
Causes of Blocking Overhead in Message-Passing
Programs

Jan Lemeire1, Erik Dirkx1

1 Parallel Systems lab, Vrije Universiteit Brussel,
Pleinlaan 2, 1000 Brussels, Belgium

{jlemeire, erik}@info.vub.ac.be

Submitted for the 10th Euro PVM/MPI 2003 Conference, Venice, Italy, Sep 29 - Oct 2, 2003

Abstract. This paper studies the idle time of processors during the execution of
message-passing parallel programs. Detailed analysis reveals that, besides the
well-known load imbalances, blocking overhead can be generated by any part
of the execution profile, like communication overhead, message delays or parti-
tioning. We investigated this causal relation and developed an algorithm to de-
termine the causes of blockings. Applied to parallel matrix multiplication, it re-
veals higher-order p dependencies of the overhead. We argue that for an accu-
rate quantification of the cost of each part of a parallel program, the generated
blocking overhead should also be taken into account.

1 Introduction

In literature, processors becoming idle, or blocking overhead, is mainly attributed to
load imbalances [1][3][4], but we argue that this is not the only reason for the proces-
sors’ idle time. Blocking overhead can be caused by any phase of the execution pro-
file, as mentioned in literature [2][6]. Partitioning for example, is in most cases per-
formed sequentially on one processor. This causes at the same time blocking on the
other processors, resulting in an important O(p) dependency of the partitioning over-
head.

This research fits in our goal to assist the programmer with an automated, under-
standable and accurate performance evaluation [2][8]. A correct estimate of the cost
of each part of the parallel program is therefore indispensable. Thus, the blocking
overheads should be added to the cost of the phases that cause the blocking. We de-
veloped an approach that starts from the execution profile, measured through code
instrumentation, and reveals the causes of all processor’s idle time in message-
passing programs.

The paper starts with defining the performance metrics for quantifying the impact of
the overheads on the performance. In section 3 we define the blocking causal relation
and show how it can be attributed. Section 4 explains the concrete implementation,
used in section 5 to analyze the overhead of parallel matrix multiplication.

2 Parallel Performance Metrics

We quantify the benefit of parallel processing by the speedup S=Tseq/Tpar, how much
faster the parallel program runs with respect to the runtime of the sequential version.
The portion of Tpar that is not used for useful computation is therefore considered as
lost processor cycles [4], or overhead [1]:

.. spar TpTOverhead −= (1)

Hence, the choice of speedup as the performance measure implies that each processor
has Tpar time allocated to perform its part of the job:

....21 p
parparparpar TTTT ==== (2)

.,∑+=
j

ji
overhead

i
comp

i
par TTT (3)

With i
compT the time that processor i performs its part of the useful work and

ji
overheadT , the time not overlapped with the computation of overhead of type j on proc-

essor i. To study the overall impact of the overhead, we can rewrite Eq. (2) as

.
p

T
T i

i
par

par

∑
=

(4)

We will develop the overhead equations for processors with equal computing power,
which implies that ∑=

i

i
compseq TT . Together with Eqs. (3) and (4), the speedup can

then be rewritten as [6]:

.

1

,

seq

i j

ji
overhead

T

T
pS

∑∑
+

=
(5)

The impact of the overhead on the speedup is thus reflected by its ratio with the se-
quential runtime. Let us therefore define this ratio for each overhead type j:

.
seq

j
overheadsj

T
T

Ovh =
(6)

These ratios quantify the cost of the overheads. Note that j
overheadT is the totalization

of the overhead of type j on all processors.

3 Analysis of the Blocking Overhead

Blocking overhead is the processor spent idling during parallel execution, while it has
to wait at a synchronization point for information to proceed. Each blocking phase is
thus ended by an incoming message of another process. Due to Eq. (1), the initial and
the final idle time of each process are also lost cycles and will be included in the
blocking overhead.

process 2

Tload imbalance

process 1

Tcommunication

Tdelay

communication

useful work

blocking

T1

T*

Fig. 1. Detail of an execution profile, showing possible sources of blocking overhead

Whereas blocking overhead is mainly attributed to load imbalances, the execution
profile of Fig. 1 shows that this is an oversimplification. Besides the load imbalance,
the blocking T1 is also a result of communication overhead and the message delay. In
general, every computation, communication or network delay can cause blocking.
The goal of our research is to determine which phases of the execution profile are
responsible for blocking.

