
A Refinement Strategy for a User-Oriented
Performance Analysis.

Jan Lemeire, Erik Dirkx

Parallel Systems lab, Vrije Universiteit Brussel,
Pleinlaan 2, 1000 Brussels, Belgium

{jlemeire, erik}@info.vub.ac.be

Submitted for Euro-Pvm 2004, Budapest, Hungary

Abstract. We introduce a refinement strategy to bring the parallel performance
analysis closer to the user. The analysis starts with a simple high-level per-
formance model. It is based on first-order approximations, in terms of the logi-
cal constituents of the parallel program and characteristics of the system. This
model is then gradually refined with more detailed low-level performance as-
pects, to explain divergences from a ‘normal’, linear regime. We use a causal
model to structure the relations between all variables involved. The approach
intends to serve as a link between detailed performance data and the developer.
It is demonstrated with a parallel matrix multiplication algorithm.

1 Introduction

This paper investigates how the non-expert developer should be given clear insight in
the performance of its parallel program. For efficient parallel processing, the devel-
oper must master the various performance aspects, ranging from high-level software
issues to low-level hardware characteristics. The performance analysis is nowadays
supported by various tools that automatically analyze parallel programs. The current
challenge however is to give the software developer understandable results with a
minimum of the learning overhead [APART: http://www.fz-juelich.de/apart], as the
tools seem hard to sell to the user community [9].
Most profiling tools like SCALEA [14], AIMS [15], Pablo [11], KOJAK [7] or
VAMPIR [8] (semi-) automatically instrument the parallel program and use hard-
ware-profiling to measure very detailed performance data. In the post-mortem analy-
sis, they automatically filter out relevant parts, like bottlenecks, situations of ineffi-
cient behavior, performance losses, from the huge amount of low-level information
and try to map them onto the developer’s program abstraction, like code regions. Our
approach works in the opposite direction; it is based on a simple performance model,
using the terminology of a non-expert developer. This high-level model is used as a
first-order approximation for explaining the performance. Experimental data will then
support the model, or indicate the need for a more in-depth analysis when diver-
gences appear. In this manner, the model is extended with low-level characteristics.

We present all variables or fluents in a causal model to indicate their dependencies.
The refinements gradually add extra low-level fluents to the model.
 The next section explains the parallel algorithm for matrix multiplication, section
3 defines the causal performance model and section 4 our tool EPPA. Section 5
shows the experimental results and the refinement strategy.

2 Parallel Matrix Multiplication

We illustrate our approach with the analysis of parallel multiplication of matrices, C
= A × B. The sequential runtime to multiply two dense n×n matrices is of O(n3), what
makes it worth for being computed in parallel for high values of n. The parallel algo-
rithm uses with a checkerboard partitioning, the matrices are divided in r strips of
contiguous rows and c strips of contiguous columns, where r×c=p and r close to √p
[6]. Then, blocks of size n/r × n/c of matrices A and B are attributed to each proces-
sor. The p processes are labeled from p0,0 to p r-1, c -1. This is the starting point of our
parallel algorithm. Each process pi,j will compute submatrix Ci,j of the result matrix.
Therefore, it requires all submatrices Ai,k and Bl,j for 0 ≤ k < r and 0 ≤ l < c (Fig. 1).
The simplest way of acquiring these blocks, is an all-to-all broadcast of matrix A’s
blocks could be performed in each row of processes pi,j, and an all-to-all broadcast of
matrix B’s blocks in each column [6, 13]. A more memory-efficient version is Can-
non’s algorithm. Each process first multiplies its local submatrices and then sends its
submatrix Ai,j to the ‘left’ and Bi,j to its ‘upper’ process. The 2 submatrices it receives
from its direct neighbors are then multiplied, added to the result and sent again to the
next process in a rowwise (for A) and columnwise (for B) circular shift operation [6].

Fig. 1. Parallel Matrix Multiplication: partitioning (left, p=9) and execution profile (right,

n=150, p=4, Cannon’s algorithm)

The experiments are performed on a cluster of 9 dedicated 333MHz Pentium II proc-
essors with 256MB RAM, connected by a 100Mb/s non-blocking switch. Figure 1
shows the time view for Cannon’s algorithm, showing the three types of phases:
computation, communication and idling.

3 The High-Level Performance Model

The performance analysis should consider the impact of each phase, whether it is
useful work or overhead, of the parallel program on the speedup. This is reflected by
the ratio of the time i

phaseT of a phase on processor i with the sequential runtime Tseq

divided by the number of processors p, what we call the overhead ratio:

.

p
T
T

Ovh
seq

i
phasei

phase =
 (1)

and totalized over all processors, it gives the global impact:

.
seq

phase

seq

i
phase

p

i
phase T

T
T

T
Ovh ==

∑

(2)

These definitions differ slightly from the normalized performance indices used by
AIMS, defined as

par

phase
phase T

TIndex = [12], which are always less than one. The

overhead ratios become more than one if an overhead surpasses the run time of the
useful work. Our choice for this definition is motivated by the direct relation with the
efficiency E:

.1

∑
=

phases
phaseOvh

E (3)

This can easily been derived from its definition E=S/p=Tseq/Tpar/p and writing the
parallel runtime as:

....21

p

T
TTTT i

i
par

p
parparparpar

∑
=====

(4)

Where each processor i takes the parallel run time Tpar to perform its part of the job,
and is the summation over all phases: .,∑=

j

ji
phase

i
par TT This leads to the following

equation, which is equivalent to Eq. 3:

.,

seq

i j

ji
phasepar

seq

T

T
p

T
T

Speedup
∑∑

==
(3)

Fig. 2 shows the overhead ratios of all phases for the parallel matrix multiplication.

