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Abstract. We introduce a refinement strategy to bring the parallel performance 
analysis closer to the user. The analysis starts with a simple high-level per-
formance model. It is based on first-order approximations, in terms of the logi-
cal constituents of the parallel program and characteristics of the system. This 
model is then gradually refined with more detailed low-level performance as-
pects, to explain divergences from a ‘normal’, linear regime. We use a causal 
model to structure the relations between all variables involved. The approach 
intends to serve as a link between detailed performance data and the developer. 
It is demonstrated with a parallel matrix multiplication algorithm. 

1   Introduction 

This paper investigates how the non-expert developer should be given clear insight in 
the performance of its parallel program. For efficient parallel processing, the devel-
oper must master the various performance aspects, ranging from high-level software 
issues to low-level hardware characteristics. The performance analysis is nowadays 
supported by various tools that automatically analyze parallel programs. The current 
challenge however is to give the software developer understandable results with a 
minimum of the learning overhead [APART: http://www.fz-juelich.de/apart], as the 
tools seem hard to sell to the user community [9]. 
Most profiling tools like SCALEA [14], AIMS [15], Pablo [11], KOJAK [7] or 
VAMPIR [8] (semi-) automatically instrument the parallel program and use hard-
ware-profiling to measure very detailed performance data. In the post-mortem analy-
sis, they automatically filter out relevant parts, like bottlenecks, situations of ineffi-
cient behavior, performance losses, from the huge amount of low-level information 
and try to map them onto the developer’s program abstraction, like code regions. Our 
approach works in the opposite direction; it is based on a simple performance model, 
using the terminology of a non-expert developer. This high-level model is used as a 
first-order approximation for explaining the performance. Experimental data will then 
support the model, or indicate the need for a more in-depth analysis when diver-
gences appear. In this manner, the model is extended with low-level characteristics. 



We present all variables or fluents in a causal model to indicate their dependencies. 
The refinements gradually add extra low-level fluents to the model. 
     The next section explains the parallel algorithm for matrix multiplication, section 
3 defines the causal performance model and section 4 our tool EPPA. Section 5 
shows the experimental results and the refinement strategy. 

2   Parallel Matrix Multiplication 

We illustrate our approach with the analysis of parallel multiplication of matrices, C 
= A × B. The sequential runtime to multiply two dense n×n matrices is of O(n3), what 
makes it worth for being computed in parallel for high values of n. The parallel algo-
rithm uses with a checkerboard partitioning, the matrices are divided in r strips of 
contiguous rows and c strips of contiguous columns, where r×c=p and r close to √p 
[6]. Then, blocks of size n/r × n/c of matrices A and B are attributed to each proces-
sor. The p processes are labeled from p0,0 to p r-1, c -1. This is the starting point of our 
parallel algorithm. Each process pi,j will compute submatrix Ci,j of the result matrix. 
Therefore, it requires all submatrices Ai,k and Bl,j for 0 ≤  k < r and 0 ≤  l < c (Fig. 1). 
The simplest way of acquiring these blocks, is an all-to-all broadcast of matrix A’s 
blocks could be performed in each row of processes pi,j, and an all-to-all broadcast of 
matrix B’s blocks in each column [6, 13]. A more memory-efficient version is Can-
non’s algorithm. Each process first multiplies its local submatrices and then sends its 
submatrix Ai,j to the ‘left’ and Bi,j to its ‘upper’ process. The 2 submatrices it receives 
from its direct neighbors are then multiplied, added to the result and sent again to the 
next process in a rowwise (for A) and columnwise (for B) circular shift operation [6]. 
 

       
Fig. 1. Parallel Matrix Multiplication: partitioning (left, p=9) and execution profile (right, 

n=150, p=4, Cannon’s algorithm) 

 
The experiments are performed on a cluster of 9 dedicated 333MHz Pentium II proc-
essors with 256MB RAM, connected by a 100Mb/s non-blocking switch. Figure 1 
shows the time view for Cannon’s algorithm, showing the three types of phases: 
computation, communication and idling. 



3   The High-Level Performance Model 

The performance analysis should consider the impact of each phase, whether it is 
useful work or overhead, of the parallel program on the speedup. This is reflected by 
the ratio of the time i

phaseT  of a phase on processor i with the sequential runtime Tseq 

divided by the number of processors p, what we call the overhead ratio: 
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and totalized over all processors, it gives the global impact: 
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These definitions differ slightly from the normalized performance indices used by 
AIMS, defined as 

par

phase
phase T

TIndex = [12], which are always less than one. The 

overhead ratios become more than one if an overhead surpasses the run time of the 
useful work. Our choice for this definition is motivated by the direct relation with the 
efficiency E: 
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This can easily been derived from its definition E=S/p=Tseq/Tpar/p and writing the 
parallel runtime as: 
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Where each processor i takes the parallel run time Tpar to perform its part of the job, 
and is the summation over all phases: .,∑=
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Fig. 2 shows the overhead ratios of all phases for the parallel matrix multiplication. 



 

    
Fig. 2. Overhead ratios of parallel matrix multiplication with n=150, p=4. 

We identify three top-level phase types: the computation, the communication and the 
idle times (Fig. 2, right). This classification can easily be refined by the developer to 
identify logical phases in its program and to subdivide different overheads, as done 
by several authors, for example by Bull [2]. The communication is defined as the 
overhead time not overlapping with computation: the computational overhead due to 
the exchange of data between processes, in the sense of loss of processor cycles [3].  
To structure all variables and to show their dependencies, we use a causal model. See 
Pearl [10] for an overview of current theory about causality and statistics. The initial 
performance model is shown in Fig. 3, where direct cause-effect relations are indi-
cated by directed links.  

