
Adaptive Load Balancing of Parallel Applications with Multi-Agent
Reinforcement Learning on Heterogeneous Systems

Johan PARENT, Katja VERBEECK, Ann NOWE, Kris STEENHAUT
COMO, VUB

Brussels, Belgium
Email: johan@info.vub.ac.be, {kaverbee, an.nowe, ksteenha}@vub.ac.be

Jan LEMEIRE, Erik DIRKX
PADX, VUB

Brussels, Belgium
Email: jlemeire@info.vub.ac.be, erik@info.vub.ac.be

Submitted for Scientific Programming journal, special issue on Distributed Computing and Computation, IOS Press

ABSTRACT
We report on the improvements that can be achieved
by applying machine learning techniques, in
particular reinforcement learning, for the dynamic
load balancing of parallel applications. The
applications being considered here are coarse grain
data intensive applications. Such applications put
high pressure on the interconnect of the hardware.
Synchronization and load balancing in complex,
heterogeneous networks need fast, flexible, adaptive
load balancing algorithms. Viewing a parallel
application as a one-state coordination game in the
framework of multi-agent reinforcement learning,
and by using a recently introduced multi-agent
exploration technique, we are able to improve upon
the classic job farming approach. The improvements
are achieved with limited computation and
communication overhead.

Keywords: Parallel processing, Adaptive load
balancing, reinforcement learning, heterogeneous
network, intelligent agents, data intensive
applications.

1. INTRODUCTION

Load balancing is crucial for parallel applications
since it ensures a good use of the capacity of the
parallel processing units. We look at applications
which put high demands on the parallel interconnect
in terms of throughput. Examples are compression
applications which both process important amounts
of data and require a lot of computations. Data
intensive applications [2] require a lot of
communication and are therefore dreaded for most
parallel architectures. The problem is exacerbated
when working with heterogeneous parallel hardware.
This is the case in our experiment using a
heterogeneous cluster of PC’s to execute parallel
applications with a master-slave software
architecture. Adaptive load balancing is
indispensable if system performance is unpredictable
and no prior knowledge is available [1].

In the multi-agent community, adaptive load
balancing is an interesting testbed for multi-agent
learning algorithms, likewise for multi-agent
reinforcement algorithms as in [9][12]. However the
interpretations and models of load balancing there
are not always in the view of real parallel

applications. We report on the results obtained by
adaptive agents in the farming scheme.
The idea is to view all slaves as independent
reinforcement learning agents who try to learn the
amount of data to request from the master, so as to
minimize the total run time of the parallel application
and/or the total idle time of the master. As the agents
share a common goal, from the game theoretical
point of view [10], this setup can be seen as a
coordination game. Recently a new exploration
technique for individual reinforcement learners used
in coordination games was introduced, see [16][17].
This technique allows the slave to learn
independently and adaptively which amount of data
to request to the master; aiming at an efficient use of
the communication link by the group of agents.
Our results show that the multi-agent learning
technique improves upon the sequential job farming
scheme for parallelizing data intensive applications.

Section 2 defines the problem of load balancing and
gives an overview of the existing load balancing
strategies. Section 3 discusses performance metrics,
while section 4 introduces reinforcement learning
and outlines the multi-agent reinforcement learning
algorithm. Section 5 and 6 give the experimental
setup and results achieved. Finally some conclusions
are drawn in section 7.

2. LOAD BALANCING/JOB SCHEDULING

Load balancing aims at assigning to each processor
an amount of work proportional to its performance,
minimizing the execution time of the program.
However, processor heterogeneity and performance
fluctuations make static load balancing insufficient
[1]. We investigate dynamic, local, distributed load
balancing strategies [18], which are based on
heuristics, since finding the optimal solution has
shown to be NP-complete in general [11]. Following
the agent philosophy, the request assignment strategy
is a receiver-initiated algorithm [6], in which the
“consumers” of workload look for producers [13].
The goal is a fast adaptive system that optimizes
computation and synchronization.

Problem description
In situations were the communication time is not
negligible, as is the case for data intensive
applications, faster processing units can incur serious
penalties due to slower units. A data request issued

by a slow unit can stall a faster unit when using
farming. This of course results in a reduction of the
parallelism.
This phenomenon is bound to occur when slaves
request identical amounts of data from the master.
This is independently of the actual amount by
neglecting the communication delay, acceptable
given sufficiently large requests.
In order to improve upon the job-farming scheme
when working with heterogeneous hardware, the
slaves have to request different amount of data from
the master (server). Indeed their respective
consumption of communication bandwidth should be
proportional to their processing power. Slower
processing units should avoid obstructing faster ones
by requesting less data.