Fig. 2. Overhead ratios of parallel matrix multiplication with n=150, p=4.

We identify three top-level phase types: the computation, the communication and the
idle times (Fig. 2, right). This classification can easily be refined by the developer to
identify logical phases in its program and to subdivide different overheads, as done
by several authors, for example by Bull [2]. The communication is defined as the
overhead time not overlapping with computation: the computational overhead due to
the exchange of data between processes, in the sense of loss of processor cycles [3].
To structure all variables and to show their dependencies, we use a causal model. See
Pearl [10] for an overview of current theory about causality and statistics. The initial
performance model is shown in Fig. 3, where direct cause-effect relations are indi-
cated by directed links.

Fig. 3. Causal Performance Model of First-Order Approximation.

The goal of the model is to bring it to simple, mostly linear, relations by introducing
useful intermediate variables. Instead of trying to directly estimate the functional
relation between for example the speedup S or the computation time Tcomp and the
number of processors p, we pass through relevant characteristics of each phase. Each
computational phase can be characterized by the number of operations and processed
quantums. The number of operations #op relate directly to the processing time as the
number of identical operations that are performed during that phase (Eg. the number
of compare and swap operations for a sort algorithm). The number of quantums #q
relate directly to the problem size W (Eg. the number of elements sorted or communi-
cated). In this manner, complex relations can be unraveled and symbolically inter-
preted more easily, as will be shown in section 5.

Experimental runs are identified by the experiment parameters, like the problem
size W, number of processors p and additional algorithm-specific parameters. The
parallel system is initially characterized by δcomp and δcomm.

4 EPPA Tool Overview

EPPA (Experimental Parallel Performance Analysis) is implemented in C++ and is
independent of the parallel communication layer [4]. A parallel program should be
instrumented manually with one EPPAProbe object per process, which will collect all
relevant program data. We envisage that the extra work needed for manual code in-
strumentation is compensated with the advantage of having all program information
understood and controlled by the user. The programmer should identify the logical
parts of its program, specify phase variables and the parameters of the experiment.
A method call should be inserted at the end of each phase of the program. These
phases do not have to correspond with loops or function calls, as is the case for most
automatic instrumentation tools, but with the functional parts of the program. Then,
each phase is characterized by the number of operations #op and processed quantums
#q. Different experimental runs are identified by the program parameters, which are
passed with the EPPAProbe constructor.
At the end of program execution, the data is written to a mySQL database
(www.mysql.com). The analysis of the data is written in java and performed auto-
matically. Results are shown graphically in different views, each representing a dif-
ferent aspect of the analysis: the time (Fig. 1), overhead (Fig. 2), causal (Fig. 3 & 5)
and functional views (Fig. 4 & 6).

5 Model Refinement

The relations between the variables are analyzed by finding the best predicting equa-
tions, using standard regression analysis [4, 5]. We use the LOOCV (Leave-One-Out
Cross Validation) method to choose among polynomial equations of different degree.
This method overcomes overfitting by testing how each individual observation can be
predicted by the other observations.

5.1 Computation

As a first order approximation, we take the computational runtime as proportional to
the number of identical operations:

..# operationsT compncomputatio ∂= (6)

Clearly, this equation is not realistic, as for example, in the presence of superscalar
architectures with multiple arithmetic units and hardware pipelines. It is even not

applicable for a simple PC, when the memory usage exceeds the RAM capacity, as is
the case in our experiments. However, we argue that it still is a useful relation. It can
serve as a first approximation, but it should be extended when going out of the ‘nor-
mal’ linear regime. Figure 4 shows the experimental results for the matrix multiplica-
tion. Up to ± 54.109 operations (n=3800) Eq. 6 holds firmly and reveals a δcomp of
0.25µs/operation (the straight line). After that point, the processors start using the
swap memory and the runtime increases super linear. Eq. 6 then fails to explain the
performance. These divergences should then be supported by a more refined per-
formance model, namely measurement of the memory usage (Fig. 5). The extra run-
time, caused by memory swapping Tswap, gives a roughly linear trend with the swap
memory with δswap = 0.27ms/#qswap.

Fig. 4. Sequential run time (left) and computation ratio (right) versus number of operations

(Cannon’s algorithm, p=4).