3.1 The Causal Relation

A cause-effect relation is recognized by a correlation between two events. A blocking
phase happens as a result of a certain phase. This means that without the presence of
that phase, the blocking would not occur. Furthermore, blocking of a process is

caused by differences in the execution profile with the process with which it synchro-
nizes after the blocking, as shown in Fig. 1. Our algorithm will investigate the times
that both processes spent on each phase since their last synchronization (T*

 in Fig. 1),
any difference between their phases indicates a possible cause of blocking.
However, not every imbalance induces an equivalent blocking:
1. A process can simultaneously generate blocking on several other processes
(process 2 induces T2 and T3 in Fig. 2a).

process 2 process 3process 1

T1

T2 T3

(2a)

process 2 process 3process 1

T1

T3

T2 —

 (2b)

Fig. 2. Example execution profiles of message-passing programs

2. Blocking of one process can be caused by several processes (processes 1 and
3 are both responsible for T1 in Fig. 2a). We solve this case by attributing the block-
ing overhead proportionally among the contributing processes.
3. Imbalances on different processes can cancel each other out (the load imbal-
ance T1 on process 2 cancels with the communication overhead on process 1 in Fig.
2b). However, in the case of multiple imbalances, the question arises which imbal-
ances should be cancelled. The solution we adopt is to reduce the imbalances propor-
tionally.
4. Imbalances can propagate to other processes, due to the blocking induced on
one process that on its turn will cause blocking on another process (T2 generates
blocking T3 on process 1 in Fig. 2b). Therefore, while comparing the execution pro-
files, blocking phases should be replaced by their cause (T2 is replaced by the compu-
tation imbalance of process 3 for analysis of T3 in Fig. 2b).
For most cases, these pragmatic rules suffice to attribute an unambiguous cause to all
the idle times.
Once the cause of each blocking is determined, we can define the blocking generation
factor βj for each phase j:

.. j
phasej

j
blocking TT β= (7)

The factor βj depends on the imbalances of phase j and on the effect of these phase
imbalances.

3.2 Classification of the causes of blocking

Blocking can be caused by all phases of the execution profile. These include the
computation, the overheads and the message delays. At the highest level, we identify
4 major classes [2][6][10]:
1. Communication, also called interprocess interaction or information move-

ment: the overhead due to the exchange of data between processes, the time
that does not overlap with the computation, in the sense of lost processor cy-
cles [4].

2. Message delays: the time for the messages to traverse the network, caused
by the network latency, the bandwidth and possible network congestion.
This delay is not accounted for overhead, only the blocking it causes.

3. Control of parallelism: the extra computation that is necessary for man-
agement of the parallel processing, like the partitioning or calculations nec-
essary for synchronization.

4. Workload imbalances, also called critical path overheads by [2]: the differ-
ences among the processes in the computing times i

compT of the useful work.

These major classes can be subdivided further into the different logical parts of the
parallel program, so that each part can be studied separately.

3.3 Workload imbalances

The ‘traditional’ source of blocking overhead, the load imbalances, can be subdivided
into 3 distinct parts [2]: the Amdahl blocking, the global load imbalance and the tem-
poral load imbalance.
First, Amdahl’s law expresses the limitation of parallelism. There is a serial fraction s
of the work that cannot be performed in parallel, during which the other processors
will be idling. The generated blocking results in an overhead ratio

spOvhamdahl
block).1(−= (8)

Another part of the processor’s idle time is due to bad distribution of the workload
among the processors. The difference between the total workload of the processors is
defined as the global load imbalance. However, load imbalances can fluctuate among
processes between synchronization points, canceling each other out globally. This
does not result in a global load imbalance, but in what we call a temporal load imbal-
ance. Results in parallel discrete event simulation report on low global load imbal-
ances, but considerable temporal load imbalances [7]. The simulation uses a conser-
vative algorithm, consisting of cycles of independent simulation on the different
processors that are alternated with barrier synchronizations and intercommunication.
Whereas the global load imbalance can be reduced by good partitioning, temporal
load imbalances are more difficult to master and can give high slowdowns, especially
for increasing p.

4 Implementation

We integrated this analysis into our tool for automated parallel overhead analysis. It
uses the same approach as the visual tool XPvm [5], which automatically measures
the computation, communication and blocking phases of message-passing parallel
programs. Our tool extends this analysis by letting the programmer instrument its
code to differentiate the different logical parts of the parallel program, as SCALEA
[10]. Starting from the recorded detailed execution profile, we implemented an algo-
rithm that calculates the causes of the blocking phases.

process 2 process 3process 1

T1

T*

T2

Fig. 3. Algorithm for determining the cause of blocking T2

The algorithm handles the blocking phases in chronological order. A blocking phase
is terminated by an incoming message of another process. The execution profile of
this process will be compared with those of the blocking process. This is done by
traveling back the execution profile until the previous synchronization of both proc-
esses (T* in Fig. 3) or until the beginning of the execution. The duration of all phases
are summed and differentiated for each type between both processes. Note that also
the message delays are taken into account, so that the paths on both processes are of
equal length. Next, all imbalances of the blocking process are cancelled out with
imbalances of the other process. The remaining imbalances are considered to be
responsible for the blocking phase. Finally, the blocking phase is replaced by all its
causes, to be taken into account for the calculation of other blocking (T1 is replaced
by the imbalances of process 3 in Fig. 3).

