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Abstract

From causal theory it is known that the indepen-
dencies entailed by deterministic relations in a
stochastic distribution cannot be represented by
a faithful causal model. Deterministic relations
lead to situations in which either of two vari-
ablesX and Y become conditionally indepen-
dent from a third variableZ by conditioning on
the other variable. More generally, this occurs
when X and Y contain the same information
aboutZ, they are calledinformation-equivalent.
The joint distribution defines anequivalent par-
titioning of the domains ofX andY by which
only the states are related for which the condi-
tional distribution of targetZ is the same, hence
P (Z | X) = P (Z | Y ). We propose to select
the relation with the target variable containing
the least complexity. Under the assumption that
complexity does not increase along a Markov
chain, this selection criterion results in consistent
models. Faithfulness of the graph can be reestab-
lished by limiting the conditional independencies
by the simplicity criterion in cases of equivalent
information. On the other hand, all conditional
independencies among the variables can be re-
trieved from the graph by a generalized definition
of the d-separation property. Finally, the PC al-
gorithm was extended to learn models containing
information-equivalent variables from data.

1 INTRODUCTION

A causal model offers a representation of the condi-
tional independencies (⊥⊥) of a joint distribution by a Di-
rected Acyclic Graph (DAG). The graphical condition of
d-separation(⊥) allows to determine the dependency of
two variables. A causal model is calledfaithful if there is
a complete correspondence between⊥⊥ and⊥ - the model
provides a dense description of the relational regularities

found in the data. To develop the theory of causal mod-
els, Pearl used an axiomatic characterization of probabilis-
tic dependency [Pea88]. Four properties of conditional in-
dependencies between variables are taken as axioms: sym-
metry, decomposition, weak union and contraction. A fifth
condition, intersection, only holds for strictly positive dis-
tributions:

X⊥⊥Z |W, Y∧ Y⊥⊥Z |W, X⇒ X, Y⊥⊥Z |W (1)

whereA⊥⊥B | C stands for the independency ofA andB
by conditioning onC. The condition claims that if 2 vari-
ables depend onZ, it is impossible that each of the two
variables will render the other irrelevant. Most theorems of
causal theory do not depend on the intersection condition,
but some of the important theorems, such as the unique-
ness of minimal I-maps, are based on it. Faithfulness is the
main motivation for the causal interpretation of Bayesian
networks. The independendencies in data are qualitative
regularities and if a minimal, unique model is able to pre-
dict all reguluraties, it must come close to reality.

A well-known case for which the intersection condition is
not valid, is when the model contains deterministic rela-
tions. Most research in causal models therefore restricts
itself to probabilistic relations. The researchers argue that
variables that are completely determined by others are not
essential in the model since they contain redundant infor-
mation. Our approach is developed in the perspective of
building information models for offering insight into com-
puter systems. Performance models contain many deter-
ministic relations. But even when application and system
parameters determine the performance completely, inter-
mediate variables that influence the outcome should be in-
cluded in the model for providing insight in the results. Ex-
amples are memory usage, cache misses or number of float-
ing point operations. Fig. 1 shows a performance model of
a sort algorithm. At the left are the parameters, such as the
size of the array to be sorted, the type of the elements, the
processor clock frequency, etc. Through intermediate vari-
ables, like the number of basic operations#operations
and the time of one operationT1op, the computation time
Tcomp is calculated.



Figure 1: Performance model of a sort application with pa-
rametersarraysize andelementtype

Recent research developed methods for performing infer-
ences in Bayesian Networks with functional dependen-
cies [CDLS99, CS04]. Geiger and Spirtes et all. de-
veloped a condition,D-separation, to detect the depen-
dencies entailed by deterministic relations from the causal
model [Gei90, SGS93]. Our approach intends to integrate
information-equivalence into causal models such that faith-
fulness is guaranteed. We will show that the problematic
case in which

X⊥⊥Z | Y ∧ Y⊥⊥Z | X ⇒ X, Y⊥⊥Z (2)

is violated, happens whenX andY containequivalent in-
formation aboutZ, a more general condition than just a
deterministic relation. Current causal modeling does not
support the faithful representation of such situations. The
left-hand conditional independencies suggest that the edges
X − Z andY − Z should not be present in the graph. But
if X or Y are correlated withZ, at least one of both should
be adjacent toZ in the absence of other variables. The so-
lution here proposed also holds under conditioning, as ex-
pressed by Eq. ( 1). Conditioning can be regarded as a new
joint distribution constructed by constraining the variables
of the conditioning setW to certain states.

The next section recalls some basic properties of condi-
tional independencies and section 3 gives an introduction
to causal models. Section 4 discusses the related work.
Section 5 defines exactly when nodes contain equivalent in-
formation about others. In section 6, the criterion of com-
plexity is introduced to identify adjacency among equiv-
alent variables. Then, section 7 shows how the faithful-
ness of causal models can be reestablished. The sound-
ness and correctness is proven in section 8 and finally, the
PC algorithm is adapted to handle cases of information-
equivalence.

2 PRELIMINARIES

Two stochastic variablesX andY are conditionally inde-
pendent by conditioning onZ if P (Y | X, Z) = P (Y |
Z). Independency can also be interpreted in information-
theoretic terms. Two variables contain information about
each other if they are dependent - by knowing one vari-
able, the uncertainty - or entropy - of the other is reduced.
Dependency of variables can be quantified by the reduc-
tion in uncertainty, calledmutual information , written as
I(X;Y ). The standard definitions can be found in [CT91].

Definition 1 Random variablesX, Y , Z are said to form
a Markov chain in that order (denoted byX ⇒ Y ⇒ Z) if
the joint probability mass function can be written as

P (X, Y, Z) = P (X)P (Y | X)P (Z | Y ) (3)

Important consequences are as follows [CT91]:

• X, Y , Z form a Markov Chain if and only ifX andZ
are conditionally independent givenY .