Computation model
The initial computation model is job farming. In this
master-slave architecture the slaves (one per
processing unit) request a chunk of a certain size
from the master. As soon as the data has been
processed the result is transferred to the master and
the slave sends a new request (figure 1).

master

slave 1 slave 2 slave p

1. request chunk

2. send chunk

3. data
crunching

4. send result

communication
bottleneck

heterogeneous
processors

Fig 1: Model.

This scheme has the advantage of being both simple
and efficient. Indeed, in the case of heterogeneous
hardware, the load (amount of processed data) will
depend on the processing speed of the different
processing units. Faster processing units will more
frequently request data and thus be able to process
more data.
The bottleneck of data intensive applications with a
master-slave architecture is the link connecting the
slaves to the master. In the presented experiments all
the slaves share a single link to their master (through
an ethernet switch). In this scenario the application’s
performance will be influenced by the efficient use
of the shared link to the master. Indeed, the fact that
the application has a coarse granularity only ensures
that the computation communication ratio is larger
than one. But it does not preclude a low parallel
efficiency even when using job farming.

3. PERFORMANCE METRICS

We quantify the benefit of parallel processing by the
speedup S=Tseq/Tpar, how much faster the parallel
program runs with respect to the runtime of the
sequential version. The portion of Tpar that is not
used for useful computation is therefore as
considered lost processor cycles [4], or overhead:

.. spar TpTOverhead −= (1)

Hence, the choice of speedup as the performance
measure implies means that each processor has Tpar
time allocated to perform its part of the job:

....21 p
parparparpar TTTT ==== (2)

.,∑+=
j

ji
overhead

i
comp

i
par TTT (3)

With i
compT the time that processor i performs its part

wi of the total useful work W and ji
overheadT , the time

not overlapped with the computation of the overhead
of type j. To study the overall impact of the overhead,
we can rewrite Eq. (2) as

.
p

T
T i

i
par

par

∑
= (4)

We will develop the overhead equations for
homogeneous processors (with equal computing
power) which implies that

∑=
i

i
compseq TT . (5)

Together with Eqs. (3) and (4), the speedup can then
be rewritten as:

.

1

,

seq

i j

ji
overhead

T

T
pS

∑∑
+

= (6)

The impact of the overhead on the speedup is thus
reflected by its ratio with the sequential runtime. Let
us therefore define this ratio for each overhead type j:

.
seq

j
overheadsj

T
T

Ovh = (7)

These ratios quantify the cost of the overheads. Note

that j
overheadT is the summation of that type of

overhead over all processors i.

Heterogeneity

Let us have a look how system heterogeneity affects
the performance. For different computing powers,
we introduce the relative speed ppi, measured with
respect to a reference machine:

)(
)(

WT
WT

pp i
comp

comp
i = (8)

Unlike most works on heterogeneous parallel
systems [19], we express the speeds relatively to a
fixed machine [3], and not relatively to the fastest
processor. We think that choosing a fixed reference,
with which the sequential runtime Tseq is measured,
allows a clearer performance analysis.
Equation (5) is based on the assumption that the
runtime does not depend on a particular portion of
the work. Similarly, we assume that the various
processors essentially differ in their clock speed [3]
and not in the size of the task. The total relative
processing power of the parallel system is then:

∑=
i

ippPP (9)

For a heterogeneous system, the efficiency is the
performance compared with the ideal performance,
namely PP:

PP
SE = (10)

With the average relative speed
p

PPpp = we

define the degree of heterogeneity H of a parallel
system by the standard deviation of ppi [3]:

()
p

pppp
H i

i∑ −
=

2

 (11)

To continue the performance analysis of the previous
paragraph, Eq. (5) should be replaced by

∑=
i

i
compis TppT . (12)

Also for the calculation of the overhead ratio Ovhj

(Eq. 7), ji
overheadT , should be scaled with ppi

seq

i

ji
overheadi

j

T

Tpp
Ovh

∑
=

,.
 (13)

Thus, we can conclude that all time measurements on
a processor should be scaled with ppi. Slower
processors will carry out less useful work in a given
time and the parallel overheads will have less impact
on the speedup. This result corresponds with the
approach proposed in [4], which essentially uses
processor cycles as time unit.

