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Abstract

This paper reports on the integration of parallel image
processing in the ITK library and on improvements to the
state-of-the-art of user transparency. In our approach,
image processing tasks are wrapped into objects which are
passed to the parallel engine. The engine is able to exploit
data and task parallelism when executing the tasks on mul-
ticores, clusters and/or GPUs. All features necessary for ef-
ficient parallel processing are specified by the task objects.
The engine can figure out most of the features itself, and
is able to check the correctness of the features provided by
the user. Interoperation optimization is attained by efficient
scheduling of the tasks. The task dependency graph is auto-
matically created at runtime. This is possible by delaying
the execution of the tasks and by the intrinsic ITK pipeline
updating mechanism. The low-level functions are also made
available for the user, as well as a library-independent ver-
sion.

1 Introduction

Processing power is nowadays abundantly available, as
well as libraries and tools for efficient parallel processing.
But there is still a high threshold associated with the use
of high-performance computing architectures. Our goal is
to maximally hide the parallel aspects for the non-expert.
Our strategy is to create domain-specific solutions and to
integrate them into domain-specific libraries. Domain-
specific assumptions allow us to reach a higher level of user-
transparency. Here we consider image processing and inte-
grated our parallel solution into the ITK library. This work
is part of an ongoing project [2], in which the ITK library
(http://www.itk.org) was chosen. ITK is an open-
source, cross-platform system that provides developers with
an extensive suite of software tools for image analysis.

The key extensions to the state-of-the art [6, 13, 7, 11]
of user transparent parallel image processing are the follo-
wing:

1. Our solution provides 3 interfaces, called levels, which
are integrated in ITK and 2 library-independent levels.

2. We opt for object-oriented generic programming in-
stead of skeleton programming.

3. All forms of parallelism are exploited: data and task
parallelism on the application level; multi-threading,
message-passing and the use of GPUs on the system
level.

4. The parallel engine can automatically extract the tasks’
parallelization features and check for their correctness.
This serves as guidance of the non-expert user.

5. The task dependency graph is automatically generated
at runtime which is used for interoperation optimiza-
tion. This overcomes the main limitation of a library-
based approach [11]. In our approach, image opera-
tions are specified at a higher level than for example
in [7]. We call the operations tasks: a task transforms
two images into a new image, for example. The trans-
formation itself can be a set of instructions.

The following section presents the philosophy behind
our approach. The library is given in Section 3. Section
4 explains how efficient task parallelism is attained. Sec-
tion 5 makes an assessment of our approach and Section 6
presents experimental results.

2 Approach

Fig. 1 shows the philosophy of the solution. The user
‘concretizes’ image operations by wrapping them into task
objects. The application is implemented as a sequence of
tasks and images which are passed to the parallel engine.
The parallel engine automatically tracks the dependencies
between the tasks. These are described by the task depen-
dency graph. The engine then executes the tasks in the most
efficient way utilizing the available processing power.



Figure 1. Scheme of the Parallel Engine.

The idea is that the user should simply pass the tasks and
images to the parallel engine. The engine will make the op-
timal decisions about executing the tasks. All information
the parallel engine should know about the tasks is given by
the task object. This is explained in the next subsection.

2.1 Generic Algorithm Design with Object-
Oriented Techniques

Generic parallel solutions are mostly designed through
skeletons. Skeletons are algorithmic abstractions which en-
capsulate a form of parallelism common to a series of appli-
cations. The intricacies of parallelization are hidden behind
the library’s API. Skeletons are most often programmed in
functional programming languages. A similar but more mo-
dern approach is using object-oriented programming. The
idea is that a generic solution is provided by a template
method in which problem-dependent parts are filled in by
hook methods which are supplied by the library user [10].
The hook methods correspond to the function parameters in
skeletons. It must be noted that ITK is a full object-oriented
library.

