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ABSTRACT 
We report on the improvements that can be achieved 
by applying machine learning techniques, in 
particular reinforcement learning, for the dynamic 
load balancing of parallel applications.  The 
applications being considered here are coarse grain 
data intensive applications. Such applications put 
high pressure on the interconnect of the hardware. 
Synchronization and load balancing in complex, 
heterogeneous networks need fast, flexible, adaptive 
load balancing algorithms. Viewing a parallel 
application as a one-state coordination game in the 
framework of multi-agent reinforcement learning, 
and by using a recently introduced multi-agent 
exploration technique, we are able to improve upon 
the classic job farming approach. The improvements 
are achieved with limited computation and 
communication overhead. 
 
Keywords: Parallel processing, Adaptive load 
balancing, reinforcement learning, heterogeneous 
network, intelligent agents, data intensive 
applications. 
 
 
1. INTRODUCTION 
 
Load balancing is crucial for parallel applications 
since it ensures a good use of the capacity of the 
parallel processing units. We look at applications 
which put high demands on the parallel interconnect 
in terms of throughput. Examples are compression 
applications which both process important amounts 
of data and require a lot of computations. Data 
intensive applications [2] require a lot of 
communication and are therefore dreaded for most 
parallel architectures. The problem is exacerbated 
when working with heterogeneous parallel hardware. 
This is the case in our experiment using a 
heterogeneous cluster of PC’s to execute parallel 
applications with a master-slave software 
architecture. Adaptive load balancing is 
indispensable if system performance is unpredictable 
and no prior knowledge is available [1]. 
 
In the multi-agent community, adaptive load 
balancing is an interesting testbed for multi-agent 
learning algorithms, likewise for multi-agent 
reinforcement algorithms as in [9][12]. However the 
interpretations and models of load balancing there 
are not always in the view of real parallel 

applications. We report on the results obtained by 
adaptive agents in the farming scheme. 
The idea is to view all slaves as independent 
reinforcement learning agents who try to learn the 
amount of data to request from the master, so as to 
minimize the total run time of the parallel application 
and/or the total idle time of the master. As the agents 
share a common goal, from the game theoretical 
point of view [10], this setup can be seen as a 
coordination game. Recently a new exploration 
technique for individual reinforcement learners used 
in coordination games was introduced, see [16][17].  
This technique allows the slave to learn 
independently and adaptively which amount of data 
to request to the master; aiming at an efficient use of 
the communication link by the group of agents.  
Our results show that the multi-agent learning 
technique improves upon the sequential job farming 
scheme for parallelizing data intensive applications. 
 
Section 2 defines the problem of load balancing and 
gives an overview of the existing load balancing 
strategies. Section 3 discusses performance metrics, 
while section 4 introduces reinforcement learning 
and outlines the multi-agent reinforcement learning 
algorithm.  Section 5 and 6 give the experimental 
setup and results achieved. Finally some conclusions 
are drawn in section 7.  
 
 
2. LOAD BALANCING/JOB SCHEDULING 
 
Load balancing aims at assigning to each processor 
an amount of work proportional to its performance, 
minimizing the execution time of the program. 
However, processor heterogeneity and performance 
fluctuations make static load balancing insufficient 
[1]. We investigate dynamic, local, distributed load 
balancing strategies [18], which are based on 
heuristics, since finding the optimal solution has 
shown to be NP-complete in general [11]. Following 
the agent philosophy, the request assignment strategy 
is a receiver-initiated algorithm [6], in which the 
“consumers” of workload look for producers [13]. 
The goal is a fast adaptive system that optimizes 
computation and synchronization. 
 
Problem description 
In situations were the communication time is not 
negligible, as is the case for data intensive 
applications, faster processing units can incur serious 
penalties due to slower units. A data request issued 



by a slow unit can stall a faster unit when using 
farming. This of course results in a reduction of the 
parallelism. 
This phenomenon is bound to occur when slaves 
request identical amounts of data from the master. 
This is independently of the actual amount by 
neglecting the communication delay, acceptable 
given sufficiently large requests.  
In order to improve upon the job-farming scheme 
when working with heterogeneous hardware, the 
slaves have to request different amount of data from 
the master (server). Indeed their respective 
consumption of communication bandwidth should be 
proportional to their processing power. Slower 
processing units should avoid obstructing faster ones 
by requesting less data. 
 