Granularity

In load-balancing problems, the overheads are
mainly communication and idle time, that we call
blocking overhead. In our setting, the learning
algorithm can only improve the performance by
minimizing blocking, since the communication time
represents the lower bound. Moreover, the
communication overhead is proportional with the
total data size of the work. For data-intensive
applications with large messages, all other
contributions to the communication time, like the
latency or delay, can be neglected. The total work
consists of W quantums, where each quantum
processes an amount of qdata bytes, the
communication time becomes

WqT datacomm ..β= (14)

where β is the time to transmit a byte from the master
to any slave. We assume it to be constant, as we do
not consider heterogeneous communication
networks. In the same way, the computation time can
be expressed as a function of the work W by a first
order equation. In this equation the linear term is the
main contribution, especially for linear
data-intensive applications that we consider. The
computation time becomes

WqT opcomp ..τ= (15)

where qop is the number of operations per quantum
work and τ represents the atomic computing time per
‘operation' on the reference machine. However, a
piece of code cannot be divided in equal operations, τ
should be considered a reference computing time. It
is the product qop..τ, the length of a run-time quantum,
that we will use and that we considered to be
constant.
We then define the granularity as a relative measure
of the amount of computation with respect to the
amount of communication within a parallel
algorithm implementation [14]:

data

op

commcomm

comp

q
q

OvhT
T

gran .1
β
τ

=== (16)

It depends on hardware and software, so
β

τ is

called the hardware granularity and
data

op
q

q the

software granularity. The performance is affected by
the overall granularity, independent of how the
granularity is spread over software and hardware.

We define gran as the granularity measured on the
reference machine and grani the granularity of
processor i. Since the communication time is fixed,
the granularity of each processor is

ii ppgrangran .= (17)

Load balancing equilibrium

(2a)

(2b)

Fig 2: Load balancing with a clear computation
bottleneck. Execution profile(a) and overhead

distribution (b)

Fig 3: Load balancing with a clear communication

bottleneck. Execution profile(a) and overhead
distribution (b)

We will investigate the non-trivial case of load
balancing where the total computation power of the
slaves matches the communication bandwidth of the
master for a given total granularity. In other cases,
there will be either a clear communication or
computation bottleneck, what makes adaptive load
balancing unnecessary. Indeed, with a total
computation power that is lower than the master’s
communication bandwidth, there is no bottleneck,
the master will be able to serve the slaves constantly
and these will work at 100% efficiency. This can be
seen in the experiment of figure 2, where the total
computation power is lower than the communication
bandwidth. In that case, more processors can be
added to increase the speedup. On the other hand,
when the total computation power increases, the
master will get requests at a higher rate and the
communication becomes the bottleneck. Then, the
slaves will start to block, waiting to be served and
their efficiency drops. This can be seen in figure 3,
where the total computation power is higher than the
communication bandwidth. In that case, the surplus
of slave processors should better be used for other
work. In both cases, the distribution of the work can
hardly be optimized.
We will investigate the non-trivial case, when
computation and communication speed match. In
that case, workload assignment and synchronization
becomes necessary. At the equilibrium point, an
ideal load distribution exists, so that the master can
serve the slaves constantly and these are fully busy.
There will be no blocking on master or slaves, so
their parallel runtime is

WBTpar .1 = (18)

)1(... >+=+= iwBgranwBTTT iii
i

comp
i

comm
i
par

(19)
Where grani is the granularity of processor i. Since
all parallel runtimes are equal (Eq. (2)), Eq. (18)
equals Eq. (19) and wi can be calculated for each
slave

ii
i gran

W
granB
WBw

+
=

+
=

1)1.(
.