5 Experiments

We illustrate our research with the overhead analysis of parallel multiplication of
matrices, C = A × B. The runtime to multiply two dense n×n matrices is of O(n3),
making it worth for being computed in parallel for high values of n. The parallel
algorithm starts with partitioning the matrices in r strips of contiguous rows and c

strips of contiguous columns, where r×c=p and r close to √p. Then, blocks of size n/r
× n/c of matrices A and B are attributed to each processor. The p processes are la-
beled from p0,0 to p r-1, c -1. Process pi,j will compute submatrix Ci,j, so it requires all
submatrices Ai,k and Bl,j for 0 ≤ k < r and 0 ≤ l < c . To acquire these blocks, an all-to-
all broadcast of matrix A’s blocks is performed in each row of processes pi,j, and an
all-to-all broadcast of matrix B’s blocks in each column [6][9].
We identify three types of overheads: the partitioning, the communication and the
blocking. The load imbalances can be neglected (< 0.2%). The blocking overhead is
mainly caused by the communication overhead, the message delays and the partition-
ing. The experiments are performed for n = 200 on a cluster of eight 333MHz Pen-
tium II processors, connected by a 100Mb/s non-blocking switch.

0

20

40

60

80

2 4 6 8
p

%

Communication
Overhead Ratio

Partitioning
Overhead Ratio

Blocking
Overhead Ratio

Blocking due to
communication

Blocking due to
delays

Blocking due to
partitioning

Fig. 4. Overheads of Parallel Matrix Multiplication of 200x200 Matrics

It is shown in Fig. 4 that the partitioning time stays constant for increasing p and the
communication is sublinear of O(√p), which reflects the theoretical analysis [6]. The
blocking overhead however evolves quite linear for increasing p and increases faster
than the communication overhead. To investigate this, table 1 shows the blocking
factors βj.

Table 1. Blocking factors in Matrix Multiplication

 2 3 4 6 8
βcommunication 0,32 0,50 0,65 0,90 0,97
βdelay 0,41 0,37 0,43 0,38 0,32
βpartitioning 0,57 1,39 3,41 3,64 5,06

It shows that the blocking due to message delays evolves constant with the communi-
cation. On the other hand, blockings generated by partitioning and communication
increase faster than their cause. This results in a higher-order p dependency. Partition-
ing and communication overhead will be both of O(p). The linear increase of βcommuni-

cation is due to the increasing intercommunication between the processes. Each process
has to wait its turn to receive its initial blocks and for the blocks of the row and col-

umn broadcasts. Especially the last process to receive its initial blocks will block the
other processes. In this way, the blocking overhead caused by the communication
propagates rapidly to all processes and causes an O(p) cost.

7 Conclusion

Indispensable for adequate optimization of parallel programs is an accurate insight in
the different overheads. We showed that the blocking caused by each part of the par-
allel program should be added to its cost. To determine the causes of the idle times, a
pragmatic algorithm was developed and added to our tool that measures and analyzes
the execution profile of message-passing programs. The dependency of the perform-
ance on the number of processors is shown to be non-trivial on non-dedicated clus-
ters.

8 References

1. Bane, M.K. and Riley, G.D.: Automatic Overheads Profiler for OpenMP Codes. In: proceed-
ings of EWOMP2000 conference, Edinburgh, Scotland (2000).

2. Bull, J.M.: A Hierarchical Classification of Overheads in Parallel Programs. In: Proceedings
of First IFIP TC10 International Workshop on Software Engineering for Parallel and Dis-
tributed Systems, Chapman Hall, (March 1996) 208-219.

3. Clematis, A. and Corana, A.: Modeling performance of heterogeneous parallel computing
systems. In: Parallel Computing 25, Elsevier Science (1999).

4. Crovella, M. E. and Leblanc, T.J.: Parallel Performance Prediction using Lost Cycles Analy-
sis. In: Proc. of Supercomputing ’94, IEEE Computer Society (1994).

5. Kohl, J.A. and Geist, G.A.: XPVM 1.0 User’s Guide. Tech. Rep. 12981, Computer Science
and Mathematics Division, Oak Ridge National Laboratory (1995).

6. Kumar, V., Grama, A., Gupta, A. and Karypsis, G.: Introduction to Parallel Computing.
Design and Analysis of Algorithms. Benjamin Cummings, California (1994).

7. Lemeire, J. and Dirkx, E.: Performance Factors in Parallel Discrete Event Simulation. In:
Proc. of the 15th European Simulation Multiconference, Prague (2001).

8. Pancake, C.M.: Applying Human Factors to the Design of Performance Tools. In: Proc. of
the 5th Euro-Par Conf., Springer (1999).

9. Schmidt, B., and Sunderam, V.: Empirical Analysis of Overheads in Cluster Environments.
Concurrency: Practice and Experience 6, 1 (February 1994), 1-32.

10. Truong, H-L and Fahringer, T.: Performance Analysis for MPI Applications with
SCALEA. In Proc. of the 9th European PVM/MPI Conf., Linz, Austria (September 2002).

