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Abstract—New achievements in Artificial Intelligence (AI)
and Machine Learning (ML) are reported almost daily by the
big companies. While those achievements are accomplished by
fast and massive data processing techniques, the potential of
embedded machine learning, where intelligent algorithms run
in resource-constrained devices rather than in the cloud, is still
not understood well by the majority of the industrial players
and Small and Medium Entereprises (SMEs). Nevertheless,
the potential embedded machine learning for processing high-
performance algorithms without relying on expensive cloud solu-
tions is perceived as very high. This potential has led to a broad
demand by industry and SMEs for a practical and application-
oriented feasibility study, which helps them to understand the
potential benefits, but also the limitations of embedded AI. To
address these needs, this paper presents the approach of the
AITIA project, a consortium of four Universities which aims at
developing and demonstrating best practices for embedded AI
by means of four industrial case studies of high-relevance to the
European industry and SMEs: sensors, security, automotive and
industry 4.0.

Index Terms—artificial intelligence, machine learning, em-
bedded hardware, sensors, network intrusion detection, driver
assistance, industry 4.0

I. INTRODUCTION

AI and ML techniques are pervading all devices and tech-
nologies, with intelligent data processing being brought closer
to the embedded systems to sustain latency and security re-
quirements. Even in the automotive industry, machine learning
is used to equip camera systems with intelligent features.
In industrial automation, machine learning is used e.g. in
model predictive maintenance or also in model predictive
closed control loops. Recently a highly relevant project showed
the importance of machine learning in the domain of high
throughput bottle filling machines. Another fully new domain
for machine learning is mass spectrometry or near infrared
spectrometry where trained networks support the fast detec-
tions of chemical ingredients.

This work is supported by COllective Research NETworking (COR-
NET). The Belgian partners are funded by VLAIO under grant number
HBC.2018.0491, while the German partners are funded by the BMWi (Federal
Ministry for Economic Affairs and Energy) under IGF-Project Number 249
EBG.

In Flanders and Belgium we see an enormous growth of
startups focusing on the creation of smart products who might
benefit from the inclusion of machine learning techniques into
their designs. Belgium counts about 2300 startups active in
the creation of software or hardware for smart Information
and Communication Technology (ICT) products. Also well
established companies within different sectors see the need
for stepping up to the innovation flow of smart objects with
integrated machine learning. In Germany, a growing number
of startups, especially in the domain of security, embedded
systems, internet of things and industrial automation, need
support for the development of machine learning algorithms
and integration on embedded systems. Recently, the high
demand from SMEs in the domain of machine learning using
reconfigurable architecture was underlined. There is currently
a high demand for new end-to-end solutions that practically
address all these requirements. We envision one such a plat-
form in this project, which is described in Fig. 1.

Currently there is a large gap between the achievements
made in research and what is used in real industrial applica-
tions. The SMEs in the user group and in the broader target
group do not have the R&D capacity to invest the necessary
effort to adopt AI technology in their products. Nevertheless,
the companies are convinced that the technology will improve
their products and lead to a significant increase in their turn-
over. In this work, we present the AITIA project, a consortium
of four European universities that aims to bridge the gap
between the academic knowledge of solutions for embedded
AI and ML and industry products.

II. RELATED WORK

Current tools for developing algorithms using machine
learning are mainly from academic groups. Therefore almost
all solutions are not really capable to be used in the devel-
opment of industrial products. Example for such tools are
Tensor flow and Caffee. Certainly there are some solutions
available but they target mainly one specific target hardware
and mostly only one domain. It is fully unclear for SMEs
how to start with a machine learning approach for a given
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Fig. 1. Overview of the AITIA Framework for Embedded AI.

problem. This begins with the problem analysis, definition of
input data, definition and selection of the network, training
method and size of training data sets and, finally, the selection
of the right reconfigurable hardware and its implementations.
This knowledge, present in academics, should be synchronized
with the SMEs. The benefit is that SMEs can grow with
this knowledge and provide highly attractive positions for
graduates of the universities.