 (20)

We know that W is the summation of all wi, hence

∑ ∑ =
+

=
i i i

i W
gran
Ww

1
 (21)

This results in the load balancing equilibrium
condition, which indicates a match between the
systems communication bandwidth and processing
power

1
1

1
=

+∑
i igran

 (22)

We introduce the load balancing equilibrium
factor lbe to quantify this match

∑ +
=

i igran
lbe

1
1

 (23)

Where lbe=1 reflects an equilibrium, lbe < 1 is for
lower processing power (Fig 2, where lbe=0.5) and
lbe > 1 indicates a communication bottleneck (Fig 3,
where lbe=2)

For a homogeneous system, grani is constant for all
processors, and according to Eq.(22), the equilibrium
condition becomes 2+= granp and the speedup is
then 2−= pS . Note that p should be greater than 2,
we need at least 2 slaves, so that one can compute
when the other communicates. The load balancing
equilibrium factor is then

gran

plbe
+
−

=
1

1
 (24)

4. MULTI AGENT REINFORCEMENT

LEARNING

Reinforcement learning (RL) is the problem faced by
an agent that learns behavior through trial-and-error
interactions with a dynamic environment. A model of
reinforcement learning consists of a discrete set of
environment states, a discrete set of agent actions
and a set of scalar reinforcement signals. For each
interaction the agent receives reinforcement and the
next state of the environment, and chooses an action.
The agent's job is to find a policy, i.e. a mapping
from states to actions, which maximizes some
long-turn measure of reinforcement. These rewards
can take place arbitrarily far in the future. To obtain a
high overall reward, an agent has to prefer actions
that it has learned in the past and found to be good,
i.e. exploitation, however discovering such actions is
only possible by trying out alternative actions, i.e.
exploration. Neither exploitation, nor exploration
can be pursued exclusively.

In our load-balancing problem setting processors are
of the receiver-initiated type and can thus be viewed
as agents, which we will give extra learning abilities.
Each processor will be an independent RL agent,
which tries to learn an optimal chunk size of data to
ask the master, so that the blocking time for others is
minimized and therefore also the total computation
time. The agents’ actions are the possible amounts of
data or block sizes available. Because we want to
restrict ourselves to reinforcement learners with a
discrete set of actions, we specify at the beginning a
set of possible block sizes the agents can choose

from. Since there are multiple slaves existing
together, which influence each other, we have to use
a multi-agent reinforcement learning scheme.
In our application, the slaves can only be in one state
and they share a common goal. As such this
multi-agent problem can be viewed as a coordination
game, in which the agents should learn to converge
to the Pareto Optimal Nash equilibrium1 of the game.
In [17] an algorithm for learning in a multi-agent
coordination game is given. We describe it in short in
the next subsection.

Exploration in a multi-agent coordination game
The learning scheme starts with a number of
exploration periods and is followed by an
exploitation phase. At the beginning of each
exploration period, agents behave selfish and naive;
i.e. they ignore the other agents in the environment
and use some traditional reinforcement learning
technique to maximize their payoff. The exploration
period ends when the agents have found a Nash
equilibrium. This will happen because it is assured
by results from Learning Automata theory [8] and
also holds for other reinforcement learning
algorithms such as Q-learning [7][15].
Which Nash equilibrium the agents find is not known
in advance, it depends on the initial conditions and
the basin of attraction of the different equilibriums.
The goal is to converge to the best Nash equilibrium,
i.e. the Pareto Optimal equilibrium.

After having converged, every agent will exclude its
last action played, so that the joint action space
becomes considerable smaller. In a new period of
play, a new Nash equilibrium will be found. Before a
new period starts, the agent keeps some statistics for
the action it has converged too. When the agent has
no actions left, its original action space is restored.
New exploration periods are played until the user
decides to stop the exploration phase and decides to
exploit the best Nash equilibrium found. This is
achieved without any communication between the
agents, because they sense the same payoff for each
joint action played.
The joint action they choose after exploration is the
best they have seen so far. Under some assumptions
concerning period-length and number of periods
played, convergence to the Pareto Optimal
equilibrium is assured, even for stochastic
rewards/payoffs see [17].
In the next subsection we explain how to use this
multi-agent learning algorithm in the load balancing
experiment, which can be viewed as an
asynchronous version2 of a coordination game.

5. EXPERIMENTAL SETUP

1An outcome of a game is said to be Pareto Optimal
if there exists no other outcome, for which all the
players simultaneously do better. A Nash equilibrium
of a game is a solution for which no agent can do
better by changing his policy, as all the other keep
playing their Nash equilibrium policy [10].
2 Asynchronous in the sense that players do not take
their actions synchronously, rewards may be delayed
etc.

