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Abstract

This paper studies the feasibility and interpretation of learning the causal structure from
observational data with the principles behind the Kolmogorov Minimal Sufficient Statistic
(KMSS). The KMSS provides a generic solution to inductive inference. It states that we should
seek for the minimal model that captures all regularities of the data. The conditional inde-
pendencies following from the system’s causal structure are the regularities incorporated in
a graphical causal model. The meaningful information provided by a Bayesian network cor-
responds to the decomposition of the description of the system into Conditional Probability
Distributions (CPDs). The decomposition is described by the Directed Acyclic Graph (DAG).
For a causal interpretation of the DAG, the decomposition should imply modularity of the
CPDs. The CPDs should match up with independent parts of reality that can be changed inde-
pendently. We argue that if the shortest description of the joint distribution is given by separate
descriptions of the conditional distributions for each variable given its effects, the decomposi-
tion given by the DAG should be considered as the top-ranked causal hypothesis. Even when
the causal interpretation is faulty, it serves as a reference model. Modularity becomes, how-
ever, implausible if the concatenation of the description of some CPDs is compressible. Then
there might be a kind of meta-mechanism governing some of the mechanisms or either a single
mechanism responsible for setting the state of multiple variables.

1. Introduction

Causal inference is an ambitious research field, as it tries to learn how the world is put together
from observations only. The algorithms for causal inference are based on the conditional in-
dependencies implied by the causal structure of the system. The theory of graphical causal
models, as developed by Pearl et al., gives a probabilistic view on causation and is based on the
theory of Bayesian networks. The Directed Acyclic Graph (DAG) of a Bayesian network can
be regarded as a representation of the conditional independencies of a probability distribution.
A causal model gives a causal interpretation to the edges of a Bayesian network. The causal
interpretation is based on manipulability; the model exhibits the structure of the system such
that it is able to predict changes to the system. Hausman and Woodward (1999) show that this
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interventionist interpretation of causality is tightly linked to modularity. They also defend the
equivalence of modularity and the causal Markov condition (Hausman and Woodward, 1999, p.
554).

The causal interpretation of a Bayesian network is often criticized (Freedman and Humphreys,
1999; Cartwright, 2001; Williamson, 2005; Hausman and Woodward, 1999). This paper would
like to contribute to the discussion by analyzing causal inference through the concept of the
Kolmogorov Minimal Sufficient Statistic (KMSS). The idea is that patterns or regularities in the
observed data do not happen by accident. They teach us the important properties of the sys-
tem. We say that the regularities constitute the meaningful information of the data. The KMSS
allows a formal separation of meaningful and random information, based on the Kolmogorov
complexity of objects. The application of Kolmogorov complexity to inductive inference has
given rise to different methods, such as Minimum Message Length (MML) (Wallace and Boul-
ton, 1968) and Minimum Description Length (MDL) (Rissanen, 1978). These methods are used
for selecting the best model from a given set of models. The choice of model class, however,
determines the regularities under consideration. During our discussion, we will not stick to an a
priori chosen set of regularities, but search for the relevant regularities. Regularities will show
up to be of key importance for testing the validity of causal inference.

This paper puts forward that the meaningful information of a Bayesian network is the de-
composition of the system’s description into separate components, the Conditional Probability
Distributions (CPDs). The correctness of the causal interpretation of this decomposition relies
on whether the CPDs correspond to independent mechanisms. We will analyze the correctness
by looking at the regularities not incorporated by the Bayesian network.

In Section 2, the concept of KMSS is introduced. In Section 3, we will give a survey
of graphical causal model theory and the learning algorithms. The link between a Bayesian
network and the KMSS of a probability distribution is discussed in Section 4. In Section 5 we
will argue that causal inference is plausible if the Bayesian network gives the KMSS. Section
6 discusses the cases in which the minimal Bayesian network does not provide the minimal
description.