• Information cannot increase along a Markov chain:
I(X;Y ) > I(X;Z). This is called theData Process-
ing Inequality.

• X ⇒ Y ⇒ Z implies thatZ ⇒ Y ⇒ X is also a
Markov chain. Therefore, the condition is sometimes
writtenZ ⇔ Y ⇔ X.

If we consider thatX contains information aboutZ in the
Markov chainX → Y → Z, the Markov chain is present
in the causal modelsX → Y → Z, X ← Y ← Z or X ←
Y → Z, but not in thev-structureX → Y ← Z. Here,
the arrows have a causal interpretation. The last of the four
models is responsible for the asymmetry of causality. The
variableY is called acollider along the path fromX to
Z. We will write a Markov chain for whichX andZ are
dependent, written asX 2Z, asX − Y − Z.

A causal model is represented by a directed acyclic graph
(DAG), in which adjacent nodes represent a direct causal
relation between both variables.

If two variablesX andY are dependent, implied byP (Y |
X) 6= P (Y ), the conditional distribution of one variable
differs for at least two values of the conditioning variable:
∃x1, x2 ∈ Xdomain : P (Y | x1) 6= P (Y | x2). The infor-
mation a variable contains about another lies into the dif-
ferences in the conditional distributions. Values for which
this distribution is the same contain the same information.

Definition 2 The domain ofX, denoted byXdom, can be
partitioned into disjoint subsetsXk

dom for whichP (Y | x)
is the same for allx ∈ Xk

dom. We call this the Y −
partition of Xdom. We defineκY (X) as the index of the
subset.



Figure 2:Y -partition of the domain ofX

Figure 3: Example causal model.

Accordingly, the conditional distribution depends solely on
the index of the partition:

P (Y | X) = P (Y | κY (X)) (4)

Fig. 2 shows aY -partition ofXdom and the related condi-
tional distributions ofY .

3 CAUSAL MODELS

Causal models are graphical models that explicitly describe
the relational properties of variables [Pea00] [SGS93]
[TP02]. Causal models are also Bayesian networks, which
offer dense representations of joint distributions. The Di-
rected Acyclic Graph (DAG) of Fig. 3 corresponds to the
following factorization:

P (R,S, T, U, V, W ) =
P (R).P (S | R).P (T | S, V ).P (U).P (V | U).P (W | V ).

(5)

The causal interpretation of a Bayesian network is based
on thefaithfulnessproperty: the model describesall rela-
tional properties that can be found in the data, which are
characterized by the conditional independencies.

By an independency, the conditional distribution can be
rewritten:

U⊥⊥W | V ⇔ P (U |W ) =
∑
v∈V

P (U | v).P (v |W )

(6)

All information U and W have about each other goes
throughV . This is a consequence of the model of Fig. 3.

The graphicald-separation criterion allows us to retrieve
the conditional independencies from the graph that follow
from theMarkov condition. It states that a node becomes
independent from all its non-descendants by conditioning
on its parents.

Definition 3 (d-separation) Letp be a path between a
nodeU and a nodeV of a DAGG. Pathp is called blocked
given subsetW of nodes inG if there is a nodew on p
satisfying one of the following conditions:

1. w has converging arrows (alongp) and neitherw nor
any of its descendants are inW, or

2. w does not have converging arrows (alongp) andw
is in W.

W is said to d-separate U fromV in G, denotedU⊥V |
W, iff they block every path fromU to V .

In the model of Fig. 3,U andW get d-separated byV ,
R andT by S andV . R andU ared-separated, but are
not d-separated ifV is given. R → V ← U is called a
v-structure. Conditioning unblocks a v-structure in a path
whereas it blocks non-v-structures.

The faithfulness property insists that for all variablesA, B
andC a conditional independence in the distribution corre-
sponds to ad-separation in the graph:

A⊥⊥B | C ⇔ A⊥B | C. (7)

A causal model is a unique and minimal decomposi-
tion of the joint distribution into independent blocks: the
conditional distributionsP (Xi | parents(Xi)). The
model offers a canonical description of the system under
study, which is able to explain all observable regularities
[Lem06]. This motivates, but can of course not ensure,
that the model is a representation of the underlying physical
mechanisms of the system.

Besides the formalization of causal networks, an-
other breakthrough was the development of algorithms
that can learn causal models from observational data
[Pea00] [SGS93]. They are discussed in section 9.

4 RELATED WORK

Recent research developed methods for performing infer-
ences in Bayesian Networks with functional dependencies
[CDLS99, CS04]. Dechter and Mateescu introduce mixed
networks for expressing probabilistic and deterministic in-
formation in the form of constraints [DM04], whereas
we view deterministic relations as proper causal relations.
Geiger, Spirtes et al. extended thed-separation criterion for
retrieving the dependencies entailed by deterministic rela-
tions, which they calledD-separation [Gei90, SGS93].



Learning algorithms require that functionally determined
variables are eliminated from the input data. The argument
is that such variables are not essential to the model since
they contain redundant information. Determinism is, how-
ever, not always known a priori. Besides, such variables
can provide insight in the underlying mechanisms and often
reduce the complexity of the model. The idea is to augment
the causal model with the knowledge of the deterministic
relations. This makes it possible to reestablish faithfulness
by introducing an additional criterion - the complexity of a
relation - for choosing among equivalent relations.