Computation model 
The initial computation model is job farming. In this 
master-slave architecture the slaves (one per 
processing unit) request a chunk of a certain size 
from the master. As soon as the data has been 
processed the result is transferred to the master and 
the slave sends a new request (figure 1). 
 

master

slave 1 slave 2 slave p

1. request chunk

2. send chunk

3. data
crunching

4. send result

communication
bottleneck

heterogeneous
processors  

Fig 1: Model. 
 
This scheme has the advantage of being both simple 
and efficient. Indeed, in the case of heterogeneous 
hardware, the load (amount of processed data) will 
depend on the processing speed of the different 
processing units. Faster processing units will more 
frequently request data and thus be able to process 
more data. 
The bottleneck of data intensive applications with a 
master-slave architecture is the link connecting the 
slaves to the master. In the presented experiments all 
the slaves share a single link to their master (through 
an ethernet switch). In this scenario the application’s 
performance will be influenced by the efficient use 
of the shared link to the master. Indeed, the fact that 
the application has a coarse granularity only ensures 
that the computation communication ratio is larger 
than one. But it does not preclude a low parallel 
efficiency even when using job farming. 
 
 
3. PERFORMANCE METRICS 
 
We quantify the benefit of parallel processing by the 
speedup S=Tseq/Tpar, how much faster the parallel 
program runs with respect to the runtime of the 
sequential version. The portion of Tpar that is not 
used for useful computation is therefore as 
considered lost processor cycles [4], or overhead: 

.. spar TpTOverhead −=  ( 1) 

Hence, the choice of speedup as the performance 
measure implies means that each processor has Tpar 
time allocated to perform its part of the job: 
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With i
compT the time that processor i performs its part 

wi of the total useful work W and ji
overheadT ,  the time 

not overlapped with the computation of the overhead 
of type j. To study the overall impact of the overhead, 
we can rewrite Eq. (2) as   
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We will develop the overhead equations for 
homogeneous processors (with equal computing 
power) which implies that 
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Together with Eqs. (3) and (4), the speedup can then 
be rewritten as: 
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The impact of the overhead on the speedup is thus 
reflected by its ratio with the sequential runtime. Let 
us therefore define this ratio for each overhead type j:   
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These ratios quantify the cost of the overheads. Note 

that j
overheadT is the summation of that type of 

overhead over all processors i. 

Heterogeneity 

Let us have a look how system heterogeneity affects 
the performance. For different computing powers, 
we introduce the relative speed ppi, measured with 
respect to a reference machine: 
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Unlike most works on heterogeneous parallel 
systems [19], we express the speeds relatively to a 
fixed machine [3], and not relatively to the fastest 
processor. We think that choosing a fixed reference, 
with which the sequential runtime Tseq is measured, 
allows a clearer performance analysis. 
Equation (5) is based on the assumption that the 
runtime does not depend on a particular portion of 
the work. Similarly, we assume that the various 
processors essentially differ in their clock speed [3] 
and not in the size of the task. The total relative 
processing power of the parallel system is then: 



∑=
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For a heterogeneous system, the efficiency is the 
performance compared with the ideal performance, 
namely PP: 

PP
SE =     ( 10) 

With the average relative speed 
p

PPpp =  we 

define the degree of heterogeneity H of a parallel 
system by the standard deviation of ppi [3]: 
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To continue the performance analysis of the previous 
paragraph, Eq. (5) should be replaced by 

∑=
i

i
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Also for the calculation of the overhead ratio Ovhj 

(Eq. 7), ji
overheadT , should be scaled with ppi 
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Thus, we can conclude that all time measurements on 
a processor should be scaled with ppi. Slower 
processors will carry out less useful work in a given 
time and the parallel overheads will have less impact 
on the speedup. This result corresponds with the 
approach proposed in [4], which essentially uses 
processor cycles as time unit. 