2. Meaningful Information

Kolmogorov Complexity provides an objective measure of simplicity so that Occam’s razor can
be applied. The Kolmogorov Complexity of a string x is defined to be the length of the shortest
computer program that prints the string and then halts (Li and Vitanyi, 1997):

K(x)= min [ 1
()= min I(p) M

with U/ a universal Turing machine and [(p) the size in bits of program p. Pat-
terns in the string allow for its compression, i.e. to describe the data using fewer
symbols than the number of symbols to describe the data literally. The string
“0001000100010001000100010010001000100010001” can be described shorter by program
REPEAT 11 TIMES "0001". Butnot all bits of this program can be regarded as containing
meaningful information. We consider meaningful information as the properties of the string that
allow for its compression (Vitanyi, 2002). Such properties are called patterns or regularities.
The regularity of the string is the repetition. The number of repetitions (11) or the substring
"0001" is random information. A random string, which is incompressible, has no meaningful
information at all.

For inductive inference, we will look for a minimal description in 2 parts, one containing
the regularities of the data, which we call the model, and one part containing the remaining
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random noise. Such a description is called a two-part code. This results in generic approaches
for inductive inference, such as Minimum Description Length (MDL). According to MDL we
have to pick the model M,,;; from model class M where M,,;; is the model which minimizes
the sum of the description length of M and of the data D encoded with the help of M (Griinwald,
1998):

M1 = arg minygge p{L(M)+L(D | M)} (2)

with L(.) the description length.

The MDL approach relies on the a priori chosen model class. It does not tell us how to
make sure the models capture all and nothing more than the regularities of the data. The KMSS
provides a formal separation of meaningful and meaningless information. We limit the intro-
duction of KMSS to models that can be related to a finite set of objects, called the model set. In
the context of learning, we are interested in a model set S that contains string x and the objects
that share x’s regularities. With |S| the size of set S, all elements of a set S can be enumerated
with a binary index of length log, |S|. We say that x is typical for S if

K(x| ps) = log, [S| - B 3)

with pg the shortest program that describes S and 8 an agreed upon constant. The index is
constructed by index enumerating all elements of the set, its length is thus log, |S|. Atypical
elements have regularities that are not shared by most of the set’s members and can therefore be
described by a shorter description. Most elements of S are typical, since, by counting arguments,
only a small portion of it can be described shorter than log, |S|.

The Kolmogorov Minimal Sufficient Statistic (KMSS) of x is defined as the shortest program
p* which describes the smallest set S* such that x is a typical element of S* and the two-stage
description of x is as good as the minimal single-stage description of x (Gécs et al., 2001):

p" = argminy{l(p) |U(p) =S, x €S, K(S)+log, |S| < K(x)} “)

Program p* minimally describes the meaningful information present in x and nothing else. This
can be understood as follows. By the inequality, the two-part description is at least as short as
the Kolmogorov complexity of x. Since we seek for the simplest S (minimal p), we will only
describe regularities by p. Regularities compress the description and greatly reduce the size of
S. Putting random information in S would also reduce log, | S|, but would increase K(S) equally.

K(x) depends on the chosen Turing machine I, or, in practice, on the chosen description
language. Minimality and compressibility are thus partly dependent on the choice of language.
Another problem for directly applying the definitions is the intractability of K (x). It falls out of
the scope of this paper to address these problems, consult (Li and Vitanyi, 1997) for an in-depth
analysis. We will apply the principles behind Kolmogorov complexity, MDL and KMSS in
order to better understand causal inference, its interpretation and feasibility.

3. Graphical Causal Models

This chapter will introduce graphical causal models and the learning algorithms (Pearl, 2000;
Spirtes et al., 1993; Tian and Pearl, 2002).

3.1 Representation of Causal Relations

Graphical causal models intend to describe with a Directed Acyclic Graph (DAG) the structure
of the underlying physical mechanisms governing a system under study. The state of each varia-
ble, represented by a node in the graph, is generated by a stochastic process that is determined
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by the values of its parent variables in the graph. All variables that influence the outcome of the
process are called causes of the outcome variable. An indirect cause produces the state of the
effect indirectly, through another variable. If there is no intermediate variable among the known
variables, the cause is said to be a direct cause.