Applied to image processing, the user implements the
hook methods in a class which inherits from an abstract
class, called ImageTask. The template methods are im-
plemented in what we called the parallel engine. Each spe-
cific image operation is encapsulated in an object which
provides all information that is required by the engine. In
this way the tasks become tangible. They can be run se-
quentially or in parallel, can be send to other processors,
saved in memory, the result of the parallel execution can be
compared with that of the sequential run, etc.

Object-oriented programming has already been used for
the design of generic parallel programs [4, 14]. But, to our
knowledge, the idea of encapsulating tasks into objects has
never been investigated in the way here proposed. Also
functional skeleton programming ensures the separation of
the tasks from their parallel implementation. The main dif-
ference is code organization and reusability. In skeleton
programming, the user passes variables and functions as
parameters. In object-oriented programming, all these pa-
rameters are grouped in a class definition, which is reused
by all object instantiations of that class. Passing objects en-

hances code readability by their encapsulation capacities.
One passes one object instead of a possibly long list of pa-
rameters. Moreover, it is possible to create new classes by
inheriting from other ones.

The concrete class design is given in the next section.
First we discuss the functionalities of the parallel engine.

2.2 Parallel Engine

For minimizing the execution time, the engine tries to
maximally exploit all available parallelism. The engine first
utilizes task parallelism by scheduling the tasks among the
available processors. The tasks are run concurrently taking
into account precedence constraints specified by the task de-
pendency graph. This will be explained in more detail in
Section 4. If there are more processors available than tasks,
data parallelism is used to run a single task in parallel.

Data parallelism is supported for image tasks for which
the result comes from an operation which can be indepen-
dently applied on each pixel of the input images. The result
can be a new image or a global result which is calculated
from all subresults. Most image operations, such as point,
local neighborhood and global operations belong to this ca-
tegory. Parallel execution of these tasks is achieved by split-
ting and distributing the image and applying the operation
on the subimages [8]. For local neighborhood operations,
the destination pixel is a function of the source pixel and the
value of the pixels in the neighborhood surrounding it. The
neighborhood is characterized by the border size. For global
operations, the result is a function of the whole image. The
border size is then set to the size of the image. Of course
this limits the benefits of data parallelism since the whole
image should be transferred for parallel execution.

The user has the possibility to specify routines for
special-purpose processing elements, such as Graphical
Processing Units (GPUs). If these processing elements are
available, the parallel engine can decide to run the task on
them. For GPUs, the user has to rewrite the image task
as a highly-optimized SIMD (Single Instruction Multiple
Data) routine. In the context of this project, we work with
NVIDIA graphics cards and write the routines with the
CUDA library (http://www.nvidia.com/cuda).

Besides the efficient execution of the tasks, the parallel
engine offers the following functionalities:

1. Comparison of the parallel result with the result of se-
quential execution of the tasks. This allows the verifi-
cation of the correctness of the parallel execution.

2. Returning a performance analysis. The engine gives
the speedup and efficiency of the execution and a quan-
tification of the different overheads.

3. Rescheduling tasks in cases of failure, for example by
a sudden unavailability of some processing units.

4. Figuring out the border size of neighborhood opera-
tions. It is calculated by applying the task on a res-
tricted region of a random input image and check the



Figure 2. The 3 levels and 2 versions of the
library.

pixels which were modified. In this way, a check of the
border size as specified by the user can be performed.

5. Checking the object serialization as specified by the
user.

3 Interface of Libraries

Fig. 2 shows the different parts of the library. At the top
level is the version which is completely integrated in ITK.
At the second level, the user creates and passes task objects
to the parallel engine. There is an ITK version, based on the
ITK Image class and a library-independent version, based
on very general definitions of images (an array of pixels),
borders etc. At the third level, the low-level functions used
by the parallel engine are made available. They constitute
functions to communicate and partition images, test func-
tions, etc. One level can quite easily be implemented using
the lower level.

We first define the high-level interface and then show
how this can be integrated in ITK.