Granularity 

In load-balancing problems, the overheads are 
mainly communication and idle time, that we call 
blocking overhead. In our setting, the learning 
algorithm can only improve the performance by 
minimizing blocking, since the communication time 
represents the lower bound. Moreover, the 
communication overhead is proportional with the 
total data size of the work. For data-intensive 
applications with large messages, all other 
contributions to the communication time, like the 
latency or delay, can be neglected. The total work 
consists of W quantums, where each quantum 
processes an amount of qdata bytes, the 
communication time becomes 

WqT datacomm ..β=    ( 14) 

where β is the time to transmit a byte from the master 
to any slave. We assume it to be constant, as we do 
not consider heterogeneous communication 
networks. In the same way, the computation time can 
be expressed as a function of the work W by a first 
order equation. In this equation the linear term is the 
main contribution, especially for linear 
data-intensive applications that we consider. The 
computation time becomes 

WqT opcomp ..τ=   ( 15) 

where qop  is the number of operations per quantum 
work and τ represents the atomic computing time per 
‘operation' on the reference machine. However, a 
piece of code cannot be divided in equal operations, τ 
should be considered a reference computing time. It 
is the product qop..τ, the length of a run-time quantum, 
that we will use and that we considered to be 
constant. 
We then define the granularity as a relative measure 
of the amount of computation with respect to the 
amount of communication within a parallel 
algorithm implementation [14]: 
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It depends on hardware and software, so 
β

τ  is 

called the hardware granularity and 
data

op
q

q   the 

software granularity. The performance is affected by 
the overall granularity, independent of how the 
granularity is spread over software and hardware. 
 
We define gran as the granularity measured on the 
reference machine and grani the granularity of 
processor i. Since the communication time is fixed, 
the granularity of each processor is 

ii ppgrangran .=   ( 17) 
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Fig 2: Load balancing with a clear computation 
bottleneck. Execution profile(a) and overhead 

distribution (b)  



 

 
Fig 3: Load balancing with a clear communication 

bottleneck. Execution profile(a) and overhead 
distribution (b) 

 
We will investigate the non-trivial case of load 
balancing where the total computation power of the 
slaves matches the communication bandwidth of the 
master for a given total granularity. In other cases, 
there will be either a clear communication or 
computation bottleneck, what makes adaptive load 
balancing unnecessary. Indeed, with a total 
computation power that is lower than the master’s 
communication bandwidth, there is no bottleneck, 
the master will be able to serve the slaves constantly 
and these will work at 100% efficiency. This can be 
seen in the experiment of figure 2, where the total 
computation power is lower than the communication 
bandwidth. In that case, more processors can be 
added to increase the speedup. On the other hand, 
when the total computation power increases, the 
master will get requests at a higher rate and the 
communication becomes the bottleneck. Then, the 
slaves will start to block, waiting to be served and 
their efficiency drops. This can be seen in figure 3, 
where the total computation power is higher than the 
communication bandwidth. In that case, the surplus 
of slave processors should better be used for other 
work. In both cases, the distribution of the work can 
hardly be optimized.  
We will investigate the non-trivial case, when 
computation and communication speed match. In 
that case, workload assignment and synchronization 
becomes necessary. At the equilibrium point, an 
ideal load distribution exists, so that the master can 
serve the slaves constantly and these are fully busy. 
There will be no blocking on master or slaves, so 
their parallel runtime is 
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Where grani is the granularity of processor i. Since 
all parallel runtimes are equal (Eq. (2)), Eq. (18) 
equals Eq. (19) and wi can be calculated for each 
slave 
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We know that W is the summation of all wi, hence 
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This results in the load balancing equilibrium 
condition, which indicates a match between the 
systems communication bandwidth and processing 
power  
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We introduce the load balancing equilibrium 
factor lbe to quantify this match 
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Where lbe=1 reflects an equilibrium, lbe < 1 is for 
lower processing power (Fig 2, where lbe=0.5) and 
lbe > 1 indicates a communication bottleneck (Fig  3, 
where lbe=2)  
 
For a homogeneous system, grani is constant for all 
processors, and according to Eq.(22), the equilibrium 
condition becomes 2+= granp  and the speedup  is 
then 2−= pS . Note that p should be greater than 2, 
we need at least 2 slaves, so that one can compute 
when the other communicates. The load balancing 
equilibrium factor is then 
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4. MULTI AGENT REINFORCEMENT 

LEARNING 
 
Reinforcement learning (RL) is the problem faced by 
an agent that learns behavior through trial-and-error 
interactions with a dynamic environment. A model of 
reinforcement learning consists of a discrete set of 
environment states, a discrete set of agent actions 
and a set of scalar reinforcement signals. For each 
interaction the agent receives reinforcement and the 
next state of the environment, and chooses an action. 
The agent's job is to find a policy, i.e. a mapping 
from states to actions, which maximizes some 
long-turn measure of reinforcement. These rewards 
can take place arbitrarily far in the future. To obtain a 
high overall reward, an agent has to prefer actions 
that it has learned in the past and found to be good, 
i.e. exploitation, however discovering such actions is 
only possible by trying out alternative actions, i.e. 
exploration. Neither exploitation, nor exploration 
can be pursued exclusively. 
 