To assess the presented algorithm for coarse grain
data intensive applications on heterogeneous parallel
hardware a synthetics approach has been used. An
application has been written using the PVM [5]
message-passing library to experiment with the
different dimensions of the problem. The application
has been designed not to perform any real
computation, but instead it replaces the computation
and communication phases by delays with equivalent
duration3.

For the experimental setup, H and lbe are 2
experiment parameters. H and lbe are set to 1 in all
experiments. The granularity of the processors will
then be chosen randomly according to a normal

distribution with 11
−

−
=

cce
paverage , derived

from the homogeneous case granularity, Eq. (24),
and Hstddev = . This guarantees the experiment
to be in an interesting load balancing equilibrium.

Learning to request data
In our load balancing setting, the slaves use a
reward-inaction learning automata scheme for selfish
play during the exploration periods [8]. A learning
automaton describes the internal state of an agent as
a probability distribution according to which actions
should be chosen. These probabilities are adjusted
according to the success or failure of the actions
taken. The update scheme we will use here is the
reward-inaction update scheme, given in equation
(25). A constant reward parameter a between 0 and 1
is used to reinforce good actions. The feedback r
gives the reinforcement from the environment.
For this scheme it is proven that players will
converge to a Nash equilibrium when it is used in a
one-state coordination game, see [8].

))(1).((.)()1(npnranpnp iii −+=+
if action i was chosen at time n

)().(.)()1(npnranpnp jjj −=+

 for all actions j different from i (25)

The feedback r provided to the learner is the inverse
blocking time, which is the time a slave has to wait
before the master acknowledges its request for data.
It is used to update the action probabilities by Eq.(25).
Less interesting actions will incur higher blocking
times and thus will have lower probability associated
with them.
In our experiment, the slaves will learn to request a
chunk size that minimizes its blocking time. To that
end each slave has a stochastic learning automaton
which uses Eq.(25), as shown in Fig 4. In the
presented results the block size is a multiple of a
given initial block size. Here the multiples are 1, 2
and 3 … times the initial block size

3 The experimental application can easily be turned
into a real application by replacing the delay
producing code with real code.

Chunk
size P

S1

S2

S3

P1

P2

P3

request Si

blocking

comm & comp
of Si

feedback:
1/blocktime

random choice of
Si ~ Pi

Fig 4: Reinforcement learning during an exploration

period.

At the end of an exploration period the slaves have
converged to a Nash equilibrium, i.e. each slave has
learnt a block size to ask the master. They send to the
master their average performance during this period,
which is the average amount of data each was able to
compute. When the master has received this message
from each slave, the overall reward, is sent back to
each slave, which uses this to update its statistics for
the action last played. The overall reward the agents
receive for the joint action played is given by the
total average amount of data the agents computed in
parallel during the period of play. This payoff can
easily be attached to the data packages the master
sends to its slaves, no extra communication is
generated. The same argument goes for the slave
sending period information to the master.

The number of exploration periods is chosen in
advance. After all periods have been played, the
slaves chose the action which was rewarded best by
the master.

We will compare our adaptive algorithm with a static
load-balancing scheme where fixed amounts of data
are requested.

6. EXPERIMENTS

Figure 5 shows the time course of a typical
experiment in its exploitation period with the
computation, communication and blocking phases.
(data size = 10GB, communication speed = 10MB/s,
#slaves=3, average chunk size =1MB, H=1, lbe=1,
the length of the exploration period = 100s and the
number of periods = 10)

Fig 5: Execution profile of the exploitation phase of

a typical experiment with 3 slaves

We observe that the slaves have learned to distribute
the requests nicely and hence use the link with the
master efficiently. Slave 3, which is the fastest
processor with lowest granularity, is served
constantly and has no blocking time. Slave 2 has
some blocking time. However, it is the slowest
processor, so the processing power of the system is

maximally exploited.

Performance results
As shown in table 1, we have run several
experiments with varying joint action spaces (JAS).
We use up to 7 slaves with each 5 possible actions,
which results in a joint action space with 57
possibilities. The 4th column gives the absolute gain
in total computation time for the adaptive
multi-agent algorithm compared to the total
computation time for the farming algorithm. The 5th
column gives the gain in total computation time
which is maximal possible for the given setting. The
total computation time can only decrease when the
idle time of the master is decreased. No gain is
possible on the total communication time of the data.
Therefore the last column gives the absolute gain
compared to the gain which was maximal possible.
In all experiments considerable improvements were
made. Agents are able to find settings in which the
faster slave is blocked less than the others, see also
Fig. 5. The adaptive characteristic of the agents
makes them able to take their heterogeneity into
account.