3.1 High-level Interface

A generic solution should properly define the class of
sequential algorithms for which it applies. The follo-
wing ImageTask class defines an operation on one image
which is the result of a operation which can be indepen-
dently applied on each pixel of the image. The result is an
image and/or another set of variables. The following ab-
stract methods have to be filled in by the user. A † indicates
that the method should be implemented by the user. A ‡ de-
notes that it is optional. For reasons of clarity, some details
are left out.

• ImageRegion* execute(ImageRegion*
input)†: the operation that should be applied on the
image regions of the input images.

• void describe()†: with this function the user
describes all attributes of the class. This function

is used for all serialization tasks, such as packing
of objects into messages, unpacking messages, writ-
ing/reading objects to/from file. The mechanism is
similar to that of the BOOST serialization library
(http://www.boost.org).

• int taskClassID()†: a unique identifier of the
tasks class. Is used to remotely create task objects.

• int border()‡: returns the size of the neighbor-
hood that should be considered when applying the task
on a region.

• void recombine(ImageTask*
partialResults)‡: method which combines
the partial results to calculate the global result. The
function is used whenever that task should return a
global result different than an output image.

• Image executeOnGPU(Image& image)‡:
routine to run the task on a GPU.

• float computationalComplexity()‡: re-
turns a number denoting the computational complexity
of the task. It is used by the engine to optimize the
scheduling. The unit can be chosen by the user, since
it is only the relative value which is important for the
engine.

• void update(): should be called by the user be-
fore accessing the result of the image task. This
method is necessary for being able to delay the effec-
tive execution of the task, as explained in Section 4.

The ImageTask class defines the most general image task
which accepts multiple input images and returns an output
image and a globalized result. More specific classes can
be derived from it, such as a filter class which transforms
one image into another one. Note that the user specifies the
parameters and results of the image task as attributes of the
class.

The ParallelEngine class defines the main object
of the library to which the tasks are passed:

• Image* execute(Image* images,
ImageTask* imageTask): method by which a
task is passed to the engine for execution.

• ImgTask* create(int taskClassID)†: an
abstract method that should be filled in by the user.
Defines an object factory by which tasks can be cre-
ated according to their class ID.

For the ITK version, the Image class of ITK is used.
For the library-independent version, a simple Image class
is used which is defines as an array of pixels, a height and
width.

Next, we introduce the essentials of the ITK library be-
fore explaining how the above is integrated in ITK.



Figure 3. Sequence of the ITK data pipeline
updating mechanism.

3.2 The ITK Library

ITK provides a powerful set of classes (such as for de-
fining regions and iterators) so that efficient image pro-
cessing algorithms can be implemented for 2 or multi-
dimensional images. ITK inherently supports multithrea-
ding. One of the most common image operations is given
by the ImageToImageFilter class, which transforms
a given image. The following methods are relevant in the
context of parallel processing:

• GenerateData()‡: performs the image processing
sequentially.

• ThreadedGenerateData(ImageRegion&
regionForThread, int threadId)‡: when
this function is implemented by the user, the filter
can be run multithreaded. The user specifies how
the filter transforms the given image region. In that
case, the GenerateData() method must not be
implemented.

• SetNumberOfThreads(int): with this method
the user specifies in its application how many threads
should be used when applying the filter.

• Update(): this causes the filter to be effectively
executed. Actually, this invokes the data processing
pipeline, as explained below.

Other image operations are defined similarly.
An important feature of ITK is the possibility to define

data pipelines. Fig. 3 shows the pipeline execution of 3
image processing operations in ITK. The rationale is that
an operation is not executed before an Update() method
is called. At first, the user specifies the chain of operations
by linking the output of operation with inputs of succeed-
ing operations. In this way, the data objects and process
objects are tied together. The pipeline is invoked when-
ever an Update() is called for one of the tasks along the
chain. The Update() is passed along the chain and the
GenerateData() is called.