In our load-balancing problem setting processors are 
of the receiver-initiated type and can thus be viewed 
as agents, which we will give extra learning abilities.  
Each processor will be an independent RL agent, 
which tries to learn an optimal chunk size of data to 
ask the master, so that the blocking time for others is 
minimized and therefore also the total computation 
time. The agents’ actions are the possible amounts of 
data or block sizes available. Because we want to 
restrict ourselves to reinforcement learners with a 
discrete set of actions, we specify at the beginning a 
set of possible block sizes the agents can choose 



from. Since there are multiple slaves existing 
together, which influence each other, we have to use 
a multi-agent reinforcement learning scheme.  
In our application, the slaves can only be in one state 
and they share a common goal. As such this 
multi-agent problem can be viewed as a coordination 
game, in which the agents should learn to converge 
to the Pareto Optimal Nash equilibrium1 of the game.  
In [17] an algorithm for learning in a multi-agent 
coordination game is given. We describe it in short in 
the next subsection. 
 
Exploration in a multi-agent coordination game 
The learning scheme starts with a number of 
exploration periods and is followed by an 
exploitation phase. At the beginning of each 
exploration period, agents behave selfish and naive; 
i.e. they ignore the other agents in the environment 
and use some traditional reinforcement learning 
technique to maximize their payoff. The exploration 
period ends when the agents have found a Nash 
equilibrium. This will happen because it is assured 
by results from Learning Automata theory [8] and 
also holds for other reinforcement learning 
algorithms such as Q-learning [7][15]. 
Which Nash equilibrium the agents find is not known 
in advance, it depends on the initial conditions and 
the basin of attraction of the different equilibriums. 
The goal is to converge to the best Nash equilibrium, 
i.e. the Pareto Optimal equilibrium. 
 
After having converged, every agent will exclude its 
last action played, so that the joint action space 
becomes considerable smaller. In a new period of 
play, a new Nash equilibrium will be found. Before a 
new period starts, the agent keeps some statistics for 
the action it has converged too. When the agent has 
no actions left, its original action space is restored. 
New exploration periods are played until the user 
decides to stop the exploration phase and decides to 
exploit the best Nash equilibrium found. This is 
achieved without any communication between the 
agents, because they sense the same payoff for each 
joint action played.  
The joint action they choose after exploration is the 
best they have seen so far. Under some assumptions 
concerning period-length and number of periods 
played, convergence to the Pareto Optimal 
equilibrium is assured, even for stochastic 
rewards/payoffs see [17]. 
In the next subsection we explain how to use this 
multi-agent learning algorithm in the load balancing 
experiment, which can be viewed as an 
asynchronous version2 of a coordination game. 
 
5. EXPERIMENTAL SETUP 

                                                        
1An outcome of a game is said to be Pareto Optimal 
if there exists no other outcome, for which all the 
players simultaneously do better. A Nash equilibrium 
of a game is a solution for which no agent can do 
better by changing his policy, as all the other keep 
playing their Nash equilibrium policy [10]. 
2 Asynchronous in the sense that players do not take 
their actions synchronously, rewards may be delayed 
etc. 

 
To assess the presented algorithm for coarse grain 
data intensive applications on heterogeneous parallel 
hardware a synthetics approach has been used. An 
application has been written using the PVM [5] 
message-passing library to experiment with the 
different dimensions of the problem. The application 
has been designed not to perform any real 
computation, but instead it replaces the computation 
and communication phases by delays with equivalent 
duration3. 
 
For the experimental setup, H and lbe are 2 
experiment parameters. H and lbe are set to 1 in all 
experiments. The granularity of the processors will 
then be chosen randomly according to a normal 

distribution with 11
−

−
=

cce
paverage , derived 

from the homogeneous case granularity, Eq. (24), 
and Hstddev = . This guarantees the experiment 
to be in an interesting load balancing equilibrium. 
 