Pearl usesstability as the main motivation for the faithful-
ness of causal models [Pea00]. Take the model of Fig. 3.
In general,T will depend onR. They will be independent
only when the stochastic parametrization is such that the
influences via pathsR→ S → T andR→ V → T cancel
out exactly . This is unstable because a small change in the
parametrization will result in a dependency. The unhappy
balancing act is a measure zero event, the chance of such a
coincidence can therefore be regarded as having zero prob-
ability. Deterministic relations, however, appear in nature
and are not coincidences.

For the faithfulness of graphical models, a lot of condi-
tions should hold [Pea88]. Therefore, other represen-
tation schemes of independency information were devel-
oped, such as the imsets of Studeny [Stu01], which can
model any conditional independence structure. Our ap-
proach claims that if the violations of the conditions are
based on local properties, they can be integrated into causal
models.

5 VIOLATION OF THE INTERSECTION
CONDITION

First is demonstrated how deterministic relations violate
Eq. ( 2). Then, the notion of equivalent partition and in-
formation is introduced to capture all situations in which
the intersection condition becomes untrue.

5.1 DETERMINISTIC RELATIONS

We will denote a set of variables(Y1, Y2, . . . , Yn) by Y and
an outcome ofY asy.

Definition 4 A variable X is determined by a set of
variablesY if for everyy ∈ Y: P (X | Y) = 1 for exactly
one value ofX and zero for all other values. The relation
betweenX and the setY is a function, written asX =
f(Y).

A functional relation implies that the variablesY contain
all information aboutX. The uncertainty ofX becomes 0
due to the knowledge ofY.

Theorem 1 If X is determined byY then∀Z : X⊥⊥Z | Y

Proof:
By the deterministic relation, for each value ofY, X is
completely known and thusP (X | Y) = 1 for X = f(Y)
and 0 for the otherX − values. Any conditional distribu-
tion can be rewritten as

P (Z | X, Y) =
P (Z,X | Y)
P (X | Y)

∀X : P (X | Y) > 0 (8)

The denominator is only strictly positive forX = f(Y), so

P (Z | X, Y) =
P (Z, f(Y) | Y)
P (f(Y) | Y)

=
P (Z | Y)

1
(9)

If X andZ are correlated, all information fromX about
Z is also present inY . If additionally Y⊥⊥Z | X holds,
meaning thatY contains no additional information about
Z, the intersection condition is violated. For a bijection
X = f(Y ), all variables dependent ofX or Y imply that
X⊥⊥Z | Y andY⊥⊥Z | X.

It can be argued that a deterministically related variable can
safely be removed from the model, since the determining
variables contain all its information and make the variable
redundant. This is correct, but there are good reasons to
keep them in the model. Consider the variabledata sizein
the performance model of Fig. 1. It is determined byel-
ement typeandarray size. However, it is extremely useful
in providing insight howelement typeandarray sizeinflu-
ence thecache misses. Secondly, it reduces the complexity
of the model. Intermediate variables can be the known vari-
ables - which can be measured, for instance - or the target
of interventions. And the next section will demonstrate that
also probabilistic relations can lead to Eq. ( 2).

In the rest of the discussion, we will only consider sin-
gle variables. The results can easily be extended to sets
of variables. This can be done by replacing the set
(X1, X2, . . . , Xn) by a single variableX = X1 × X2 ×
. . .×Xn.

5.2 EQUIVALENT PARTITION

Definition 5 A relation< ⊂ X×Y defines anequivalent
partition in Ydom to a partition ofXdom if:

1. ∀x1 and x2 ∈ Xdom that do not belong to the same
partition: ∀y1 ∈ Ydom with x1<y1, it must be that
¬(x2<y1).

2. For all subsetsXk
dom of the partition: ∃x1 ∈

Xk
dom,∃y1 ∈ Ydom : x1<y1.

Fig. 4 shows an example of an equivalent partitioning. No
y is related toX-values belonging to different partitions



Figure 4: Relation< defines an equivalent partition to
Xdom in Ydom

and for every partition, there is at least one relatedY -value.
Note that a function, for which everyx-value has a related
Y -value, defines an equivalent partition onYdom for every
partition ofX. The next theorem defines exactly when the
intersection condition, as expressed by Eq. 2, is violated.
We consider the relation< defined byP (x, y) > 0, so that
two valuesx ∈ Xdom andy ∈ Ydom are related if there is
a chance that both appear together.

Theorem 2 If X 2Z andY⊥⊥Z | X, then

X⊥⊥Z | Y ⇔ the relationx<y defined byP (x, y) > 0,
with x ∈ Xdom andy ∈ Ydom, defines an equivalent

partition in Ydom to theZ-partition ofXdom .

Proof⇐
We have to prove thatP (Z | Y, X) = P (Z | Y ). The left
hand side leads toP (Z | Y, X) = P (Z | X) = P (Z |
κZ(X)), with κZ(X) the index ofX in theZ-partition of
Xdom. We will prove thatP (Z | Y ) leads to the same
expression.
By the independenceY⊥⊥Z | X, we can write that

P (Z | Y ) =
∑

x∈Xdom

P (Z | X = x).P (X = x | Y ) (10)

The last factor only differs from zero if bothX andY be-
long to the subsets that correspond to each other by the
equivalent partition. By proper numbering of the subsets,
the indices correspond. It follows that

=
∑

x∈Xdom:κZ(x)=κZ(y)

P (Z | X = x).P (X = x | Y )

(11)

= P (Z | κZ(x))
∑

x∈Xdom:κZ(x)=κZ(y)

P (X = x | Y )

(12)

Since the conditional distribution ofZ is constant in each
subset of theZ-partitioning by definition. The sum is 1,
sinceP (X = x | Y ) is zero everywhere else.