3.3 Integration in ITK

Comparison of the interfaces shows that an
ImageToImageFilter can easily be converted to

an ImageTask class. The ThreadedGenerateData
method gives the execute method. The following
methods are added to the ITK ImageToImageFilter
class and have to be implemented:

• describe()†.

• int border()‡.

• Image executeOnGPU(Image& image)‡.

The filter objects should not be explicitly passed to
the engine, this is done in the Update() method.
The SetNumberOfThreads(int) method will also be
called by the engine. If ThreadedGenerateData is not
implemented, only the GenerateData() method, the
parallel engine will only employ task parallelism.

3.4 Low-level Functions

The low-level library constitute functions for the follo-
wing: image partitioning (taking into account an image bor-
der for neighborhood operations), image communication,
scheduling algorithm, performance measurement and cor-
rectness checks.

4 Task Parallelism

When applying task parallelism, the tasks must be dis-
tributed among the available processors. Each task is
mapped on one or more processors. This can happen dy-
namically, by scheduling the tasks one-by-one during the
execution of the application. A more efficient mapping can
be calculated if one knows in advance the tasks. One can
then minimize communication. This is called interoperation
optimization [12]. The task dependency graph is, however,
not always a priori available. For some applications, tasks
depend on the result of previous tasks. Then, initially, the
task dependency graph can only be partly constructed. It
will grow dynamically when new tasks are scheduled as a
result of other tasks.

The dynamic creation of the task graph is done by the
parallel engine as it receives tasks. For finding the most ef-
ficient schedule the engine should try to look as far as possi-
ble into the future. The parallel engine will therefore delay
the execution of the tasks. When a task is passed to the en-
gine, it is not executed immediately but used to create the
graph. Only when the result of a task is really needed for
determining the future course of the application, the pend-
ing tasks are executed. The execution is triggered by the
update() method. When using the fully integrated ITK
version of the library, the ITK pipeline mechanism can be
exploited. This mechanism inherently delays the execution
of the tasks, as was explained in Section 3.2. The task de-
pendency graph is constructed during the execution of the
backward update chain.

We used the algorithm described in [5] for homogenous
multiprocessor scheduling. A series-parallel reduction of
the graph is applied whenever possible [9, p. 30].



5 Discussion of Approach

In this section we will assess our approach. Seinstra [11]
gives the following requirements for user transparent paral-
lel image processing:

• Low threshold, easy accessible: parallelism is fully in-
tegrated in the popular ITK-library. Our approach fully
exploits ITK’s structure.

• Maintainability: the library must be extensible and
easily maintainable. Therefore we defined 3 levels to-
gether with a library-independent version. The low-
level functions are made available, so that high-level
parallel solution can easily be built from them.

• Availability: applicable to commonly available parallel
computers. Our approach supports multicores, clusters
and GPUs.

• Portability: C/C++ is used in combination with MPI.
The user does not have to learn a new parallel lan-
guage.

• Efficiency: image processing algorithms have inherent
concurrency which is relative simple to exploit.

Skeleton programming is extensively discussed in [1, 3].
They cite the following requirements for building successful
generic solutions:

• Propagate the concept with minimal conceptual dis-
ruption: skeletons must be provided within existing
programming environments without actually requiring
the programmers to learn entirely new programming
languages.

• Accomodate diversity: provide mechanisms to specia-
lize skeletons. We made available the low-level func-
tions of the library.

• Show the payback: a performance analysis is automa-
tically performed and the attained speedup is returned
to the user.

• Support code reuse: allow programmers to reuse with
minimal effort existing sequential code. The definition
of the image task class inherently allows the reuse of
the sequential code. Instead of specifying the opera-
tion for an entire image, the user should specify the
operation for a region of the image.

• Handle target architecture heterogeneity: our paral-
lel engine can handle heterogeneous computing re-
sources.