Each process represents a physical mechanism. In it most general form it can be described
by a conditional probability distribution (CPD) P(X | Pa(X)), where Pa(X) is the set of parent
nodes of X in the graph and constitute the direct causes of the variable. The combination of the
CPDs results in the system’s joint probability distribution:

n
P(Xi1,....X,) = [[P(X; | Pa(Xi)) 5)
i=1
The right hand side is called a factorization of the joint probability distribution.

3.2 The Effect of Changes to the System

We attribute a causal interpretation to the edges of the graph, but what does this ‘causal inter-
pretation’ signify? The approach of Pearl and many others is to draw a connection between
causation and manipulability (Hausman and Woodward, 1999). The causal interpretation is de-
fined by the model’s capacity to predict the effect of changes to the system. Changes are defined
by Pearl as interventions. An intervention is defined as an atomic operation that fixates a set of
variables to some given states and eliminates the corresponding factors (CPDs) from the facto-
rization (Eq. 5) (Pearl, 2000). Applied on a causal graph, an intervention on variable X sets the
value of X and breaks all of the edges in the graph directed into X and preserves all other edges
in the graph, including all edges directed out of X. This is called the Manipulation Theorem by
Spirtes et al. (1993, p. 51). Intervening on a variable only affects its effects. Causes have to be
regarded as if they were levers which can be used to manipulate their effects.

This approach does not directly define causality, but defines the implications of having a
thorough knowledge of the mechanisms that make up a system. Manipulability puts a con-
straint of independentness on the mechanisms. The accuracy of the mutilated model relies on
autonomy or modularity; a mechanism can be replaced by another without affecting the rest of
the system. It is defined by Hausman and Woodward (1999, p. 545) as follows. Note that they
relate each CPD to a structural equation.

Definition 1 (Modularity) For all subsets Z of the variable set V, there is some non-empty range
R of values of members of Z such that if one intervenes and sets the value of the members of Z
within R, then all equations except the equations with a member of Z as a dependent variable
(if there is one) remain invariant.

3.3 Representation of Independencies

The evidence for causal inference is the conditional independencies entailed by the system’s
causal structure. For a causal model, the causal Markov condition gives us the independen-
cies that follow from the causal structure: each variable is probabilistically independent of its
non-effects conditional on its direct causes (Spirtes et al., 1993). These independencies are
irrespective of the nature of the mechanisms, of the exact parameterization of the conditional
probability distributions P(X; | Pa(X;)). All independencies following from the causal Markov
condition can be retrieved from the causal graph by the d-separation criterion. A causal graph
is called faithful if all conditional independencies from the distribution follow from the causal
Markov condition.
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3.4 Correspondence with Bayesian Networks

Graphical causal models provide a probabilistic account of causality (Spohn, 2001). This re-
sulted in a close correspondence with Bayesian networks. In contrast to causal models, Baye-
sian networks are only concerned with offering a dense and manageable representation of joint
distributions. A joint distribution over n variables can be factorized relative to a chosen variable
ordering (Xi,...,X,) as follows:

P(X1,...,X,) :HP(Xi | X1,...,Xi 1) (6)

Variable X; can be removed from the conditioning set of variable X; if it becomes conditionally
independent from X; by conditioning on the rest of the set:

XjJ_LXi|X1...Xj,],Xj+1...Xi,1 (7

Such conditional independencies reduce the complexity of the factors in the factorization.
The conditioning sets of the factors can be described by a Directed Acyclic Graph (DAG),
in which each node represents a variable and has incoming edges from all variables of the
conditioning set of its factor. The joint distribution is then described by the DAG and the
conditional probability distributions (CPDs) of the variables conditional on their parents: P(X; |
Pa(X;)). A Bayesian network is a factorization that is edge-minimal, in the sense that no edge
can be deleted without destroying the correctness of the factorization.