Proof⇒
We have to show that∀x1, x2 ∈ Xdom for which P (Z |

Figure 5: Causal model of SGS in whichZ equalsX(Fig.
3.23)

x1) 6= P (Z | x2), there exists ay1 ∈ Ydom for which
P (x1, y1) > 0 and that for all suchy1 valuesP (x2, y1) =
0.
SinceP (x1) > 0, there must be at least one valuey1 for
which P (x1, y1) > 0, otherwiseP (X, Y ) is not a valid
distribution. Next, both given conditional independencies,
Y⊥⊥Z | X andX⊥⊥Z | Y , imply that

P (Z | x1, y1) = P (Z | x1) = P (Z | y1). (13)

Assume thatP (x2, y1) 6= 0, then likewise

P (Z | x2, y1) = P (Z | x2) = P (Z | y1) (14)

Combining the right hand sides of both equations leads to
the contradiction thatP (Z | x2) = P (Z | x1).

It follows thatI(Y ;Z) = I(X;Z), henceX andY contain
the sameamountand the samekindof information aboutZ.

5.3 EQUIVALENT INFORMATION

Definition 6 X and Y contain equivalent information
aboutZ, if

• X 2Z andY 2Z

• Y⊥⊥Z | X

• X⊥⊥Z | Y

X andY are called equivalent variables with respect to
Z.

Take the coder-decoder example, taken from SGS (Fig.
3.23) [SGS93], shown by Fig. 5. VariableY encodes
the values of bothR andX, andZ decodesY to match
the value ofX. X is therefore deterministically related to
Z, though not adjacent.X is related toZ throughY . The
conditional distributions reveal theZ−partition of Ydom,
{{0, 1}, {2, 3}}, and the distribution defines an equiva-
lent partition inX: subset{0, 1} of Ydom corresponds with
subset{0} of Xdom and{2, 3} with {1}. Both X andY
contain equivalent information aboutZ.



Figure 6: Augmented Causal Model with a Functional Re-
lation (a), a Bijection (b) and an Information-Equivalence
(c).

By the equivalence ofX andY for Z it follows that

P (Z | X) = P (Z | Y ). (15)

Knowledge of eitherX or Y is completely equivalent
with respect toZ. By the information-equivalence theZ-
partitions ofXdom andYdom are related one-to-one by the
equivalent partition. Each subset of one partition corre-
sponds to one subset of the other partition. By proper
renumbering of the indices of both partitions, one can write
that

P (Z | κZ(X)) = P (Z | κZ(Y )) (16)

5.4 NOTATION

We propose the following notation. Deterministic nodes
are depicted with double-bordered circles with dashed
edges coming from the determining variables, as shown
in Fig. 6 (a). If the parents comprise all the determining
variables, the dashed edges may be omitted. Two variables
related by a bijection are linked with an unoriented dashed
edge (Fig. 6 b). Information-equivalent variables are con-
nected by a dashed edge annotated with the target variable
(Fig. 6 c).

5.5 QUASI-DETERMINISTIC RELATIONS

Any stochastic model can be emulated by functional rela-
tionships of the form

xi = fi(pai, ui), i = 1, . . . , n (17)

wherepai stands for the set of variables judged to be im-
mediate causes ofXi and whereUi represent errors due
to omitted factors [Pea00]. The random disturbancesUi

make the relations probabilistic, they ensure that adjacent
nodes share exclusive information, and they are therefore
the key for being able to recognize direct relations. Prac-
tically, the errors have to be sufficiently large and enough
data should be available to be able to identify adjacency
in experimental data. If not, indirect relations observa-
tionally resemble direct ones and situations of information-
equivalence appear.

6 THE COMPLEXITY CRITERION

Consider two variablesX and Y information-equivalent
with respect toZ. If either of both gets independent from
Z by conditioning on a certain subset, the other would
also. Consequently, none of the variables should be ad-
jacent to the target in the model. In the absence of such
subset, the equivalent variables contain exclusive informa-
tion about the target. This should be reflected by the model,
but poses a problem for a faithful graphical representation
of the distribution. The two independencies,Y⊥⊥Z | X
andX⊥⊥Z | Y , suggest that neitherX or Y are adjacent
to Z, but this would fail to represent the exclusive infor-
mation both variables contain about the target. Including
both edges disrupts the minimality condition, since both
variables have the same information about the target.

Consider the two possible cases forX andY having equiv-
alent information aboutZ:

1. X 2Y | Z. X andY will be related through a path not
containingZ. Relating one of both withZ suffices to
model the information they contain aboutZ.

2. X⊥⊥Y | Z. All three variables contain equivalent in-
formation about each other. Two of the three possible
edges to connect them are necessary to reflect the de-
pendencies. In the causal model of Fig. 5,X, Y and
Z reflect this case.

6.1 THE COMPLEXITY OF RELATIONS

We need criteria, different from the conditional indepen-
dencies, to select among information-equivalent relations.
Such criteria could depend on properties of the variables or
the relations among them. The characteristic of the vari-
ables relevant for the target variableZ is the information
they contain aboutZ; which is reflected by the uncertainty
about theZ-partition. Because of equivalence, this uncer-
tainty is the same,P (κZ(X)) = P (κZ(Y )), such that no
characteristic provide a valid selection criterion. The only
objective criterion available is the complexity of the rela-
tions, according to which - in the spirit of Occam’s Razor
- simpler relations should be preferred over complex ones.
Accordingly, the choice between two equivalent variables
X andY for being adjacent to the target nodeZ is deciding
upon which relation -P (Z | X, U) or P (Z | Y, U) - is the
simplest, where the setU comprises the other parent nodes
of Z.

