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Abstract. This paper studies the idle time of processors during the execution of 
message-passing parallel programs. Detailed analysis reveals that, besides the 
well-known load imbalances, blocking overhead can be generated by any part 
of the execution profile, like communication overhead, message delays or parti-
tioning. We investigated this causal relation and developed an algorithm to de-
termine the causes of blockings. Applied to parallel matrix multiplication, it re-
veals higher-order p dependencies of the overhead. We argue that for an accu-
rate quantification of the cost of each part of a parallel program, the generated 
blocking overhead should also be taken into account. 

1   Introduction 

In literature, processors becoming idle, or blocking overhead, is mainly attributed to 
load imbalances [1][3][4], but we argue that this is not the only reason for the proces-
sors’ idle time.  Blocking overhead can be caused by any phase of the execution pro-
file, as mentioned in literature [2][6].  Partitioning for example, is in most cases per-
formed sequentially on one processor. This causes at the same time blocking on the 
other processors, resulting in an important O(p) dependency of the partitioning over-
head. 
 
This research fits in our goal to assist the programmer with an automated, under-
standable and accurate performance evaluation [2][8]. A correct estimate of the cost 
of each part of the parallel program is therefore indispensable. Thus, the blocking 
overheads should be added to the cost of the phases that cause the blocking. We de-
veloped an approach that starts from the execution profile, measured through code 
instrumentation, and reveals the causes of all processor’s idle time in message-
passing programs. 
 



The paper starts with defining the performance metrics for quantifying the impact of 
the overheads on the performance. In section 3 we define the blocking causal relation 
and show how it can be attributed. Section 4 explains the concrete implementation, 
used in section 5 to analyze the overhead of parallel matrix multiplication. 

2   Parallel Performance Metrics 

We quantify the benefit of parallel processing by the speedup S=Tseq/Tpar, how much 
faster the parallel program runs with respect to the runtime of the sequential version. 
The portion of Tpar that is not used for useful computation is therefore considered as 
lost processor cycles [4], or overhead [1]: 

.. spar TpTOverhead −=  (1) 

Hence, the choice of speedup as the performance measure implies that each processor 
has Tpar time allocated to perform its part of the job: 
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With i
compT  the time that processor i performs its part of the useful work and 

ji
overheadT , the time not overlapped with the computation of overhead of type j on proc-

essor i. To study the overall impact of the overhead, we can rewrite Eq. (2) as   
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We will develop the overhead equations for processors with equal computing power, 
which implies that ∑=

i

i
compseq TT . Together with Eqs. (3) and (4), the speedup can 

then be rewritten as [6]: 
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The impact of the overhead on the speedup is thus reflected by its ratio with the se-
quential runtime. Let us therefore define this ratio for each overhead type j:   
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These ratios quantify the cost of the overheads. Note that j
overheadT  is the totalization 

of the overhead of type j on all processors. 

3   Analysis of the Blocking Overhead 

Blocking overhead is the processor spent idling during parallel execution, while it has 
to wait at a synchronization point for information to proceed. Each blocking phase is 
thus ended by an incoming message of another process. Due to Eq. (1), the initial and 
the final idle time of each process are also lost cycles and will be included in the 
blocking overhead. 
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Fig. 1. Detail of an execution profile, showing possible sources of blocking overhead 

Whereas blocking overhead is mainly attributed to load imbalances, the execution 
profile of Fig. 1 shows that this is an oversimplification. Besides the load imbalance, 
the blocking T1 is also a result of communication overhead and the message delay. In 
general, every computation, communication or network delay can cause blocking. 
The goal of our research is to determine which phases of the execution profile are 
responsible for blocking. 