Causal models attribute a causal interpretation to the edges of the graph of a Bayesian net-
work and are therefore called causally interpreted Bayesian networks. Bayesian networks are
just dense descriptions of probability distributions and offer an explicit representation of de-
pendencies and independencies. The link is that the causal Markov condition follows from the
correctness of the factorization (Hausman and Woodward, 1999, p. 532).

Although edge-minimality of a Bayesian network, the graph depends on the chosen variable
ordering. Some orderings lead to the same networks, while others result in different topologies.
All networks represent the probabilities just as well, except that some are more complex than
others. We call the minimal Bayesian networks the Bayesian networks which have the least
number of edges in their DAGs.

3.5 Causal Inference

The goal of causal inference is to learn the causal structure of a system based on observa-
tional data. Causal structure learning algorithms fall apart in two categories: scoring-based
and constraint-based algorithms. Scoring-based algorithms are based on an optimized search
through the set of all possible models, which tries to find the minimal model that best des-
cribes the data. Each model is given a score that is a trade-off between model complexity
and goodness-of-fit. Different scoring criteria have been applied in these algorithms, such as
a Bayesian scoring method (Cooper and Herskovits, 1992), an entropy based method (Her-
skovits, 1991) and one based on the Minimum Description Length (Suzuki, 1996). Irrespective
of the exact definition of the scoring criteria, we can say that the algorithms are looking for the
minimal Bayesian network.

Constraint-based learning algorithms rely on the conditional independencies detected that
follow from the system’s causal structure. It is a kind of evidence-based construction, the deci-
sions to include an edge and on the edge’s orientation are based on the presence or absence of
certain independencies. The algorithms assume minimality, faithfulness and the causal Markov
condition (Spirtes et al., 1993). We are also searching for the minimal Bayesian network, since
a faithful Bayesian network is minimal (Lemeire et al., 2009).
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4. Bayesian Networks as Minimal Descriptions of Distributions

In this section we will draw the connection between Bayesian networks and the KMSS of pro-
bability distributions. Let us apply the principle of KMSS to inductive inference of multivariate
data that are independently and identically distributed (i.i.d.). Following the principle, the in-
ferred model should capture the regularities of the data. The type of regularity we have to con-
sider is a dependency between variables; knowing one variable gives information about the state
of another variable. The knowledge about the state of a single stochastic variable is captured
by a probability distribution over it. Dependency information is captured by the joint proba-
bility distribution defined over the variables of interest. The KMSS of the distribution should
be a minimal description of the distribution’s regularities. In this section we will consider the
description given by a Bayesian network, other regularities will be considered in Section 6.

From the theory of Bayesian networks, we know that a joint distribution can be described
shorter by a factorization (relative to a certain variable ordering) that is reduced by conditional
independencies (given by Eq. 7). This leads to the description of the joint distribution by
a factorization: P(Xj,...,X,) = [ICPD;, with CPD; the CPD of variable X;, defining P(X; |
Pa(X;)), a distribution over X; conditional on a subset of some other variables. A two-part
description of a joint distribution is then:

descr(P(Xi ...Xn)) = descr({Pa(X1),...,Pa(X,)}) +descr(CPDy) + - - - +descr(CPD,) (8)

With descr() denoting a description. The parents’ lists can be described very compact by a
DAG. The descriptive size of the CPDs is determined by the number of variables in the con-
ditioning sets, the number of free parameters for describing the distributions and the chosen
accuracy. Eq. 8 corresponds to the description of a Bayesian network. If this results in an
incompressible description, the DAG gives the meaningful information and the KMSS. This is
proven by the following theorem.

Theorem 2 Given a set of probability distributions P defined over a set of n variables
Xi,...,Xn. Consider a probability distribution P € P which can be decomposed by a facto-
rization based on parents’ lists Pa(Xy), . ..,Pa(X,). Consider that the factorization is described
(see Eq. 8) by a minimal code which is able to describe all P' € P that can be described by a
factorization based on the same parents’ lists. If such a description results in an incompress-
ible string, then the first part (the description of the parents’ lists) is the Kolmogorov minimal
sufficient statistic of P.