In practice, the feasibility of the complexity quantifica-
tion of the relations cannot be guaranteed, but becomes
more plausible by thereductionistparadigm of causality.
A fundamental property of causal models is that they break
up into independent, local submodels, in which the rela-
tionsP (node | parents) represent basic mechanisms lying
close to the physical mechanisms. They will be relatively



Figure 7: Complexity increase in a Markov Chain (a) and
with a fourth variable (b).

simple compared to the complexity of the overall model.
For continuous variables, a regression analysis can recog-
nize the type of the analytical functionxi = f(pai, ui),
which determines the relation’s complexity. For discrete
variables, the conditional distributions are described by a
discrete distribution. The number of probabilities in the
probability table determine the complexity, unless local
regularities allow further compression of the distribution
[BFGK96]. Methods of objectively quantifying complex-
ity are discussed in [LV97, GMP05].

When the complexities of the relations match, we advocate
to let the choice undecided and keep both edges. Knowl-
edge of the information-equivalence will make it possible
to use the model appropriately. If, for example,X andY
are related by a linear bijection, the relation with any other
variable is similar. There are no objective criteria for de-
termining adjacency. There is a rationale for this, since
both variables are indistinguishable in the perspective of
the system under study. They contain equivalent informa-
tion about any other variable, so - in the absence of back-
ground knowledge - they represent equivalent quantities.

6.2 COMPLEXITY INCREASE

The complexity criterion makes sense by the validity of the
following assumption:

Assumption 1 The Complexity Increase assumption:

1. If X 2Z andX⊥⊥Z | Y , described by Fig. 7(a), then
the relation betweenX andZ is not less complex than
the relationsX − Y andY − Z.

2. If the relationX − Y is more complex thanY − Z,
and ifX 2U andX⊥⊥U | Y , then the relationX − U
is more complex thanZ − U . See Fig. 7(b).

The assumption states that the complexity between vari-
ables do not decrease along a causal path. This would hap-
pen by correspondences of the relations and neutralization
of its complexities, which can be regarded as yet another
regularity. This additional regularity should also be added
to the model, but this falls out of the scope of this pa-
per. Note the similarity of the assumption with theData
Processing Inequality, discussed in section 2.

Reconsider the model of Fig. 5, in whichX andY are
equivalent forZ. The relationX → Z is simpler than
Y → Z. The complexity increase assumption is violated,
due to a complete dependence of the decoding relation
Y → Z on bothX → Y andR → Y . However, it is
completely ’natural’ that an inference algorithm considers
the relationX − Z as a direct one and not the more com-
plexY − Z. The learned model will not correspond to the
real model, but we claim that it is not possible to learn the
’true’ model from observation alone. Note that the simpler
model is appropriate for prediction ofZ, but would fail to
predict the interventiondo(Y ).

7 FAITHFULNESS

For capturing information-equivalence in a faithful causal
model, we should reconsider the properties we want to be
shown graphically and the condition for retrieving indepen-
dencies from the graph.

7.1 CONDITIONAL INDEPENDENCE AND
SIMPLICITY

To ensure the correspondence between the graph and the
distribution, the definition of conditional independency has
to be generalized with the requirement that the conditioning
set should provide a simpler relation if containing equiva-
lent information.

Definition 7 Conditional independence and simplicity
between two variablesX, Y and a conditioning setZ is
true when

• X⊥⊥Y | Z

• And the relationZ − Y is less complex thanX − Y if
Z⊥⊥Y | X (Z andX contain equivalent information
aboutY ).

• And the relationZ −X is less complex thanY −X if
X⊥⊥Z | Y (Z andY contain equivalent information
aboutX).

We write this asX⊥⊥SY | Z.

This definition reestablishes the Markov condition for a
causal model, according to which the parents of a node can-
not become independent by conditioning on some subset,
while non-descendants become independent by condition-
ing on the parents.

7.2 D-SEPARATION

When there are deterministic relationships among vari-
ables, there are conditional independencies that are not en-
tailed by the Markov condition alone. SGS [SGS93], based



on the work of Geiger [Gei90], enlarged the concept ofd-
separation to create a graphical condition for retrieving all
conditional independencies from a graph and a set of deter-
ministic relations.

The extendedD-separation includes the independencies
that follow from deterministic relations.

Definition 8 (D-separation) Letp be a path between a
nodeX and a nodeY of a DAGG. Pathp is called blocked
given subsetZ of nodes inG if there is a nodew onp sat-
isfying one of the following conditions:

1. w has converging arrows (alongp) and neitherw nor
any of its descendants are inZ, or

2. w does not have converging arrows (alongp) andw
is in Z or is determined byZ.

Z and the set of deterministic relations is said to D-
separateX from Y in G, denotedX⊥Y | Z, iff they block
every path fromX to Y .

More generally, variables can contain equivalent informa-
tion aboutX or Y with variables along the path betweenX
andY . These cases also entail additional conditional inde-
pendencies. The definition ofD-separation is generalized
to capture these independencies.

Definition 9 (Deq-separation) Letp be a path between a
nodeX and a nodeY of a DAGG. Pathp is called blocked
given subsetZ of nodes inG and a set of information
equivalences if there is a nodew onp satisfying one of the
following conditions:

1. w has converging arrows (alongp) and neitherw nor
any of its descendants are inZ, or

2. w does not have converging arrows (alongp) andw
is in Z or has an equivalent variable for a node along
the path inZ.

Z and the set of deterministic relations is said to Deq-
separateX from Y in G, denotedX⊥Y | Z, iff they block
every path fromX to Y .

Take the Markov chain of Fig. 8, from the original defi-
nition of d-separation, A andB become separated byX,
but not byY . If, however,Y is information-equivalent to
X with respect toZ, A andB also become independent by
conditioning onY . Consider that

P (B | X) = P (B | Z)P (Z | X)

= P (B | Z)P (Z | Y ) = P (B | Y ). (18)

The dependency ofB onX is similar to that ofY .