• Handle dynamicity, such as sudden unavailability of
processing elements. Currently, the master regularly
checks the state of each slave. If a slave does not res-
pond, the tasks assigned to that slave are redistributed
among the other slaves.

Figure 4. Speedup of parallel execution of the
mosaicing algorithm: dynamic versus static
scheduling and running with 1 or 4 threads.

6 Experiments

The proposed framework is developed in the context of
a project dedicated to mosaicing of images of preclinical
research [2]. In-vivo scanning of small animal subjects is
performed by moving a fiber optic probe which is connected
to a laser scanning unit along the animal’s skin. By moving
the probe, images are continuously captured, allowing the
visualization of surfaces larger than the field of view of the
probe. The mosaicing algorithm constructs a single static
image from the multiple overlapping frames.

The algorithm consists of three steps. At the preproces-
sing step, the frames are denoised. Basically, this step con-
stitutes of 9 separable convolutions. Secondly, succeeding
frames in the sequence are matched (1 with 2, 2 with 3,
etc.). This gives an estimation of the global position of each
frame. In a third step, the global position is refined by con-
sidering other overlaps. The probe is moved in a zigzag
way, so that image 1 overlaps with for example image 7 and
8. The stitching of 2 images, performed in the second and
third step, needs 10 to 100 iterations, dependent on how fast
the match is found. The computation time of the stitching
is therefore variable. Each iteration consists of 2 separable
convolutions and an interpolation. Note that the tasks in the
third step depend on the results of the second step.

The experiments were performed on our cluster of 8
quadcores (Intel Core 2 Quad Q6700 2.66 GHz processors).
Fig. 4 shows the speedup of running the mosaicing algo-
rithm by the parallel engine. The mosaicing was done for
100 images of 518 by 426 pixels. The following run times
were compared with that of single-threaded execution on
one processor. The algorithm was executed on 2 to 8 pro-
cessors, single-threaded and with 4 threads. Furthermore,
we compared the ‘static’ scheduling algorithm explained
in Section 4 with a ‘dynamic’ scheduling algorithm taking
into account the unpredictability of the computation times
of the tasks in step 2 and step 3 of the mosaicing algorithm.
While the static algorithm calculates a mapping of the tasks



onto the processors which is then executed invariably, the
dynamic algorithm simply passes tasks to idle processors.
This latter is also called a farmer approach. In the former,
the communication of images is minimized, while not in
the latter; the images are passed together with the tasks and
the results are collected each time by the master processor.
So, the communication overhead is minimized for the static
scheduling algorithm, while the idle time due to load imbal-
ances is smaller for the dynamic scheduling algorithm.

Fig. 4 shows that the mosaicing algorithm is suited for
efficient parallel processing; the overheads are low. The
execution time is reduced from 90 minutes on a single core
to 3.2 minutes fully exploiting the 8 quadcores. The dy-
namic scheduling algorithm is able to overcome load imbal-
ances due to the unpredictable nature of the tasks’ computa-
tion time. The idle time due to load imbalances outweighs
the communication overhead so that the dynamic algorithm
clearly performs better.

7 Conclusions

We present extensions for the current state-of-the-art on
user-transparent parallel image processing. Our approach
integrates with the ITK library. It maximally exploits the
design of the library, such that only a little effort is de-
manded from the non-parallel expert user. The generic pa-
rallel algorithm is designed using object-oriented patterns
instead of algorithmic skeletons. A parallel engine is con-
structed which is able to efficiently executing the image
tasks on the available processing elements, exploiting task
and data parallelism. Except for serialization1, the engine
can itself track the tasks’ attributes which are necessary
for parallelization. The task dependency graph is genera-
ted automatically during the execution of the application.
Experimental results show that efficient parallel processing
is attained.

The philosophy of our approach is the concretization of
tasks by objects and the enhancement of a parallel engine
with ‘parallel intelligence’. In the future, we want to add a
performance monitor to the engine which uses performance
data of previous runs to optimize new runs of tasks and ap-
plications.
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