Proof The parents’ lists describe a subset P’ C P which includes all elements that can be
decomposed by the same factorization. We assume that this description is incompressible,
therefore its length corresponds to K(P’) up to a constant !. The code used to describe the
CPDs allows a description of all elements of P’. It is a minimal code, so its length equals to
log, | P'|. The total description is incompressible, so its length equals, up to a constant, to K(P).
We have found a set P, for which K(P’) +log, |P'| < K(P).

Next, we have to prove that there is no other set, P”, which has a shorter description and
for which the inequality holds (see Eq. 4). Assume that such a P” exists. If P C P, the
description of the CPDs would be compressible. P” is a smaller set, indicating that there are
regularities in P which are not described by P’. If P’ C P”, then, similarly, the description of
K(P")+1log, |P”| would be compressible. It follows that if such a P” exists, both sets contain
exclusive elements that do not belong to the other set. This implies that the descriptions of both

1. Two minimal descriptions of x based on different codes or turing machines are equal up to a constant that is
independent of x. Since the descriptions are minimal, they are incompressible.
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sets exploit regularities of P that are not exploited by the other one. Therefore neither of the
descriptions is minimal and incompressible. This proves that such a P” does not exist.
|

The DAG thus minimally describes the dependencies among the variables, the model’s com-
plexity is reduced by conditional independencies.

It must be noted that if there exists a faithful and minimal Bayesian network, it is not nec-
essarily unique. Multiple minimal models can exist for a distribution. These models represent
the same set of independencies and are therefore statistically indistinguishable. They define
a Markov-equivalence class. 1t is proved that they share the same skeleton and v-structures.
They only differ in the orientation of some edges (Pearl, 2000). This set can be represented
by a partially-directed acyclic graph in which some of the edges are not oriented. The corre-
sponding factorizations have the same number of conditioning variables. Thus, all models of a
Markov-equivalence class have the same complexity.

5. Correspondence of Decomposition to Independent Mechanisms

Causal inference from observations is based on finding the minimal Bayesian network (Sec.
3.5) and attaching a causal interpretation to it (Sec. 3.2). In this section we will discuss the case
in which, for a given set of observations, there is exactly one minimal Bayesian network which
is also the minimal description of the data. This means that there are no other regularities than
the conditional independencies the model represents. The DAG is then the KMSS of the data
and minimally represents all regularities. We argue that description minimality can be linked to
causality.

Note that for not overloading the discussion we will assume causal sufficiency: there are no
unknown variables that affect more than one known variable.

5.1 Correspondence of Bayesian Networks to a Decomposition

Let us first analyze what the meaningful information of a Bayesian network exactly represents.
A Bayesian network describes a joint probability distribution by DAG G and a list of CPDs as
given by Equation 8. The description is decomposed into individual CPDs. The decomposition
is described by the DAG, it tells us which CPDs we have to consider. The DAG G contains the
meaningful information. It describes a model set of distributions Pg, all sharing the conditional
independencies following from the Markov condition. The distributions that only have these
independencies are the typical elements of Pg. G is faithful to them. Distributions having other
independencies, are atypical, their description based on G is compressible (Lemeire et al., 2009,
Theorem 6). We will consider them in the next section. We will first assume that the description
is unique and minimal.

A Bayesian network thus describes a decomposition and matches with a reductionist view,
according to which the world can be studied in parts. Indeed, if the system cannot be decom-
posed, if there are no conditional independencies that simplify a factorization, then the DAG
does not contain meaningful information (Theorem 2). We end up with a Holist system in which
everything depends on everything.

It must be noted that the assumption of a unique minimal Bayesian network is not essential.
If the minimal Bayesian network is not unique, the Markov-equivalence class indicates exactly
which parts are undecided, namely the orientation of some edges. So, we know exactly for
which parts of the model we have not enough information to decide upon the decomposition.
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Figure 1: The relation between vitamin D creation and latitude: true causal model (a) and
minimal Bayesian network (b).