Figure 8:Deq − separation in a model with nodesX and
Y having equivalent information aboutZ

7.3 FAITHFULNESS REDEFINITION

Given the additional independencies that equivalence rela-
tions entail, the definition of faithfulness should be recon-
sidered. Since the situation in which the independencies
X 2Z, X⊥⊥Z | Y andY⊥⊥Z | X hold cannot be repre-
sented graphically, we restricted the conditional indepen-
dencies by the definition of conditional independency and
simplicity ⊥⊥s. On the other hand, equivalence of nodes
with respect to a target node, affects the conditional inde-
pendencies from the target node with other nodes. These
independencies can be found graphically with theDeq-
separationcondition⊥eq.

Definition 10 A causal model is called faithful to a proba-
bility distribution containing variables with equivalent in-
formation if

X⊥eqY | Z ⇔ X⊥⊥Y | Z (19)

X⊥Y | Z ⇔ X⊥⊥sY | Z (20)

8 SOUNDNESS AND COMPLETENESS

In this section we will prove that the redefinition of faithful-
ness is sound and complete, ie. all possible consequences
of equivalent information are captured by the DAG. Take
the equivalence case depicted in Fig. 9. We postulate that
Y → X carries the same information asX → Z. But
what if other variables got involved in this path. What if
the influence fromX on Z goes through another variable
orZ is related to other variables. How will the information-
equivalence ofX andY propagate and will the equivalence
of edgeY → X with X → Z correct with respect to other
variables. Fig. 10 shows 4 possibilities of other variables
getting involved. This section investigates under which as-
sumptions the notation, which has an intuitive interpreta-
tion, is correct, namely it can be read of from the graph
that:

• X andY are equivalent forA andC.

• B gets conditionally independent fromZ by Y (and
D).

• D is also equivalent with respect toZ.



Figure 9:X andY are information-equivalent forZ.

8.1 Assumptions

Two assumptions are made for the study of the effect of
information-equivalences on other relations. The first is
that an information-equivalence remains when conditioned
on other variables:

Assumption 2 Information-equivalence remains under
conditioning

Y⊥⊥Z | X & X⊥⊥Z | Y ⇔ Y⊥⊥Z | X, W & X⊥⊥Z | Y, W
(21)

for all subsets of variablesW, disjoint from X and Y , and
not containingZ.

This is certainly true for deterministically related variables.
The second assumption isweak transitivity [Pea88].

Assumption 3 Weak Transitivity

T⊥⊥V |W & T⊥⊥V |W, U ⇒ T⊥⊥U |W or U⊥⊥V |W
(22)

It is one of the necessary conditions for the existence of a
faithful graph. The condition expresses a form of transi-
tivity. If T depends onU andU depends onV , it must
that eitherT depends onV (eg. modelT → U → V )
or becomes dependent by conditioning onU (v-structure
T → U ← V )

Take again the coder-decoder example shown in Fig. 5.
We see thatX affects the first bit ofY andR the second.
The decoding ofZ should thus be determined by the first
bit of Y . This model however violates the weak transitivity
condition.Y depends onX, R andZ, butR is independent
from X andZ, also after conditioning onY . The condition
demands that if two variables are connected through a chain
of variables in which the adjacent variables are dependent,
they should also be dependent (under conditioning).

8.2 Properties of Equivalent Information

First, we prove 4 properties about the effect of an
information-equivalence on other variables. Fig. 10 repre-
sents a model containing the 4 cases.

Property 1 If X and Y are information-equivalent with
respect to a variableZ, X 2Y | Z andX⊥⊥A | Z, then

Figure 10: Model withX andY equivalent forZ. The
other nodes show possible consequences.

• Y⊥⊥A | Z

• X and Y are information-equivalent with respect to
A

Proof:
Besides the givenX⊥⊥A | Z, X stays independent from
A when conditioning onZ andY . X 2A | Z, Y would
mean thatX is connected toA with a path not containing
Z, but containingY in a v-structure1. But thenY would
be connected toZ with a path viaA not containingX,
implying Y 2Z | X or Y 2Z | X, A, which both contradict
the given information-equivalence.

Then, by applying weak transitivity onX⊥⊥A | Z and
X⊥⊥A | Z, Y , it follows that X⊥⊥Y | Z or Y⊥⊥A | Z
should hold. The first independence is not true, so the sec-
ond should hold which proves thatY is also independent
from A givenZ.

Information-equivalence ofX andY with respect toA fol-
lows from

P (A | X) =
∑
z∈Z

P (A | z).P (z | X)

=
∑
z∈Z

P (A | z).P (z | Y ) = P (A | Y ) (23)

The last step is true byY⊥⊥A | Z (cf Eq. 6).
This case is shown in Fig. 10 by nodeA.

Property 2 If X and Y contain equivalent information
about a variableZ, which also holds under conditioning,
it follows that

Z⊥⊥B | X ⇔ Z⊥⊥B | Y (24)

Proof:
By assumption 2, it follows that

P (Z | B, Y, W) = P (Z | B, X, W) (25)

= P (Z | X, W) = P (Z | Y, W) (26)

1This follows from the Markov condition as given by thed-
separation criterion, which reflects all consequences of Markov
(section 3).



NodeB in Fig. 10 illustrates this case.

Property 3 If X and Y contain equivalent information
about a variableZ, it follows that

X⊥⊥Z | C ⇔ Y⊥⊥Z | C (27)

Proof:

P (Z | C, Y ) = P (Z | C,X) = P (Z | C) (28)

For the equivalence, we have to show thatY⊥⊥C | X and
X⊥⊥C | Y . FromY⊥⊥Z | X andY⊥⊥Z | C,X (by Eq.
21), weak transitivity demands thatY⊥⊥C | X or C⊥⊥Z |
X. The second independence is not true, which proofs the
first independence. The independenceX⊥⊥C | Y is proved
with the same arguments.
This is shown in Fig. 10 by nodeC.