Many works have targeted the execution of AI/ML algo-
rithms in Field-Programmable Gate Arrays (FPGAs). Different
frameworks for mapping arbitrary ML algorithms (mostly neu-
ral networks) have been proposed to that end [1], [2]; recent
work discusses those and others comprehensively [3]. The
execution of both Recurrent Neural Networkss (RNNs) [4]–
[7] and Convolutional Neural Networkss (CNNs) [3], [8]–[13]
has been covered in recent works. Optimization techniques
to improve the performance and/or energy efficiency of these
FPGA-based architecture include quantization [13] and partial
reconfiguration [14].

The continuous report of new achievements suggest that a
great deal of open challenges still need to be addressed in
order to bring the applications of ML from academia to the
SMEs.

III. THE FOUR AITIA USE-CASES

This section describes the four use-cases that will be ad-
dressed within the scope of AITIA: smart sensing, network
intrusion detection, driver assistance and industry 4.0 man-
agement. In smart sensing, ML is leveraged to augment sensor
capabilities. For Network Intrusion Detection, ML offers a
stronger capability of detecting intrusions when compared to
traditional methods. AI can also provide better assistance to
drivers in different automotive aspects. Finally, when used in
an Industry 4.0 setting, ML offers improved management of
sensors and actuators.

A. Smart Sensing

The use of near-sensor ML has the potential to enable new
capabilities for industry and consumers alike [15]. The needs
for low latency and efficient bandwidth consumption of many
applications can be alleviated by bringing intelligence to the
network’s edge. Furthermore, such smart devices are capable
of locally process the sensor’s data, reducing the overall power
consumption, optimizing the bandwidth usage and preserving
privacy.

1) Motivation: Heterogeneous sensor arrays, composed of
different type of sensors (infra-red, visual cameras, acoustics,
...) provide valuable multi-sensory information. The intelligent
processing of this multi-sensory information, by using ML
techniques, enable new smart sensing capabilities for industrial
applications [16], [17].

Here, we consider the use of ML techniques for smart
sensing in order to improve the sensors’ quality-of-service
(QoS), to enable sensors’ anomaly detection or to perform
acoustic event classification. The target heterogeneous sensor
array is a multi-mode acoustic camera [18] which combines
visual information with acoustic signals acquired by a micro-
phone array. A SoC FPGA processes the information from
both type of sensors which combination is displayed in a
heatmap format, where the visual and the acoustic information
are overlayed. The following functionalities are targeted:

• QoS improvement: While even low-quality visual cam-
eras provide relative large resolutions, large acoustic
image resolutions lead to high computational cost, which
decreases the overall number of frames-per-second. As
an alternative, the quality of acoustic images will be im-
proved in terms of resolution by exploiting deep learning
algorithms.

• Anomaly detection: The microphone arrays offer re-
dundant information which can be used for anomaly
detection [19]. Different ML techniques will be evaluated
to exploit this multi-sensory information.

• Embedded classification: The multi-sensory informa-
tion that heterogeneous sensor arrays provide enable the
capability to recognize events which otherwise could
not be detected by using single sensors. Existing ML
techniques will be evaluated to process this multi-sensory
information for detection and recognition of acoustic
events in urban environments.

2) Challenges: Deep learning algorithms, like the one
applied in [20] for infra-red and visual cameras, are good
candidates for image upscaling. Nonetheless, the lack of
datasets with acoustic images demands additional effort, since
labelled data is needed for the ML training. Although many
solutions has been proposed for anomaly detection [21], there
is a lack of datasets for the training stage. We will exploit our
sensor array [18] to generate our own datasets through real
recordings. This will allow us to detect defective behaviour
such as complete microphone failures, non-linearly corrupted
microphones and other anomalies like studied in [22]. The
audio signal acquired by the microphone array will be used
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for sound classification. The selection of the most suitable
ML techniques for specific smart sensing applications is not
trivial. For instance, different ML techniques can be used for
sound recognition achieving similar accuracy. Existing datasets
of urban sounds can be used for training ML techniques
such as k-nearest neighbors algorithm (k-NN), support vector
machines (SVM), etc. Moreover, the time needed for the
recognition is usually not reported [23]. Our target solution
will not only offer a high accuracy in recognizing events but
it will also present the shortest execution time.