The right curve of Fig. 4 shows the advantages of Cannon’s algorithm. When the
sequential runtime starts to saturate, the sum of the parallel computation times on all
processors is less. The computation ratio drops to 75% for n > 6000 and a better than
ideal speedup of 5.4 is reached.

Fig. 5. Refined performance model for computation phases.

5.2 The Communication Overhead

Cannon’s algorithm requires max(r,c)-1 communication steps, where each process
sends 2 submatrices of n/r× n/c, containing n2/p elements or quantums. The commu-
nication time is then

),max(.~),max(..2.~ 2
2

crncr
p

npT
p

j

j
comm∑

(7)

For quadratic values of p, this results in O(n2√p) relation. Non-quadratic values of p
however require partitions with different number of rows and columns, hence a
higher communication. Prime numbers result in a 1 row, p column matrix partitioning
with communication of O(p).

Fig. 6. Communication and idle time versus W (p=4) and p (W=500).

The experimental results (Fig. 6) for the communication confirm this theoretical ex-
pression. The idle time follows the same trend as a function of W. As the load imbal-
ances are very low, the idle time is mainly caused by the message delays, which are
also proportional to the number of elements being sent.
The right curve of Fig. 6 right shows communication time as a function of the number
of processors p. It can be seen that the points are more difficult to interpret symboli-
cally, because of the non-polynomial relation between data size and p (Eq. 7). This
illustrates the advantage of using an intermediate variable #qcomm to get 2 curves that
can be interpreted more easily. The curve #qcomm versus p would reveal Eq. 7, while
Tcomm versus #qcomm size could reveal non-linear trends, which is much more difficult
for the curve of Fig. 6.

6 Conclusions

Our approach aims at making the performance analysis of parallel processing com-
prehensible for users. A causal model structures the relations between all relevant
performance characteristics. We introduced a refinement strategy to ensure that the
user is only confronted with low-level characteristics if they affect the performance.
Furthermore, causal diagrams can be exploited to reason about the performance [10].

7 References

1. Browne, S., Dongarra, J.J., Garner, N., Ho G., and Mucci, P. A Portable Programming Inter-
face for Performance Evaluation on Modern Processors, International Journal of High Per-
formance Computing Applications, 14:3 (Fall 2000), pp. 189-204.

2. Bull, J.M.: A Hierarchical Classification of Overheads in Parallel Programs. In: Proceedings
of First IFIP TC10 International Workshop on Software Engineering for Parallel and Dis-
tributed Systems, Chapman Hall, (March 1996) 208-219.

3. Crovella, M. E. and Leblanc, T.J.: Parallel Performance Prediction using Lost Cycles
Analysis. In: Proc. of Supercomputing ’94, IEEE Computer Society (1994).

4. Crijns, J. and Crijns, A. Automatische Experimentele Analyse van Systeem en Algoritme-
parameters op Parallelle Performanties. Thesis, Vrije Universiteit Brussel (VUB), Brussels,
2003.

5. KEEPING, E.S., Introduction to Statistical Inference, Dover Publications Inc, New York,
1995.

6. Kumar, V., Grama, A., Gupta, A. and Karypsis, G.: Introduction to Parallel Computing.
Design and Analysis of Algorithms. Benjamin Cummings, California (1994).

7. Mohr, B., and Wolf, F. KOJAK - A Tool Set for Automatic Performance Analysis of Paral-
lel Programs. Euro-Par Conf. 2003: 1301-1304.

8. Nagel, W.E., Arnold, A., Weber, M., Hoppe, H.-C. and Solchenbach, K. VAMPIR: Visuali-
zation and analysis of MPI resources. Supercomputer, 12(1):69-80, January 1996.

9. Pancake, C.M.: Applying Human Factors to the Design of Performance Tools. In: Proc. of
the 5th Euro-Par Conf., Springer (1999).

10. Pearl, J. Causality. Models, Reasoning and Inference. Cambridge University Press, Cam-
bridge, 2000.

11. Reed, D.A., Aydt, R.A., Noe, R. J., Roth, P.C., Shields, K.A., Shwartz, B.W., and Tavera,
L.F. Scalable Performance Analysis: The Pablo Performance Analysis Environment. In
Proc. Scalable Parallel Libraries Conf., IEEE Computer Society, 1993.

12. Sarukkai, S. R., Yan, J., Gotwals and J. K.. Normalized performance indices for message
passing parallel programs. In Proc. of the 8th international conference on Supercomputing,
Manchester, England, 1994.

13. Schmidt, B., and Sunderam, V.: Empirical Analysis of Overheads in Cluster Environments.
Concurrency: Practice and Experience 6, 1 (February 1994), 1-32.

14. Truong, H-L and Fahringer, T.: Performance Analysis for MPI Applications with
SCALEA. In Proc. of the 9th European PVM/MPI Conf., Linz, Austria (September 2002).

15. Yan, J. C., Sarukkai, S. R., and Mehra, P.: Performance Measurement, Visualization and
Modeling of Parallel and Distributed Programs using the AIMS Toolkit. Software Practice
& Experience, April 1995.