Property 4 If X and Y contain equivalent information
about a variableZ, it follows that

X⊥⊥Y | D ⇒ X, Y⊥⊥Z | D (29)

Proof:

X⊥⊥Z | Y
⇒ P (X | Z) = P (X | Y ).P (Y | Z)

= P (X | D).P (D | Y ).P (Y | Z)
= P (X | D).P (D | Z) (30)

D has all information thatX andY share, so it also must
have all information they have aboutZ.

8.3 Soundness and Completeness

We prove the soundness and completeness of Conditional
and Simplicity Independence and Deq-separation by show-
ing that the consequences of combinations of information-
equivalence and other conditional independencies are cap-
tured consistently by the model, ie. that they do not lead
to unfaithful situations. TakeX andY beingZ-equivalent
and the relationX − Z simpler thanY − Z. This is ex-
pressed by the propertiesY⊥⊥SZ | X, X⊥⊥Z | Y and
X 2SZ | Y . By the refined definition of faithfulness, the
properties are represented faithfully by modelY −X −Z.
X andY are connected and alsoX with Z. The conditional
and simplicity independence ofY andZ by X, makes that
X lies on the path connectingY andZ.

We have to investigate the implications for other condi-
tional independencies found in the distributions. An inde-
pendence statement with one variable of the three variables
X, Y or Z involved in it only says something about a path
with that variable. There are nine possible combinations of
using 2 of the three variables in a conditional independence
statement.

1. X 2A andX⊥⊥A | Z:
By property 1 it follows thatY⊥⊥A | Z and
that X are Y equivalent forA. The second part
of the Complexity Increase Assumption assures that
Complexity(X, A) < Complexity(Y,A), thus
Y⊥⊥SA | X, but X 2SA | Y . This is shown in Fig.
10.

2. Z 2B andZ⊥⊥B | X:
The independenceZ⊥⊥B | Y follows from property
2. Then, there are two possibilities:

• If B has less information aboutZ, it is related to
Z via X as shown in Fig. 10. ByDeq-separation
the conditional independenceZ⊥⊥B | Y can be
retrieved from the graph.

• If on the contrary variableB contains as much
information aboutZ as X, all three nodes are
equivalent forZ. This is shown by nodeD in
Fig. 10. The node having the simplest relation
with Z is related toZ, which isX in the figure.

3. Z 2C andX⊥⊥Z | C:
By property 3,Y also gets independent,Y⊥⊥Z | C.
There are two possible cases:

• If C⊥⊥Z | X, C is also information-equivalent
with respect toZ, which is discussed in the pre-
vious case.

• If C 2Z | X, C has more information aboutZ.
Property 3 proves thatX or Y are information-
equivalent forC as well, shown in Fig. 10. By
the second part of the Complexity Increase As-
sumption,X − C must be simpler thanY − C,
sinceX − Z must be simpler thanY − Z and
X⊥⊥Z | C.

4. X⊥⊥Y | D:
By property 4, given below, it follows thatX⊥⊥Z | D,
which is discussed by case 3.

5. The last combination,X⊥⊥E | Y , only interferes with
theZ-equivalence ofX andY if there is an indepen-
dence withZ. This is discussed by the previous cases.

The 5 remaining cases,Y⊥⊥A | Z, Z⊥⊥B | Y , X⊥⊥Z | C,
Y⊥⊥Z | D andY⊥⊥D | X, are equivalent to respectively
cases 1, 2, 3, 4 and 5.



9 LEARNING ALGORITHM

One of the basic causal structure learning algorithms,
which learns a model from data, is the PC algorithm, de-
veloped by Spirtes, Glymour and Scheines [SGS93]. It is
proven that it constructs the correct graph for distributions
that are faithful to some directed acyclic graph. It is of the
constraint-based type, as opposed to scoring-based algo-
rithms. Consult [KN03] for an overview. The graph is con-
structed in two steps. The first step, called fast-adjacency
procedure, learns the undirected graph and the second tries
to orient the edges. The construction of the undirected
graph is based on the property that two nodes are adjacent if
only if they remain dependent by conditioning on every set
of nodes that does not include both nodes. The algorithm
starts with a complete undirected graph and removes edges
for each independence that is found. The number of nodes
in the conditioning set is gradually increased upto a certain
number, called thedepthof the search. The orientation step
is based on the recognition of the v-structureX → Y ← Z,
for whichX andZ are independent, but become dependent
conditional onY . The result of the algorithm will be a set
of models that are observationally indistinguishable. Two
DAGs are proven to be observationally equivalent if and
only if they have the same undirected graph and the same
sets ofv-structures [VP91]. It cannot be guaranteed that
all edges can be oriented.

We now discuss how the PC algorithm should be adapted
in order to learn the generalized models.

9.1 Equivalence Detection

Information-equivalence poses a problem for the algo-
rithm. TakeX andY equivalent forZ, by Y⊥⊥Z | X the
algorithm would remove theY − Z edge andX⊥⊥Z | Y
deletes theX − Z edge. Information-equivalences should
therefore be detected during the construction of the undi-
rected graph. For each conditional independence that is
found, it should be tested whether an equivalence can be
found by swapping the conditioning set with one of both ar-
guments. For independenceU⊥⊥V | W , the independence
W⊥⊥V | U would mean thatU andW are equivalent for
V , while U⊥⊥W | V implies thatV andW are equiva-
lent forU . If both independencies are found, it means that
the three variables are equivalent. We call this a3-node-
equivalence. Each information-equivalence is recorded and
does not lead to an edge removal.