3) Evaluation: Metrics such as accuracy, precision, recall
of F1-score will be used to evaluate each use case. Parameters
such as performance (e.g. in frames-per-second), resources and
power consumption will also determine the most interesting
solutions. Additionally will be considered:

• QoS Improvement: ML techniques are expected to out-
perform non-AI techniques such as Bilinear interpolation
by using the root mean square error (RMSE) or the peak
signal-to-noise ratio (PSNR) for measuring the interpola-
tion error [24].

• Anomaly Detection: AI-based solutions are expected
to allow the detection of anomalies, such as sensor
malfunctioning, which would not be possible with non-AI
based techniques.

• Embedded classification: A higher performance (in
terms of execution time and/or frames-per-second) is
expected thanks to running ML techniques on reconfig-
urable architectures, outperforming alternative embedded
solutions while offering similar or even higher accuracy
than the state-of-the art.

B. Network Intrusion Detection

1) Motivation: For the use-case about security, we chose
to examine the application of machine learning in network
intrusion detection. Such intrusion detection sytems (IDS) aim
to detect intrusions or attacks against a computer system [25].
Two different types exist: network-based intrusion detection
systems (NIDS) which detect intrusion in a computer network,
and host-based intrusion detection systems (HIDS) that detect
intrusions on a specific host. For such systems, we aim to
investigate if the use of machine learning could leverage their
performance. Currently, NIDS implementations are rule-based.
Examples of this are Zeek [26] (previously known as Bro
[27]), Snort [28] or Suricata [29]. These rule-based approaches
only protect against attacks that are explicitely described in
the rules, which leaves the network susceptible to unknown
attacks. Here, machine learning might be able to provide
protection by automatically learning new attacks, instead of
only relying on specific rules.

2) Challenges: Network intrusion detection is no trivial
task, for a number of reasons. Firstly, two different methods
are used to perform detection, each with their own specific
advantages and disadvantages. On the one hand, misuse-
based detection methods use knowledge of existing attacks to
detect intrusions. On the other hand, anomaly-based intrusion
detection systems identify attacks by their deviation from

normal network behaviour [25]. Misuse-based systems are
good at accurately detecting the attacks they know, but are
unable to detect unknown or day-zero attacks. On the contrary,
an anomaly-based IDS has the ability to detect attacks without
needing to actually know how a specific attack behaves.
However, as not all anomalous behaviour in network traffic
corresponds to an attack, anomaly-based systems have a high
false postive rate.

Secondly, it is hard to obtain realistic and representative
datasets [30]. The datasets that are used most often (KD-
DCup1999 [31] or NSL-KDD [32]) are based on a dataset
generated in 1998 (DARPA1998 [33]). Not only does this
imply that the attacks featured in those datasets are outdated,
it also means that newer attacks (such as distributed denial-
of-service) are not present. More recent datasets are available
[34], [35], but are not widely adopted yet. If machine learning
implementations of NIDS are designed, they need to be trained
and evaluated on relevant datasets.

Finally, while sophisticated implementations of NIDS exist,
achieving high throughputs on a single software-based device
remains very difficult [36]. Hardware-based approaches are
necessary to obtain a higher throughput. Therefore, the goal
of this research is to create a machine learning based hardware
implementation.

3) Potential approaches: There are several potential ap-
proaches to create a NIDS. One intuitive way would be to
design a new NIDS model from the ground up. By taking
previous results and other successful approaches into account,
this new NIDS could potentially combine state-of-the-art tech-
niques with new contributions. While this could lead to good
results, it would be a very time-intensive undertaking. With the
development of a hardware implementation in mind, spending
too much time devising a completely new NIDS might obstruct
this goal.

Consequently, the main other potential approach is to search
for existing suitable NIDS designs and implement those in the
context of this project. However, as this approach would no
longer require coming up with a completely new design, more
time would become available for a hardware implementation.

Defining the suitability of a design would depend on the
requirements of the desired NIDS. If for example real-time
classification of network traffic is desired, an approach agge-
grating traffic data over longer time intervals would not be
suitable. Depending on whether the NIDS should be misuse-
based or anomaly-based, the range of suitable algorithms
changes too. Finally, for this project, the algorithm should be
adaptable to a hardware implementation without losing too
much functionality.