In larger joint action spaces the gain drops, but by
adjusting the parameters of the learning algorithm,
i.e. making sure the agents can explore more by
enlarging the exploration periods length and
increasing the number of exploration periods,
performance gets better again in the last experiments.
The data size increased from 10 to 30 GB in larger
joint action spaces, the period length from 100 to 200
time steps and the number of periods from 10 to 20.
All the other settings were taken as above. The
figures shown are averaged results for 10 runs of
each experiment.

Slaves Actions #JAS abs.

gain
(%)

max.
gain
(%)

rel.
gain
(%)

2 3 9 8.40 13.54 62.00
2 4 16 8.32 13.54 60.99
2 5 32 6.64 13.54 49.02
3 3 27 4.69 14.14 33.17
3 5 125 4.33 14.14 30.65
5 3 243 1.39 13.13 10.60
5 5 3125 1.61 13.12 12.24
7 3 2187 2.40 12.20 16.91
7 5 7812

5
3.47 14.20 24.42

Table 1: Average gain in total computation time for
adaptive load balancing compared to static load
balancing (farming).

Table 2 shows the results for uniform load balancing.
In the uniform version, instead of each agent learning
the best amount of chunk size to ask out of a given
set of possible sizes, the agents will now choose each
possible chunk size with a uniform distribution.
Results show that uniform play is on average
comparable to static load balancing. So, our learning
approach performs better than both.

Slaves Actions #JAS abs. gain
 (%)

max. gain
 (%)

rel. gain
(%)

2 3 9 1.32 13.54 9.71
2 4 16 -1.41 13.54 -10.41
2 5 32 -1.30 13.54 -9.56
3 3 27 -0.87 14.14 -6.12
3 5 125 -1.48 14.14 -10.44
5 3 243 -1.61 13.13 -12.28
5 5 3125 -1.78 13.12 -13.59
7 3 2187 1.01 14.20 7.11
7 5 78125 0.84 14.20 5.89

Table 2: Average gain in total computation time for
uniform load balancing compared to static load
balancing (farming).

Overhead Analysis
Table 3 gives an overview of the gain in blocking
overhead. The blocking time represents the
cumulated blocking time of all the slaves during the
parallel run, the idle time is the idle time of the
master. The numbers presented here are averaged
over 10 independent runs. Initially a parallel run
(using job farming) with 3 slaves which can use 3
different block sizes resulted in an average of 165.27
seconds of idle time for the master. However, when
learning is used the idle time of master reduces to
115.08 seconds, a gain of 30.37%. The gain in
blocking time follows the same interpretation.

 Slaves Actions Idle

 (gain)
 Blocking
 (gain)

 2 3 55.6% 50.7%
 2 4 54.3% 51.3%
 2 5 47.7% 38.7%
 3 3 30.3% 20.7%
 3 5 26.8% 20.7%
 5 3 4.0% -3.4%
 5 5 0.98% 3.20%
 7 3 9.70% 3.00%
 7 5 11.6% 3.00%

Table 3: Average gain for adaptive load balancing in
idle time of the master and total blocking time of the
slaves.

As shown the task of reducing the blocking time
becomes harder as the number of slaves increases.
This is a direct result of the exponential increase in
size of the search space.

7. CONCLUSIONS

Complex, heterogeneous system controlled for
optimal use by multi-agent reinforcement learning is
promising. We implemented reinforcement learners
for distributed load balancing of data intensive
applications. Together they use a novel technique of
coordinated exploration, which was already tested
and proven to convergence to the Pareto Optimal

Nash equilibrium in stochastic coordination games
from game theory. The master-slave setup we used
for our load balancing experiments was viewed as an
asynchronous coordination game. Results show that
the multi-agent algorithm used still works for
asynchronous games. The first performance results
show considerable improvements upon a static load
balancer. The agents are able to find settings in
which the faster slave is less blocked during
communication with the master than the others. The
adaptive characteristic of the agents makes them able
to take their heterogeneity into account. Even more
when a slave is removed from the set-up, the
remaining agents can adjust themselves tot the new
situation.