For the remainder of the model, the decomposition is known. When we speak of the minimal
Bayesian network, we actually mean the class of closely-related minimal Bayesian networks.

5.2 Correspondence of the Decomposition to Mechanisms

Let us now investigate whether the CPDs of the minimal Bayesian network of a probability
distribution can be matched up with the mechanisms of the underlying system. The minimal
Bayesian network provides modularity in the descriptive sense: the description consists of com-
ponents. But does this also imply modularity in the causal sense: do the descriptive components
correspond to independent parts of reality? In other words, does the model learned by observa-
tions reveal the underlying system?

We have found the simplest model. Following Occam’s razor this is the model we should
‘select’. But does Occam’s razor also guarantees that this model tells us something about the
real system? Yet, we did not only find the minimal Bayesian networks in the set of all Bayesian
networks, we also found the minimal model in the general sense. The model is the KMSS and
has extracted all regularities from the data. Moreover, the model is unique. From these facts we
argue that:

In absence of background knowledge, experiments with interventions or other information,
given that a minimal Bayesian network is the KMSS of the data, the top-ranked hypothesis is
that each CPD represents an independent part of reality.

Before explaining what we exactly mean by ‘top-ranked’ hypothesis, let us consider two
counter examples.

5.3 Counter Examples

Consider people living at different latitudes and the amount of vitamin D creation. Melanin is
a pigment that protects us against harmful UV radiation. On the other hand, we need a limited
amount of UV radiation to produce a necessary amount of vitamin D. To ensure this, evolution
has given humans a different amount melanin, which is reflected by skin color, relative to the
amount of sun they are exposed to. The latter is mainly affected by the latitude. This results
in a nearly constant amount of vitamin D creation independent from the latitude we live at.
Figure 1 shows the real causal model (a) and the minimal Bayesian network (b). Evolution
has controlled the Latitude — Melanin relation such that the parameters were calibrated until
the influences from Latitude on Vitamin D neutralized. This is a counter example of Occam’s
razor; the simplest model does not give us the true model. There is a meta-mechanism, namely
evolution, controlling the mechanisms.

Next, consider the coder-decoder example, taken from Spirtes et al. (1993, Figure 3.23),
shown by Figure 2(a). Variable Y encodes the values of both R and X, and Z decodes Y to
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Figure 2: Coder-decoder system, taken from Spirtes et al. (1993, Figure 3.23), in which Z equals
to X. Description of the system (a) and minimal model (b).
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match the value of X. This is possible because the first bit of Y corresponds to the value of X.
The coder-decoder system is designed to exhibit the specific behavior that Z equals to X. The
model describing such a system, shown in Figure 2(a), is clearly not minimal. In the minimal
description of the system given by Figure 2(b), Z is directly related to X. Occam’s razor is
violated. The CPD components are part of a greater mechanism and are engineered to match
each other in such a way that the desired functionality is realized. The causal interpretation of
the minimal model is incorrect. If we intervene on ¥ by manually setting the value of Y to a
certain value which is not controlled by X, then Z becomes independent of X.

5.4 Conclusions about the Causal Interpretation of the Decomposition

The examples illustrate that the real system can be more complex than suggested by the com-
plexity of the observations. Does this invalidate our claim about the minimal Bayesian network?
It shows that Occam’s razor cannot always be trusted. The minimal model may be incorrect, in
the sense that the causal interpretation should be considered with care. But even when faulty,
the minimal Bayesian network tells us two things about the system.

First, the DAG of the minimal Bayesian network describes the qualitative behavior of the
system. This is true for both counter examples. From Figure 1(b) we see that the amount of
vitamin D creation is independent from the latitude we live in. From Figure 2(b) we immedi-
ately see that Z only depends on X and is totally independent from R and Y. The structure of
the real causal models does not reveal these independencies. We have to carefully study the
parameterization to understand these independencies. Moreover, these are not accidental inde-
pendencies. For the first example, it is the result of an evolution triggered by the evolutionary
fitness. For the second example, it was the deliberate intention of the engineer to give the sys-
tem this specific behavior. This corresponds to the rationale behind Occam’s razor: regularities
are most likely not accidental, but indications of a kind of mechanism. Only the occurrence of
accidental (in)dependencies in the data, due to a limited sample size for example, makes the
minimal model not correctly describing the system’s behavior.