If this second approach is chosen, a method for comparing
various algorithms in various situations should be used. Figure
2 illustrates the general flow of a NIDS approach: from the
raw traffic data, first abstract features are derived. A machine
learning classifier is used in a second stage to decide if a net-
work intrusion is detected. Several state-of-the-art approaches
use a CNN as classifier, and one or another way to convert
the input flow to a feature image that is fed in this CNN
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[37]–[39]. For comparison on a given dataset, we can change
both the preprocessing method and the classification algorithm.
Changing the preprocessing method provides different input
features for the machine learning algorithm, while changing
the algorithm itself introduces other ways to learn from the
input features. Mixing and matching preprocessing methods
and machine learning algorithms for different datasets might
then provide a workflow that is robust in many situations while
achieving good intrusion detection.

4) Evaluation: Of course, there needs to be a way to define
performance for a machine learning-based NIDS. Firstly, the
detection performance itself should be evaluated. This is most
often done using metrics such as accucary, false positive
rate, precision, recall or F-measure. Sometimes more specific
measures such as Matthews Correlation Coefficient can also
be used [40], if the dataset requires it.

Other evaluation criteria are necessary for the evaluation of
the hardware implementation. More concretely, these citeria
include bandwidth (in Gb/s), energy consumption (in W),
latency (in s), used resources (number of flip-flops,...) and
packet loss rate (due to buffer overflows). The latency in
this case is the time it takes for the system to decide, upon
receiving a network packet, if the packet is malicious. The
packet loss rate then is the fraction of a flow of data that is
lost, for example by dropping packets when a buffer is full.

C. Driver assistance

AI is vastly used in different automotive applications and
is a key part in many Advanced Driver-Assistance Systems
(ADAS) used in cars. The key domain of automotive industry
that utilizes AI is object detection and image segmentation.

1) Motivation: AI can be used in different domains in
automotive. From safety applications to adding luxury for
the passengers, it has a lot of applications. Some of the key
motivation points for using AI in automotive use case are given
below:

• Driving Assistance: Intelligent devices in automotive not
only help in driver assistance but are also used in many
safety operations such as emergency braking, blind spot
monitoring and car distance detection. By monitoring
different sensors, AI in automotive can identify dangerous
situations which can alert the driver or take control of
the vehicle to avoid accidents. A very detailed survey is
presented in [41] about driving assistance systems and
their future trends.

• Cloud Services: Conventional cars show drivers check-
engine lights, low battery and other alerts for mainte-
nance. Intelligent devices in automotive can detect issues
in cars before they start to effect vehicle performance by
monitoring different sensor data. In [42], fault detection
and classification technique is presented for automotive
internal combustion engines. The vibration data from
crank angle is used for fault detection. Using this method
commonly known defects of engines were identified with
a success rate of 97%.

• Risk Assessment: AI can access driver’s recent history
data and can do a risk assessment on driver’s ability.
There are many factors which can effect driver’s ability
such as health issues or less sleep.

• Driver Monitoring: In another technique, AI detects
human eye dilation and predicts if the driver is under
stress. This can be used as a safety measure. For instance,
the authors in [43] propose a stress detection approach
by monitoring driver’s electrocardiogram (ECG) while
driving. This monitoring is used to alert driver, its family
or the road users to avoid accidents in case of high stress
level. Also driver gestures can be used for infotainment
control.

2) Challenges: The main challenges in this use case are
accuracy and performance. Since most of the ADAS are
real time and an error can be very catastrophic. So the
algorithms used, needs to be in safety critical accuracy. Also
the algorithm execution latency should be low enough so
it does not miss hard deadlines in safety critical situations.
The algorithms used (especially deep learning algorithms)
have high memory and computational requirements. If con-
volutional neural networks are considered as application test
case, then 90% of the operations are convolution operations
[44] which are computationally intensive. Also the parameters
of these algorithms have huge memory requirements. To fit
these algorithms on embedded systems is a challenge in itself.
Another concern is, the algorithm developers do not consider
hardware requirements when developing and focus is purely
on the achieving higher accuracy. This creates a gap between
software and hardware designs, creating algorithms which
have high accuracy but are impossible to fit on embedded
platforms. This is because algorithms are very big with huge
parameters to be processed.

