted sum of the conditional distributions:
P (Z) =

∑
x

P (Z | x).P (x).

Now we define an equivalent partition.
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Figure 11: Z-partition of the domain of X into subsets exhibiting the same conditional distribu-
tion.

Figure 12: Variables X and Y are information equivalent for Z. P (x, y) is only strictly positive
for values that affect P (Z) similarly. These values are related by relation R.

Definition 8. A relation< ⊂ X×Y (where the× operator denotes the Cartesian
product) defines an equivalent partition in Ydom to a partition of Xdom if:

1. ∀x1 and x2 ∈ Xdom that do not belong to the same partition: ∀y1 ∈ Ydom
with x1<y1, it must be that ¬(x2<y1).

2. For all subsets Xk
dom of the partition: ∃x1 ∈ Xk

dom, ∃y1 ∈ Ydom : x1<y1.

For an equivalent partition, every partition Xk
dom corresponds to a partition Y l

dom.
If an element of Ydom is related to an element of a partition of Xdom, it is not
related to an element of another partition, and each partition of Xdom has at least
one element that is related to a partition of Ydom. Fig. 12 shows an example of an
equivalent partition. No y is related to X-values belonging to different partitions
and for every partition, there is at least one related Y -value. Note that a function,
for which every x-value has a related Y -value, defines an equivalent partition on
Ydom for every partition of X .
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The following theorem links violations of the intersection condition, or infor-
mation equivalences, to equivalent partitions.

Theorem 7. For X, Y, Z ∈ V, if X 2Z and Y⊥⊥Z | X , then

X⊥⊥Z | Y ⇔ the relation x<y defined by P (x, y) > 0, with x ∈ Xdom and
y ∈ Ydom, defines an equivalent partition in Ydom to the Z-partition of Xdom.

The proof is given in [12, p. 100]. Note that Eq. 12 and 13 also hold with respect
to Y if we number the corresponding subsets by the same indices.
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