The algorithm works locally on the slaves
(receiver-initiated), thus acting like intelligent agents.
The agents use both local and global information in
their learning process, however no extra
communication is needed in-between the slaves to
achieve this global information. Every agent
communicates its period-performances to the master,
which in turn will send the global information back
to every slave. This extra information can be
attached to the global data packages and requests,
without causing extra overload.
We are planning to use this multi-agent approach for
data intensive applications such as compression
applications.

8. REFERENCES

[1] I. Banicescu and V. Velusamy, “Load

Balancing Highly Irregular Computations with the
Adaptive Factoring”, Proceedings of the 16th
International Parallel & Distributed Processing
Symposium, IEEE, Los Alamitos, California, 2002.

[2] M. D. Beynon, T. Kurc et al. “Efficient
Manipulation of Large Datasets on Heterogeneous
Storage Systems”, Proceedings of the 16th
International Parallel & Distributed Processing
Symposium, IEEE, Los Alamitos, California, 2002.

[3] Clematis, A. and Corana, A., “Modeling
performance of heterogeneous parallel computing
systems”, In Parallel Computing 25, Elsevier
Science, 1999.

[4] Crovella, M. E. and Leblanc, T.J., “Parallel
Performance Prediction using Lost Cycles
Analysis”, in Proc. of Supercomputing ’94, IEEE
Computer Society, 1994.

[5] A. Geist, A. Beguelin et al., “PVM: Parallel
Virtual Machine”, the MIT press, 1994.

[6] D. Gupta and P. Bepari, "Load sharing in
distributed systems", In Proceedings of the
National Workshop on Distributed Computing,
January 1999.

[7] Kaelbling L.P., Litmann M.L., Moore A.W.,:
Reinforcement Learning: A Survey. Journal of
Artificial Intelligence Research 4 (1996) p
237-285.

[8] Narendra K., Thathachar M., “Learning
Automata: An Introduction”, Prentice-Hall (1989).

[9] Nowé, A., Verbeeck, K., “Distributed
Reinforcement learning, Loadbased Routing a case
study”, Proceedings of the Neural, Symbolic and
Reinforcement Methods for sequence Learning

Workshop at ijcai99, 1999.
[10] Osborne J.O.,Rubinstein A., “A course in game

theory”, Cambridge, MA: MIT Press (1994).
 [11] C.C. Price and S. Krishnaprasad, “Software

allocation models for distributed systems”, in
Proceedings of the 5th International Conference on
Distributed Computing, pages 40-47, 1984.

[12] Schaerf A., Shoham Y., Tennenholtz M.,
“Adaptive Load Balancing: A Study in
Multi-Agent Learning”, Journal of Artificial
Intelligence Research (1995) 475-500.

[13] T. Schnekenburger and G. Rackl,
“Implementing Dynamic Load Distribution
Strategies with Orbix”, International Conference
on Parallel and Distributed Processing Techniques
and Applications (PDPTA'97), Las Vegas, Nevada,
1997.

[14] Stone H.S., 1993. High-Performance Computer
Architecture, Addison-Wesley, Massachusetts,
1993.

[15] Sutton, R.S., Barto, A.G., “Reinforcement
Learning: An introduction”, Cambridge, MA: MIT
Press (1998).

[16] Verbeeck, K., Nowé, A., Lenaerts T., Parent, J.,
“Learning to reach the Pareto Optimal Nash
Equilibrium as a Team”, LNAI 2557- Proceedings
of the 15th Australian Joint Conference on
Artificial Intelligence. Pp 407- 418 (2002).

[17] Verbeeck, K., Nowé, Tuyls, K.,”Coordinated
Exploration in Stochastic Common Interest
Games”, Third symposium on Adaptive Agents and
Multi-agents Systems, AAMAS-3. (2003)

[18] M.J. Zaki, Wei Li; S. Parthasarathy,
“Customized dynamic load balancing for a network
of workstations”, Proceedings of the High
Performance Distributed Computing (HPDC'96),
IEEE, 1996.

[19] X. Zhang, Y. Yan, “Modeling and
characterizing parallel computing performance on
heterogeneous networks of workstations”, in Proc.
of the 7th IEEE Symposium on Par. And Distr.
Proc., IEEE, 1995.