3) Potential approaches: In order to use an embedded plat-
form for this use case, light weight deep learning algorithms
should be used. There is also some work already available
to reduce parameter size which is helpful for embedded plat-
forms. Ristretto [45] is a framework which allows parameter
approximation of convolutional neural networks depending
on the hardware. This tool reduces the bit-width of a given
network by simulating hardware arithmetic of a hardware
accelerator. This reduces the hardware size by giving low bit-
width parameters for the network. For embedded platforms,
the most common approach for deploying AI algorithms is
by building hardware accelerators [46]. Although it is perfor-
mance efficient and a reliable solution but it lacks flexibility
and robustness. A combination of a processor and accelerator
will add more programmability and flexibility to the architec-
ture. With the introduction of RISC-V [47] as an open source
instruction set architecture, a lot of open source system-on-
chip and MPSoCs are available for research [48]. RISC-V
also allows to add custom instructions to the architecture thus
it can be extended to an Application Specific Instruction Set
Processor (ASIP). A combination of multiple ASIPs, network-
on-chip and different hardware accelerator topologies, can be
a feasible solution to overcome AI constraints.
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Fig. 2. Different steps in the approach of comparing and implementing existing systems.

4) Evaluation: The evaluation criteria for this use case
should be in three domains: area, power and performance.
Since these are three main constraints for embedded platforms.
Also keeping in check that AI algorithms used do not lose
accuracy significantly when different optimization techniques
are used such as parameter optimization and pruning, etc.

D. Industry 4.0

1) Motivation: The vision is to use Machine Learning as
a driver to extend the functionality of next generation sensors
and actuators for the Industry 4.0. This new class of intelli-
gent devices should support (1) self-calibration, (2) predictive
maintenance, (3) self-organization and (4) autonomous control.

Below we list the potential applications to the Industry 4.0
domain.

• Self-calibration: intelligent devices can use multi-
dimensional data from neighboring sensors to perform
self-calibration on the sensors and actuators.

• Predictive maintenance: intelligent devices can automat-
ically detect anomalies in the industrial processes and pre-
dict malfunctions in sensors and actuators. This informa-
tion is processed collaboratively from multi-dimensional
data gathered by the industrial sensor network and the
malfunctioning equipment can be identified;

• Self-organization: intelligent devices are connected in a
mesh network and can organize themselves in a meaning-
ful way to process information on the task at hand and are
able to react in case of failure of individual nodes (i.e.,
even when predictive maintenance fails). As an example,
a network of sensors is used to measure temperature in
different stages of an industrial process; in case one of
the nodes fails, the network reorganizes itself and uses
learned data to predict the temperature for the failed node.

• Autonomous control: the intelligent devices can au-
tomatically control the industrial processes to optimize
the throughput while maintaining the required quality
standards and requiring minimum amount of human in-
tervention.

2) Challenges: The two main challenges of this task are
achieving high performance, security (in close connection
to use-case 3.3 above) and high dependability. The devised
solutions should have low latency in processing sensor data
and evaluating commands for the actuators to have minimal
impact on the production throughput. For that reason, pro-
cessing should be distributed (lack of a centralized controller)
and carried at the edge in order to avoid the high-latency
data communication costs. An additional justification for the
edge processing requirement is the protection of the data and
continuity of operation: edge processing enables devices to

potentially operate disconnected from the network, keeping
the data local and ensuring a higher uptime.

3) Evaluation: For some of the proposed functional re-
quirements, the evaluation criteria are the ability to replace
a human operator and perform the task “just as good” (e.g.:
when it comes to self-calibration and self-organization). A
quantitative evaluation criterion, in this case, could be the
required time for calibration or organization, or the impact
of this time on the production throughput. The ability for
successful predictive maintenance should be evaluated by
an increase in the mean work/time to failure (MWTF or
MTTTF) driven by decreased idle time from failed equip-
ment. Autonomous control can be evaluated by the ability of
proposed ML-based solutions to achieve the same production
throughput while maintaining the same quality standards, or
by an improvement in the quality (indicated, for instance, by a
reduced average deviation from the norm). Finally, processing
should be carried locally (in the industrial plant) and data
communication should not be centralized in order to sustain
the non-functional requirement of security.

IV. CONCLUSIONS

This paper covers the goals of the AITIA project and its
use-cases. The project aims to bridge the gap between the
academic knowledge on AI/ML and bring it to ready-to-use
solutions that SMEs can use in their products.
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