3.1   The Causal Relation 

A cause-effect relation is recognized by a correlation between two events. A blocking 
phase happens as a result of a certain phase. This means that without the presence of 
that phase, the blocking would not occur. Furthermore, blocking of a process is 



caused by differences in the execution profile with the process with which it synchro-
nizes after the blocking, as shown in Fig. 1. Our algorithm will investigate the times 
that both processes spent on each phase since their last synchronization (T*

 in Fig. 1), 
any difference between their phases indicates a possible cause of blocking.   
However, not every imbalance induces an equivalent blocking: 
1. A process can simultaneously generate blocking on several other processes 
(process 2 induces T2 and T3 in Fig. 2a). 
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Fig. 2. Example execution profiles of message-passing programs 

2. Blocking of one process can be caused by several processes (processes 1 and 
3 are both responsible for T1 in Fig. 2a). We solve this case by attributing the block-
ing overhead proportionally among the contributing processes. 
3. Imbalances on different processes can cancel each other out (the load imbal-
ance T1 on process 2 cancels with the communication overhead on process 1 in Fig. 
2b). However, in the case of multiple imbalances, the question arises which imbal-
ances should be cancelled. The solution we adopt is to reduce the imbalances propor-
tionally.  
4. Imbalances can propagate to other processes, due to the blocking induced on 
one process that on its turn will cause blocking on another process (T2 generates 
blocking T3 on process 1 in Fig. 2b). Therefore, while comparing the execution pro-
files, blocking phases should be replaced by their cause (T2 is replaced by the compu-
tation imbalance of process 3 for analysis of T3 in Fig. 2b). 
For most cases, these pragmatic rules suffice to attribute an unambiguous cause to all 
the idle times.  
Once the cause of each blocking is determined, we can define the blocking generation 
factor βj for each phase j: 
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The factor βj depends on the imbalances of phase j and on the effect of these phase 
imbalances.  



3.2   Classification of the causes of blocking  

Blocking can be caused by all phases of the execution profile. These include the 
computation, the overheads and the message delays. At the highest level, we identify 
4 major classes [2][6][10]: 
1. Communication, also called interprocess interaction or information move-

ment: the overhead due to the exchange of data between processes, the time 
that does not overlap with the computation, in the sense of lost processor cy-
cles [4].  

2. Message delays: the time for the messages to traverse the network, caused 
by the network latency, the bandwidth and possible network congestion. 
This delay is not accounted for overhead, only the blocking it causes. 

3. Control of parallelism: the extra computation that is necessary for man-
agement of the parallel processing, like the partitioning or calculations nec-
essary for synchronization.  

4. Workload imbalances, also called critical path overheads by [2]: the differ-
ences among the processes in the computing times i

compT  of the useful work. 

These major classes can be subdivided further into the different logical parts of the 
parallel program, so that each part can be studied separately. 

3.3  Workload imbalances 

The ‘traditional’ source of blocking overhead, the load imbalances, can be subdivided 
into 3 distinct parts [2]: the Amdahl blocking, the global load imbalance and the tem-
poral load imbalance.  
First, Amdahl’s law expresses the limitation of parallelism. There is a serial fraction s 
of the work that cannot be performed in parallel, during which the other processors 
will be idling. The generated blocking results in an overhead ratio  

spOvhamdahl
block ).1( −=  (8) 

Another part of the processor’s idle time is due to bad distribution of the workload 
among the processors. The difference between the total workload of the processors is 
defined as the global load imbalance. However, load imbalances can fluctuate among 
processes between synchronization points, canceling each other out globally. This 
does not result in a global load imbalance, but in what we call a temporal load imbal-
ance. Results in parallel discrete event simulation report on low global load imbal-
ances, but considerable temporal load imbalances [7]. The simulation uses a conser-
vative algorithm, consisting of cycles of independent simulation on the different 
processors that are alternated with barrier synchronizations and intercommunication. 
Whereas the global load imbalance can be reduced by good partitioning, temporal 
load imbalances are more difficult to master and can give high slowdowns, especially 
for increasing p. 