The fast-adjacency procedure starts testing dependencies
without conditioning, then conditions on one node, fol-
lowed by conditioning on two nodes and so on. Since
the edges involved in information-equivalences are not re-
moved, conditional independence will be checked again in
the next phase when extra variables are added to the condi-
tioning set. ForY⊥⊥Z | X, it follows thatY⊥⊥Z | X, U

holds for any variableU . These independencies are conse-
quences of the same equivalence, so these tests should be
skipped in the procedure.

9.2 Complexity Calculation

Before starting with the orientation step of the algorithm,
the complexity of the relations is used as criterion to select
among equivalent edges. The complexity of all equivalent
edges is estimated and a choice is made if a significant dis-
crepancy is found. If the estimation fails or results in an in-
significant difference, equivalent edges may remain in the
model. We have shown that faithfulness is not endangered
by it. For all n-nodes-equivalences, the n − 1 simplest
edges should remain in the model such that all nodes are
connected.

9.3 Orientation

The original orientatien rules can be applied on the undi-
rected graph containing information-equivalences. Node
Y has to be regarded as separated fromZ by X, while
X is not separated fromZ by Y . The three variables in-
volved in an information-equivalence form a Markov Chain
Y −X −Z. This is confirmed by the conditional and sim-
plicity independencies that follow from the information-
equivalence. They forbid the v-structureY → X ← Z.

10 CONCLUSIONS

The intersection condition, on which causal theory is based,
is not only broken by deterministic or quasi-deterministic
relations, but more generally, when two variables contain-
ing equivalent informationabout a third variable. Only if
the stochastic distribution generates anequivalent partition
of both variables’ domain, the information about the third
is completely transferred from one variable to the other.
Information-equivalence is a regularity that interferes with
the conditional independencies that a causal model intends
to describe correctly. To attain minimality and faithful-
ness, the presence of these regularities should be incorpo-
rated into the model. This paper proposes the complexity
of the relations as criterion to determine adjacency among
information-equivalent relations. Faithfulness can then be
reestablished by enlarging the definition of conditional in-
dependency with the requirement of simplicity in cases of
information-equivalence. On the other hand, the condi-
tional independencies that are generated by nodes contain-
ing equivalent information can be retrieved from the graph
by theDeq − separation property. The complexity crite-
rion leads to consistent models by assuming that the com-
plexity of the relations increases for more distant variables.
Violation of the Complexity Increase Assumption is caused
by yet another regularity - the correspondence of relations
along a causal path.



The soundness and completeness of the augmented model
was proven. It showed that we can speak about information
flowing through the graph.

References

[BFGK96] Craig Boutilier, Nir Friedman, Moises Gold-
szmidt, and Daphne Koller. Context-specific
independence in bayesian networks. InUncer-
tainty in Artificial Intelligence, pages 115–123,
1996.

[CDLS99] R.G. Cowell, A.P. Dawid, S.L. Lauritzen, and
D.J. Spiegelhalter.Probabilistic Networks and
Expert Systems. Springer, New York, 1999.

[CS04] Barry R. Cobb and Prakash P. Shenoy. Infer-
ence in hybrid bayesian networks with deter-
ministic variables. Inin P. Lucas (ed.), Pro-
ceedings of the Second European Workshop
on Probabilistic Graphical Models (PGM-04),
pages 57–64, 2004.

[CT91] Thomas M. Cover and Joy A Thomas.Ele-
ments of Information Theory. John Wiley &
Sons, Inc., 1991.

[DM04] Rina Dechter and Robert Mateescu. Mix-
tures of deterministic-probabilistic networks
and their and/or search space. InAUAI ’04:
Proc. of the 20th conf. on Uncertainty in ar-
tificial intelligence, pages 120–129, Arlington,
Virginia, United States, 2004. AUAI Press.

[Gei90] D. Geiger. Graphoids: A Qualitative Frame-
work for Probabilistic Inference. PhD thesis,
University of California, Los Angeles, 1990.

[GMP05] P. Gr̈unwald, I.J. Myung, and M.A. Pitt. A
Tutorial Introduction to the Minimum Descrip-
tion Length Principle. MIT Press, 2005.

[KN03] Kevin B. Korb and Ann E Nicholson.Bayesian
Artificial Intelligence. CRC Press, 2003.

[Lem06] Jan Lemeire. Causal models as min-
imal descriptions of multivariate systems.
http://parallel.vub.ac.be/∼jan, 2006.

[LV97] Ming Li and Paul Vitanyi. An Introduction to
Kolmogorov Complexity and Its Applications.
Springer Verlag, 1997.

[Pea88] J. Pearl. Probabilistic Reasoning in Intelli-
gent Systems: Networks of Plausible Inference.
San Mateo, CA, Morgan Kaufman Publishers,
1988.

[Pea00] J. Pearl.Causality. Models, Reasoning, and In-
ference. Cambridge University Press, 2000.

[SGS93] Peter Spirtes, Clark Glymour, and Richard
Scheines.Causation, Prediction, and Search.
Springer Verlag, 2nd edition, 1993.

[Stu01] Milan Studeny. On non-graphical description
of models of conditional independence struc-
ture. InHSSS Workshop on Stochastic Systems
for Individual Behaviours, Louvain la Neuve,
Belgium, January 2001.

[TP02] Jin Tian and Judea Pearl. A general identifica-
tion condition for causal effects. InAAAI/IAAI,
pages 567–573, 2002.

[VP91] T. Verma and J Pearl. Equivalence and syn-
thesis of causal models. InIn Proc. of the
6th workshop on uncertainty in Artifical Intel-
ligence. Cambridge, 1991.