Secondly, we argue that the minimal Bayesian network at least serves as a reference model.
The correspondence of the CPDs to real mechanisms might be untrue due to a meta-mechanism
controlling the configuration of the system. The likelihood of the occurrence of such a me-
chanism must be estimated from background knowledge. In that case, experiments with inter-
ventions will have to be performed in order to reveal the true causal model (Korb and Nyberg,
2006). But even then will the minimal Bayesian network show its value. It can be used as a
reference model, which will be compared with the model learned after the application of the
interventions. This comparison would reveal the meta-mechanism.
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(b)

Figure 3: O-structure in which A is independent from D (a). A Markov network (b) and one of
the minimal Bayesian networks describing the same system (c).

6. Compressibility of the Minimal Bayesian Network

In this section we will dig deeper. We will investigate the consequences for cases in which
the minimal Bayesian network does not describe the KMSS. Then, the DAG is not the only
meaningful information. There exists a simpler description of the distribution than given by the
minimal Bayesian network. First we will consider the compressibility of an individual CPD and
then we consider the compressibility of several CPDs taken together.

6.1 Compressibility of a Single CPD

Compressibility of individual CPDs is called local structure (Friedman and Goldszmidt, 1996).
In this terminology, the DAG describes the global structure, the CPDs the local structure. On
top of the independencies following from the causal structure the individual CPDs exhibits
additional regularities. For discrete models for example, the conditional probability tables can
be described shorter by decision trees when so-called context-specific independencies appear
(Boutilier et al., 1996).

A specific type of local structure is the decomposition of a CPD into independent compo-
nents. In general, a CPD describes the mechanism by which all direct causes together produce
the state of a single variable. Various authors report on independent cause-effect relations. They
study representations in which the causal influences of the direct causes of a variable are inde-
pendent, for example by a factorized representation of a CPD (Madsen and D’ Ambrosio, 2000).
Hausman and Woodward (1999, p. 547) call it disjunctive causes. On top of the decomposition
given by Equation 8, the parts of the decomposition can be further decomposed.

In these cases, the decomposition according to Equation 8 is still valid. Modularity is still
valid, in the descriptive and causal sense. The same conclusions as those of the previous section

apply.

6.2 Compressibility of the Concatenation of CPDs

When the description of some CPDs together can be compressed, the regularity indicates that
the CPDs are in some way related. The following counter examples show that this often invali-
dates the causal interpretation.
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Figure 4: Bayesian network (a) of a system that calculates the quotient and remainder of two
integers. The decomposition it represents (b) and a single mechanism calculating both
outputs together (c).

6.2.1 O-STRUCTURE

The most-known counter example of causal inference is when in the model of Figure 3(a), A
and D appear to be independent (Spirtes et al., 1993). This happens when the influences along
the paths A — B — D and A — C — D exactly balance, so that they cancel each other out and the
net effect results in an independence. This cancellation is similar to the vitamin D example of
Section 5.3. Except that in this case the DAG of the minimal Bayesian network corresponds to
the structure of the model. The CPDs and the mechanisms are, however, not independent. Pearl
considers the exact cancellation of the parameters as a measure zero event, since the probability
of such a coincidence can therefore be regarded as nearly zero (Pearl, 2000, p. 48). This is
true as long as there not a kind of meta-mechanism controlling the mechanisms such that the
parameters are calibrated until they neutralize. This confirms our conclusions of the previous
section that the existence of such mechanisms must be taken into consideration. Then, the
likelihood of a cancellation is not zero.

Modularity becomes invalid when the meta-mechanism acts instantly. In the vitamin D case,
evolution works slowly. On short term, the mechanisms are independent. It is only on the long
term that the calibration will be reestablished.