4   Implementation 

We integrated this analysis into our tool for automated parallel overhead analysis. It 
uses the same approach as the visual tool XPvm [5], which automatically measures 
the computation, communication and blocking phases of message-passing parallel 
programs. Our tool extends this analysis by letting the programmer instrument its 
code to differentiate the different logical parts of the parallel program, as SCALEA 
[10]. Starting from the recorded detailed execution profile, we implemented an algo-
rithm that calculates the causes of the blocking phases.  
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Fig. 3. Algorithm for determining the cause of blocking T2 

The algorithm handles the blocking phases in chronological order. A blocking phase 
is terminated by an incoming message of another process. The execution profile of 
this process will be compared with those of the blocking process. This is done by 
traveling back the execution profile until the previous synchronization of both proc-
esses (T* in Fig. 3) or until the beginning of the execution. The duration of all phases 
are summed and differentiated for each type between both processes. Note that also 
the message delays are taken into account, so that the paths on both processes are of 
equal length. Next, all imbalances of the blocking process are cancelled out with 
imbalances of the other process. The remaining imbalances are considered to be 
responsible for the blocking phase. Finally, the blocking phase is replaced by all its 
causes, to be taken into account for the calculation of other blocking (T1 is replaced 
by the imbalances of process 3 in Fig. 3). 

5   Experiments 

We illustrate our research with the overhead analysis of parallel multiplication of 
matrices, C = A × B. The runtime to multiply two dense n×n matrices is of O(n3), 
making it worth for being computed in parallel for high values of n. The parallel 
algorithm starts with partitioning the matrices in r strips of contiguous rows and c 



strips of contiguous columns, where r×c=p and r close to √p. Then, blocks of size n/r 
× n/c of matrices A and B are attributed to each processor. The p processes are la-
beled from p0,0 to p r-1, c -1. Process pi,j  will compute submatrix Ci,j, so it requires all 
submatrices Ai,k and Bl,j for 0 ≤ k < r and 0 ≤ l < c . To acquire these blocks, an all-to-
all broadcast of matrix A’s blocks is performed in each row of processes pi,j, and an 
all-to-all broadcast of matrix B’s blocks in each column [6][9].  
We identify three types of overheads: the partitioning, the communication and the 
blocking. The load imbalances can be neglected (< 0.2%). The blocking overhead is 
mainly caused by the communication overhead, the message delays and the partition-
ing. The experiments are performed for n = 200 on a cluster of eight 333MHz Pen-
tium II processors, connected by a 100Mb/s non-blocking switch. 
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Fig. 4. Overheads of Parallel Matrix Multiplication of 200x200 Matrics 

It is shown in Fig. 4 that the partitioning time stays constant for increasing p and the 
communication is sublinear of O(√p), which reflects the theoretical analysis [6]. The 
blocking overhead however evolves quite linear for increasing p and increases faster 
than the communication overhead. To investigate this, table 1 shows the blocking 
factors βj. 

Table 1. Blocking factors in Matrix Multiplication 

 2 3 4 6 8 
βcommunication 0,32 0,50 0,65 0,90 0,97 
βdelay 0,41 0,37 0,43 0,38 0,32 
βpartitioning 0,57 1,39 3,41 3,64 5,06 

 
It shows that the blocking due to message delays evolves constant with the communi-
cation. On the other hand, blockings generated by partitioning and communication 
increase faster than their cause. This results in a higher-order p dependency. Partition-
ing and communication overhead will be both of O(p). The linear increase of βcommuni-

cation is due to the increasing intercommunication between the processes. Each process 
has to wait its turn to receive its initial blocks and for the blocks of the row and col-



umn broadcasts. Especially the last process to receive its initial blocks will block the 
other processes. In this way, the blocking overhead caused by the communication 
propagates rapidly to all processes and causes an O(p) cost. 

7   Conclusion 

Indispensable for adequate optimization of parallel programs is an accurate insight in 
the different overheads. We showed that the blocking caused by each part of the par-
allel program should be added to its cost. To determine the causes of the idle times, a 
pragmatic algorithm was developed and added to our tool that measures and analyzes 
the execution profile of message-passing programs. The dependency of the perform-
ance on the number of processors is shown to be non-trivial on non-dedicated clus-
ters. 
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