Learning to request data 
In our load balancing setting, the slaves use a 
reward-inaction learning automata scheme for selfish 
play during the exploration periods [8]. A learning 
automaton describes the internal state of an agent as 
a probability distribution according to which actions 
should be chosen. These probabilities are adjusted 
according to the success or failure of the actions 
taken. The update scheme we will use here is the 
reward-inaction update scheme, given in equation 
(25). A constant reward parameter a between 0 and 1 
is used to reinforce good actions. The feedback r 
gives the reinforcement from the environment. 
For this scheme it is proven that players will 
converge to a Nash equilibrium when it is used in a 
one-state coordination game, see [8]. 

))(1).((.)()1( npnranpnp iii −+=+  
if action i was chosen at time n 

)().(.)()1( npnranpnp jjj −=+  

       for all actions j different from i                 ( 25) 
 
The feedback r provided to the learner is the inverse 
blocking time, which is the time a slave has to wait 
before the master acknowledges its request for data. 
It is used to update the action probabilities by Eq.(25). 
Less interesting actions will incur higher blocking 
times and thus will have lower probability associated 
with them. 
In our experiment, the slaves will learn to request a 
chunk size that minimizes its blocking time. To that 
end each slave has a stochastic learning automaton 
which uses Eq.(25), as shown in Fig 4.  In the 
presented results the block size is a multiple of a 
given initial block size. Here the multiples are 1, 2 
and 3 … times the initial block size 
 
 

                                                        
3 The experimental application can easily be turned 
into a real application by replacing the delay 
producing code with real code. 
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Fig 4: Reinforcement learning during an exploration 

period. 
 
At the end of an exploration period the slaves have 
converged to a Nash equilibrium, i.e. each slave has 
learnt a block size to ask the master.  They send to the 
master their average performance during this period, 
which is the average amount of data each was able to 
compute. When the master has received this message 
from each slave, the overall reward, is sent back to 
each slave, which uses this to update its statistics for 
the action last played.  The overall reward the agents 
receive for the joint action played is given by the 
total average amount of data the agents computed in 
parallel during the period of play. This payoff can 
easily be attached to the data packages the master 
sends to its slaves, no extra communication is 
generated. The same argument goes for the slave 
sending period information to the master. 
 
The number of exploration periods is chosen in 
advance. After all periods have been played, the 
slaves chose the action which was rewarded best by 
the master. 
 
We will compare our adaptive algorithm with a static 
load-balancing scheme where fixed amounts of data 
are requested. 
 
6. EXPERIMENTS 
 
Figure 5 shows the time course of a typical 
experiment in its exploitation period with the 
computation, communication and blocking phases. 
(data size = 10GB, communication speed = 10MB/s, 
#slaves=3, average chunk size =1MB, H=1, lbe=1, 
the length of the exploration period = 100s and the 
number of periods = 10) 
 

 

 
Fig 5: Execution profile of the exploitation phase of 

a typical experiment with 3 slaves 
 
We observe that the slaves have learned to distribute 
the requests nicely and hence use the link with the 
master efficiently. Slave 3, which is the fastest 
processor with lowest granularity, is served 
constantly and has no blocking time. Slave 2 has 
some blocking time. However, it is the slowest 
processor, so the processing power of the system is 

maximally exploited. 
 
Performance results 
As shown in table 1, we have run several 
experiments with varying joint action spaces (JAS). 
We use up to 7 slaves with each 5 possible actions, 
which results in a joint action space with 57 
possibilities. The 4th column gives the absolute gain 
in total computation time for the adaptive 
multi-agent algorithm compared to the total 
computation time for the farming algorithm. The 5th 
column gives the gain in total computation time 
which is maximal possible for the given setting. The 
total computation time can only decrease when the 
idle time of the master is decreased. No gain is 
possible on the total communication time of the data. 
Therefore the last column gives the absolute gain 
compared to the gain which was maximal possible. 
In all experiments considerable improvements were 
made. Agents are able to find settings in which the 
faster slave is blocked less than the others, see also 
Fig. 5. The adaptive characteristic of the agents 
makes them able to take their heterogeneity into 
account. 
  
In larger joint action spaces the gain drops, but by 
adjusting the parameters of the learning algorithm, 
i.e. making sure the agents can explore more by 
enlarging the exploration periods length and  
increasing the number of exploration periods, 
performance gets better again in the last experiments. 
The data size increased from 10 to 30 GB in larger 
joint action spaces, the period length from 100 to 200 
time steps and the number of periods from 10 to 20.  
All the other settings were taken as above. The 
figures shown are averaged results for 10 runs of 
each experiment.    
 