6.2.2 MARKOV NETWORK

Consider a system that is minimally described by a Markov network, as shown in Figure 3
(b). Variables which are connected by a path in the network are dependent, unless each path is
blocked by one of the conditioning variables. So is BXC | A, but BLLC | {A,D}. For describing
the same network with a DAG, we have to orient the edges of the network. For acyclicity, we
have to create at least one v-structure. We can choose for example B— D — C. But then, for keep-
ing the same dependencies, we have to add an edge, as shown in Figure 3 (c). Without B — C we
would have B1LC | A. Clearly, this Bayesian network is not minimal; the description is longer
than that of a Markov network. The parameterizations of the CPDs contain redundancies. In the
model of 3 (c), the parameterizations must ensure that BLLC | {A, D}, an independency which
is not captured by the DAG. When such a distribution is observed, the causal interpretation of
the CPDs of the minimal Bayesian networks is incorrect.

6.2.3 MULTIPLE-OUTPUT FUNCTIONS

Consider a system that calculates the quotient and remainder of two integers. Figure 4(a) shows
the minimal Bayesian network of the system. The model describes the system as two different

117



LEMEIRE AND STEENHAUT

mechanisms, one for calculating the quotient and one for the remainder, shown in Figure 4(b).
Both mechanisms, however, are related; there is a lot of overlap in calculating the quotient
and the remainder. A model describing the system by one component which calculates both
outputs together, as shown in Figure 4(c), is more compact than a Bayesian network which only
allows components with single outputs. In that case, the CPDs of the minimal Bayesian network
cannot be considered as independent. If the output variables are clearly separated quantities, a
mechanism setting the values of multiple variables should be taken into consideration.

6.2.4 OBJECT-ORIENTED NETS

Another regularity is the repetition of similar mechanisms in a system. This results in a causal
model in which identical CPDs appear. The model is therefore compressible. The compressi-
bility does not necessarily result in a dependence of the CPDs in terms of manipulability. It de-
pends on the meta-mechanism responsible for the regularities in the system. The system could,
for example, be designed by an engineer, such as a digital circuit. Then, modularity holds; one
mechanism can be replaced by another without affecting the rest of the model. Object-Oriented
nets provide a representation format that explicitly capture similarities of mechanisms (Koller
and Pfeffer, 1997).

7. Conclusions

We showed that the meaningful information described by a Bayesian network about a probabi-
lity distribution is the decomposition of the distribution into CPDs. We argue that if the shortest
description of the joint distribution is given by separate descriptions of conditional distributions,
it is the top-ranked causal hypothesis:

(1) The Bayesian network gives a correct description of the behavior of system. The qua-
litative properties, namely the conditional independencies, are incorporated in the DAG. This
only becomes invalid by accidental (in)dependencies due to for instance a limited sample size.

(2) The likelihood that the CPDs correspond to independent mechanisms of the system
(modularity) depends on the likelihood of a kind of meta-mechanism. A meta-mechanism could
result in a system which is more complex than suggested by its behavior. In that case, the
behavior of the system when subjected to an external intervention will not be correctly predicted
by the minimal model. Nonetheless, the minimal Bayesian network can serve as a reference
model that has to be compared with the behavior of the system after applying the interventions.

By applying the principle of KMSS, we did not only look for the minimal Bayesian net-
work in the set of all Bayesian networks. We also took into consideration the presence of other
regularities than the conditional independencies following from the system’s causal structure.
These regularities might invalidate the above conclusions. If such regularities appear in indivi-
dual CPDs, the mapping of CPDs onto independent mechanisms still holds (in the above sense).
The DAG of the Bayesian network does not have to be the KMSS. The decomposition should
be correct. It becomes incorrect if the concatenation of the description of the CPDs is com-
pressible. Then the CPDs are no longer independent and modularity might become invalid. The
dependence might be caused by a meta-mechanism that governs the dependent mechanisms, or
a mechanism affecting the state of multiple variables.
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