 

 
Fig. 3. Causal Performance Model of First-Order Approximation. 

The goal of the model is to bring it to simple, mostly linear, relations by introducing 
useful intermediate variables. Instead of trying to directly estimate the functional 
relation between for example the speedup S or the computation time Tcomp and the 
number of processors p, we pass through relevant characteristics of each phase. Each 
computational phase can be characterized by the number of operations and processed 
quantums. The number of operations #op relate directly to the processing time as the 
number of identical operations that are performed during that phase (Eg. the number 
of compare and swap operations for a sort algorithm). The number of quantums #q 
relate directly to the problem size W (Eg. the number of elements sorted or communi-
cated). In this manner, complex relations can be unraveled and symbolically inter-
preted more easily, as will be shown in section 5. 



Experimental runs are identified by the experiment parameters, like the problem 
size W, number of processors p and additional algorithm-specific parameters. The 
parallel system is initially characterized by δcomp and δcomm. 

4   EPPA Tool Overview 

EPPA (Experimental Parallel Performance Analysis) is implemented in C++ and is 
independent of the parallel communication layer [4]. A parallel program should be 
instrumented manually with one EPPAProbe object per process, which will collect all 
relevant program data. We envisage that the extra work needed for manual code in-
strumentation is compensated with the advantage of having all program information 
understood and controlled by the user. The programmer should identify the logical 
parts of its program, specify phase variables and the parameters of the experiment.  
A method call should be inserted at the end of each phase of the program. These 
phases do not have to correspond with loops or function calls, as is the case for most 
automatic instrumentation tools, but with the functional parts of the program. Then, 
each phase is characterized by the number of operations #op and processed quantums 
#q. Different experimental runs are identified by the program parameters, which are 
passed with the EPPAProbe constructor. 
At the end of program execution, the data is written to a mySQL database 
(www.mysql.com). The analysis of the data is written in java and performed auto-
matically. Results are shown graphically in different views, each representing a dif-
ferent aspect of the analysis: the time (Fig. 1), overhead (Fig. 2), causal (Fig. 3 & 5) 
and functional views (Fig. 4 & 6). 

5   Model Refinement 

The relations between the variables are analyzed by finding the best predicting equa-
tions, using standard regression analysis [4, 5]. We use the LOOCV (Leave-One-Out 
Cross Validation) method to choose among polynomial equations of different degree. 
This method overcomes overfitting by testing how each individual observation can be 
predicted by the other observations. 

5.1 Computation 

As a first order approximation, we take the computational runtime as proportional to 
the number of identical operations: 

..# operationsT compncomputatio ∂=  (6) 

Clearly, this equation is not realistic, as for example, in the presence of superscalar 
architectures with multiple arithmetic units and hardware pipelines. It is even not 



applicable for a simple PC, when the memory usage exceeds the RAM capacity, as is 
the case in our experiments. However, we argue that it still is a useful relation. It can 
serve as a first approximation, but it should be extended when going out of the ‘nor-
mal’ linear regime. Figure 4 shows the experimental results for the matrix multiplica-
tion. Up to ± 54.109 operations (n=3800) Eq. 6 holds firmly and reveals a δcomp of 
0.25µs/operation (the straight line). After that point, the processors start using the 
swap memory and the runtime increases super linear. Eq. 6 then fails to explain the 
performance. These divergences should then be supported by a more refined per-
formance model, namely measurement of the memory usage (Fig. 5). The extra run-
time, caused by memory swapping Tswap, gives a roughly linear trend with the swap 
memory with δswap = 0.27ms/#qswap. 

 

     
Fig. 4. Sequential run time (left) and computation ratio (right) versus number of operations 

(Cannon’s algorithm, p=4). 

The right curve of Fig. 4 shows the advantages of Cannon’s algorithm. When the 
sequential runtime starts to saturate, the sum of the parallel computation times on all 
processors is less. The computation ratio drops to 75% for n > 6000 and a better than 
ideal speedup of 5.4 is reached. 
 

 
Fig. 5. Refined performance model for computation phases. 



5.2 The Communication Overhead 

Cannon’s algorithm requires max(r,c)-1 communication steps, where each process 
sends 2 submatrices of n/r× n/c, containing n2/p elements or quantums. The commu-
nication time is then 
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For quadratic values of p, this results in O(n2√p) relation. Non-quadratic values of p 
however require partitions with different number of rows and columns, hence a 
higher communication. Prime numbers result in a 1 row, p column matrix partitioning 
with communication of O(p).  
 

     
Fig. 6. Communication and idle time versus W (p=4) and p (W=500). 

The experimental results (Fig. 6) for the communication confirm this theoretical ex-
pression. The idle time follows the same trend as a function of W. As the load imbal-
ances are very low, the idle time is mainly caused by the message delays, which are 
also proportional to the number of elements being sent.  
The right curve of Fig. 6 right shows communication time as a function of the number 
of processors p. It can be seen that the points are more difficult to interpret symboli-
cally, because of the non-polynomial relation between data size and p (Eq. 7). This 
illustrates the advantage of using an intermediate variable #qcomm to get 2 curves that 
can be interpreted more easily. The curve #qcomm versus p would reveal Eq. 7, while 
Tcomm versus #qcomm size could reveal non-linear trends, which is much more difficult 
for the curve of Fig. 6. 



6   Conclusions 

Our approach aims at making the performance analysis of parallel processing com-
prehensible for users. A causal model structures the relations between all relevant 
performance characteristics. We introduced a refinement strategy to ensure that the 
user is only confronted with low-level characteristics if they affect the performance.  
Furthermore, causal diagrams can be exploited to reason about the performance [10]. 
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