Slaves Actions #JAS abs. 

gain 
(%) 

max. 
gain 
(%) 

rel. 
gain 
(%) 

2 3 9 8.40 13.54 62.00 
2 4 16 8.32 13.54 60.99 
2 5 32 6.64 13.54 49.02 
3 3 27 4.69 14.14 33.17 
3 5 125 4.33 14.14 30.65 
5 3 243 1.39 13.13 10.60 
5 5 3125 1.61 13.12 12.24 
7 3 2187 2.40 12.20 16.91 
7 5 7812

5 
3.47 14.20 24.42 

 
Table 1: Average gain in total computation time for 
adaptive load balancing compared to static load 
balancing (farming). 
 
 
Table 2 shows the results for uniform load balancing. 
In the uniform version, instead of each agent learning 
the best amount of chunk size to ask out of a given 
set of possible sizes, the agents will now choose each 
possible chunk size with a uniform distribution. 
Results show that uniform play is on average 
comparable to static load balancing. So, our learning 
approach performs better than both. 
 



 
 
 
 

Slaves Actions #JAS abs. gain 
 (%)      

max. gain 
 (%) 

rel. gain
(%) 

2 3 9 1.32 13.54 9.71 
2 4 16 -1.41 13.54 -10.41 
2 5 32 -1.30 13.54 -9.56 
3 3 27 -0.87 14.14 -6.12 
3 5 125 -1.48 14.14 -10.44 
5 3 243 -1.61 13.13 -12.28 
5 5 3125 -1.78 13.12 -13.59 
7 3 2187 1.01 14.20 7.11 
7 5 78125 0.84 14.20 5.89 

 
Table 2: Average gain in total computation time for 
uniform load balancing compared to static load 
balancing (farming). 
 
Overhead Analysis 
Table 3 gives an overview of the gain in blocking 
overhead. The blocking time represents the 
cumulated blocking time of all the slaves during the 
parallel run, the idle time is the idle time of the 
master. The numbers presented here are averaged 
over 10 independent runs. Initially a parallel run 
(using job farming) with 3 slaves which can use 3 
different block sizes resulted in an average of 165.27 
seconds of idle time for the master. However, when 
learning is used the idle time of master reduces to 
115.08 seconds, a gain of 30.37%. The gain in 
blocking time follows the same interpretation. 
 
 Slaves  Actions  Idle 

 (gain) 
 Blocking 
 (gain) 

 2  3  55.6%  50.7% 
 2  4  54.3%   51.3% 
 2  5  47.7%  38.7% 
 3  3  30.3%  20.7% 
 3  5  26.8%  20.7% 
 5  3  4.0%  -3.4% 
 5  5  0.98%  3.20% 
 7  3  9.70%  3.00% 
 7  5  11.6%  3.00% 
 
Table 3: Average gain for adaptive load balancing  in 
idle time of the master and total blocking time of the 
slaves. 
 
As shown the task of reducing the blocking time 
becomes harder as the number of slaves increases. 
This is a direct result of the exponential increase in 
size of the search space. 
 
 
7. CONCLUSIONS 
 
Complex, heterogeneous system controlled for 
optimal use by multi-agent reinforcement learning is 
promising. We implemented reinforcement learners 
for distributed load balancing of data intensive 
applications. Together they use a novel technique of 
coordinated exploration, which was already tested 
and proven to convergence to the Pareto Optimal 

Nash equilibrium in stochastic coordination games 
from game theory. The master-slave setup we used 
for our load balancing experiments was viewed as an 
asynchronous coordination game.  Results show that 
the multi-agent algorithm used still works for 
asynchronous games. The first performance results 
show considerable improvements upon a static load 
balancer.  The agents are able to find settings in 
which the faster slave is less blocked during 
communication with the master than the others. The 
adaptive characteristic of the agents makes them able 
to take their heterogeneity into account. Even more 
when a slave is removed from the set-up, the 
remaining agents can adjust themselves tot the new 
situation. 
 
The algorithm works locally on the slaves 
(receiver-initiated), thus acting like intelligent agents. 
The agents use both local and global information in 
their learning process, however no extra 
communication is needed in-between the slaves to 
achieve this global information. Every agent 
communicates its period-performances to the master, 
which in turn will send the global information back 
to every slave. This extra information can be 
attached to the global data packages and requests, 
without causing extra overload. 
We are planning to use this multi-agent approach for 
data intensive applications such as compression 
applications. 
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